Data items in the ATOM_SITE category record details about the atom sites in a macromolecular crystal structure, such as the positional coordinates, atomic displacement parameters, magnetic moments and directions. The data items for describing anisotropic atomic displacement factors are only used if the corresponding items are not given in the ATOM_SITE_ANISOTROP category. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:atom_siteCategory> <mmCIF:atom_site id="1"> <mmCIF:B_iso_or_equiv>17.93</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>25.369</mmCIF:Cartn_x> <mmCIF:Cartn_y>30.691</mmCIF:Cartn_y> <mmCIF:Cartn_z>11.795</mmCIF:Cartn_z> <mmCIF:auth_seq_id>11</mmCIF:auth_seq_id> <mmCIF:footnote_id xsi:nil="true" /> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>N</mmCIF:label_atom_id> <mmCIF:label_comp_id>VAL</mmCIF:label_comp_id> <mmCIF:label_seq_id>11</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>N</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="2"> <mmCIF:B_iso_or_equiv>17.75</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>25.970</mmCIF:Cartn_x> <mmCIF:Cartn_y>31.965</mmCIF:Cartn_y> <mmCIF:Cartn_z>12.332</mmCIF:Cartn_z> <mmCIF:auth_seq_id>11</mmCIF:auth_seq_id> <mmCIF:footnote_id xsi:nil="true" /> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>CA</mmCIF:label_atom_id> <mmCIF:label_comp_id>VAL</mmCIF:label_comp_id> <mmCIF:label_seq_id>11</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="3"> <mmCIF:B_iso_or_equiv>17.83</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>25.569</mmCIF:Cartn_x> <mmCIF:Cartn_y>32.010</mmCIF:Cartn_y> <mmCIF:Cartn_z>13.808</mmCIF:Cartn_z> <mmCIF:auth_seq_id>11</mmCIF:auth_seq_id> <mmCIF:footnote_id xsi:nil="true" /> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>C</mmCIF:label_atom_id> <mmCIF:label_comp_id>VAL</mmCIF:label_comp_id> <mmCIF:label_seq_id>11</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="4"> <mmCIF:B_iso_or_equiv>17.53</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>24.735</mmCIF:Cartn_x> <mmCIF:Cartn_y>31.190</mmCIF:Cartn_y> <mmCIF:Cartn_z>14.167</mmCIF:Cartn_z> <mmCIF:auth_seq_id>11</mmCIF:auth_seq_id> <mmCIF:footnote_id xsi:nil="true" /> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>O</mmCIF:label_atom_id> <mmCIF:label_comp_id>VAL</mmCIF:label_comp_id> <mmCIF:label_seq_id>11</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>O</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="5"> <mmCIF:B_iso_or_equiv>17.66</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>25.379</mmCIF:Cartn_x> <mmCIF:Cartn_y>33.146</mmCIF:Cartn_y> <mmCIF:Cartn_z>11.540</mmCIF:Cartn_z> <mmCIF:auth_seq_id>11</mmCIF:auth_seq_id> <mmCIF:footnote_id xsi:nil="true" /> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>CB</mmCIF:label_atom_id> <mmCIF:label_comp_id>VAL</mmCIF:label_comp_id> <mmCIF:label_seq_id>11</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="6"> <mmCIF:B_iso_or_equiv>18.86</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>25.584</mmCIF:Cartn_x> <mmCIF:Cartn_y>33.034</mmCIF:Cartn_y> <mmCIF:Cartn_z>10.030</mmCIF:Cartn_z> <mmCIF:auth_seq_id>11</mmCIF:auth_seq_id> <mmCIF:footnote_id xsi:nil="true" /> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>CG1</mmCIF:label_atom_id> <mmCIF:label_comp_id>VAL</mmCIF:label_comp_id> <mmCIF:label_seq_id>11</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="7"> <mmCIF:B_iso_or_equiv>17.12</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>23.933</mmCIF:Cartn_x> <mmCIF:Cartn_y>33.309</mmCIF:Cartn_y> <mmCIF:Cartn_z>11.872</mmCIF:Cartn_z> <mmCIF:auth_seq_id>11</mmCIF:auth_seq_id> <mmCIF:footnote_id xsi:nil="true" /> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>CG2</mmCIF:label_atom_id> <mmCIF:label_comp_id>VAL</mmCIF:label_comp_id> <mmCIF:label_seq_id>11</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="8"> <mmCIF:B_iso_or_equiv>18.97</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>26.095</mmCIF:Cartn_x> <mmCIF:Cartn_y>32.930</mmCIF:Cartn_y> <mmCIF:Cartn_z>14.590</mmCIF:Cartn_z> <mmCIF:auth_seq_id>12</mmCIF:auth_seq_id> <mmCIF:footnote_id>4</mmCIF:footnote_id> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>N</mmCIF:label_atom_id> <mmCIF:label_comp_id>THR</mmCIF:label_comp_id> <mmCIF:label_seq_id>12</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>N</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="9"> <mmCIF:B_iso_or_equiv>19.80</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>25.734</mmCIF:Cartn_x> <mmCIF:Cartn_y>32.995</mmCIF:Cartn_y> <mmCIF:Cartn_z>16.032</mmCIF:Cartn_z> <mmCIF:auth_seq_id>12</mmCIF:auth_seq_id> <mmCIF:footnote_id>4</mmCIF:footnote_id> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>CA</mmCIF:label_atom_id> <mmCIF:label_comp_id>THR</mmCIF:label_comp_id> <mmCIF:label_seq_id>12</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="10"> <mmCIF:B_iso_or_equiv>20.92</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>24.695</mmCIF:Cartn_x> <mmCIF:Cartn_y>34.106</mmCIF:Cartn_y> <mmCIF:Cartn_z>16.113</mmCIF:Cartn_z> <mmCIF:auth_seq_id>12</mmCIF:auth_seq_id> <mmCIF:footnote_id>4</mmCIF:footnote_id> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>C</mmCIF:label_atom_id> <mmCIF:label_comp_id>THR</mmCIF:label_comp_id> <mmCIF:label_seq_id>12</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="11"> <mmCIF:B_iso_or_equiv>21.84</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>24.869</mmCIF:Cartn_x> <mmCIF:Cartn_y>35.118</mmCIF:Cartn_y> <mmCIF:Cartn_z>15.421</mmCIF:Cartn_z> <mmCIF:auth_seq_id>12</mmCIF:auth_seq_id> <mmCIF:footnote_id>4</mmCIF:footnote_id> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>O</mmCIF:label_atom_id> <mmCIF:label_comp_id>THR</mmCIF:label_comp_id> <mmCIF:label_seq_id>12</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>O</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="12"> <mmCIF:B_iso_or_equiv>20.51</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>26.911</mmCIF:Cartn_x> <mmCIF:Cartn_y>33.346</mmCIF:Cartn_y> <mmCIF:Cartn_z>17.018</mmCIF:Cartn_z> <mmCIF:auth_seq_id>12</mmCIF:auth_seq_id> <mmCIF:footnote_id>4</mmCIF:footnote_id> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>CB</mmCIF:label_atom_id> <mmCIF:label_comp_id>THR</mmCIF:label_comp_id> <mmCIF:label_seq_id>12</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="13"> <mmCIF:B_iso_or_equiv>20.29</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>27.946</mmCIF:Cartn_x> <mmCIF:Cartn_y>33.921</mmCIF:Cartn_y> <mmCIF:Cartn_z>16.183</mmCIF:Cartn_z> <mmCIF:auth_seq_id>12</mmCIF:auth_seq_id> <mmCIF:footnote_id>4</mmCIF:footnote_id> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id>3</mmCIF:label_alt_id> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>OG1</mmCIF:label_atom_id> <mmCIF:label_comp_id>THR</mmCIF:label_comp_id> <mmCIF:label_seq_id>12</mmCIF:label_seq_id> <mmCIF:occupancy>0.50</mmCIF:occupancy> <mmCIF:type_symbol>O</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="14"> <mmCIF:B_iso_or_equiv>20.59</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>27.769</mmCIF:Cartn_x> <mmCIF:Cartn_y>32.142</mmCIF:Cartn_y> <mmCIF:Cartn_z>17.103</mmCIF:Cartn_z> <mmCIF:auth_seq_id>12</mmCIF:auth_seq_id> <mmCIF:footnote_id>4</mmCIF:footnote_id> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id>4</mmCIF:label_alt_id> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>OG1</mmCIF:label_atom_id> <mmCIF:label_comp_id>THR</mmCIF:label_comp_id> <mmCIF:label_seq_id>12</mmCIF:label_seq_id> <mmCIF:occupancy>0.50</mmCIF:occupancy> <mmCIF:type_symbol>O</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="15"> <mmCIF:B_iso_or_equiv>20.47</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>27.418</mmCIF:Cartn_x> <mmCIF:Cartn_y>32.181</mmCIF:Cartn_y> <mmCIF:Cartn_z>17.878</mmCIF:Cartn_z> <mmCIF:auth_seq_id>12</mmCIF:auth_seq_id> <mmCIF:footnote_id>4</mmCIF:footnote_id> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id>3</mmCIF:label_alt_id> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>CG2</mmCIF:label_atom_id> <mmCIF:label_comp_id>THR</mmCIF:label_comp_id> <mmCIF:label_seq_id>12</mmCIF:label_seq_id> <mmCIF:occupancy>0.50</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="16"> <mmCIF:B_iso_or_equiv>20.00</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>26.489</mmCIF:Cartn_x> <mmCIF:Cartn_y>33.778</mmCIF:Cartn_y> <mmCIF:Cartn_z>18.426</mmCIF:Cartn_z> <mmCIF:auth_seq_id>12</mmCIF:auth_seq_id> <mmCIF:footnote_id>4</mmCIF:footnote_id> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id>4</mmCIF:label_alt_id> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>CG2</mmCIF:label_atom_id> <mmCIF:label_comp_id>THR</mmCIF:label_comp_id> <mmCIF:label_seq_id>12</mmCIF:label_seq_id> <mmCIF:occupancy>0.50</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="17"> <mmCIF:B_iso_or_equiv>22.08</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>23.664</mmCIF:Cartn_x> <mmCIF:Cartn_y>33.855</mmCIF:Cartn_y> <mmCIF:Cartn_z>16.884</mmCIF:Cartn_z> <mmCIF:auth_seq_id>13</mmCIF:auth_seq_id> <mmCIF:footnote_id xsi:nil="true" /> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>N</mmCIF:label_atom_id> <mmCIF:label_comp_id>ILE</mmCIF:label_comp_id> <mmCIF:label_seq_id>13</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>N</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="18"> <mmCIF:B_iso_or_equiv>23.44</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>22.623</mmCIF:Cartn_x> <mmCIF:Cartn_y>34.850</mmCIF:Cartn_y> <mmCIF:Cartn_z>17.093</mmCIF:Cartn_z> <mmCIF:auth_seq_id>13</mmCIF:auth_seq_id> <mmCIF:footnote_id xsi:nil="true" /> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>CA</mmCIF:label_atom_id> <mmCIF:label_comp_id>ILE</mmCIF:label_comp_id> <mmCIF:label_seq_id>13</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="19"> <mmCIF:B_iso_or_equiv>25.77</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>22.657</mmCIF:Cartn_x> <mmCIF:Cartn_y>35.113</mmCIF:Cartn_y> <mmCIF:Cartn_z>18.610</mmCIF:Cartn_z> <mmCIF:auth_seq_id>13</mmCIF:auth_seq_id> <mmCIF:footnote_id xsi:nil="true" /> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>C</mmCIF:label_atom_id> <mmCIF:label_comp_id>ILE</mmCIF:label_comp_id> <mmCIF:label_seq_id>13</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="20"> <mmCIF:B_iso_or_equiv>26.28</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>23.123</mmCIF:Cartn_x> <mmCIF:Cartn_y>34.250</mmCIF:Cartn_y> <mmCIF:Cartn_z>19.406</mmCIF:Cartn_z> <mmCIF:auth_seq_id>13</mmCIF:auth_seq_id> <mmCIF:footnote_id xsi:nil="true" /> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>O</mmCIF:label_atom_id> <mmCIF:label_comp_id>ILE</mmCIF:label_comp_id> <mmCIF:label_seq_id>13</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>O</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="21"> <mmCIF:B_iso_or_equiv>22.67</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>21.236</mmCIF:Cartn_x> <mmCIF:Cartn_y>34.463</mmCIF:Cartn_y> <mmCIF:Cartn_z>16.492</mmCIF:Cartn_z> <mmCIF:auth_seq_id>13</mmCIF:auth_seq_id> <mmCIF:footnote_id xsi:nil="true" /> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>CB</mmCIF:label_atom_id> <mmCIF:label_comp_id>ILE</mmCIF:label_comp_id> <mmCIF:label_seq_id>13</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="22"> <mmCIF:B_iso_or_equiv>22.14</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>20.478</mmCIF:Cartn_x> <mmCIF:Cartn_y>33.469</mmCIF:Cartn_y> <mmCIF:Cartn_z>17.371</mmCIF:Cartn_z> <mmCIF:auth_seq_id>13</mmCIF:auth_seq_id> <mmCIF:footnote_id xsi:nil="true" /> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>CG1</mmCIF:label_atom_id> <mmCIF:label_comp_id>ILE</mmCIF:label_comp_id> <mmCIF:label_seq_id>13</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="23"> <mmCIF:B_iso_or_equiv>21.75</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>21.357</mmCIF:Cartn_x> <mmCIF:Cartn_y>33.986</mmCIF:Cartn_y> <mmCIF:Cartn_z>15.016</mmCIF:Cartn_z> <mmCIF:auth_seq_id>13</mmCIF:auth_seq_id> <mmCIF:footnote_id xsi:nil="true" /> <mmCIF:group_PDB>ATOM</mmCIF:group_PDB> <mmCIF:label_alt_id xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_atom_id>CG2</mmCIF:label_atom_id> <mmCIF:label_comp_id>ILE</mmCIF:label_comp_id> <mmCIF:label_seq_id>13</mmCIF:label_seq_id> <mmCIF:occupancy>1.00</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="101"> <mmCIF:B_iso_or_equiv>17.27</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>4.171</mmCIF:Cartn_x> <mmCIF:Cartn_y>29.012</mmCIF:Cartn_y> <mmCIF:Cartn_z>7.116</mmCIF:Cartn_z> <mmCIF:auth_seq_id>300</mmCIF:auth_seq_id> <mmCIF:footnote_id>1</mmCIF:footnote_id> <mmCIF:group_PDB>HETATM</mmCIF:group_PDB> <mmCIF:label_alt_id>1</mmCIF:label_alt_id> <mmCIF:label_asym_id>C</mmCIF:label_asym_id> <mmCIF:label_atom_id>C1</mmCIF:label_atom_id> <mmCIF:label_comp_id>APS</mmCIF:label_comp_id> <mmCIF:label_seq_id xsi:nil="true" /> <mmCIF:occupancy>0.58</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="102"> <mmCIF:B_iso_or_equiv>16.95</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>4.949</mmCIF:Cartn_x> <mmCIF:Cartn_y>27.758</mmCIF:Cartn_y> <mmCIF:Cartn_z>6.793</mmCIF:Cartn_z> <mmCIF:auth_seq_id>300</mmCIF:auth_seq_id> <mmCIF:footnote_id>1</mmCIF:footnote_id> <mmCIF:group_PDB>HETATM</mmCIF:group_PDB> <mmCIF:label_alt_id>1</mmCIF:label_alt_id> <mmCIF:label_asym_id>C</mmCIF:label_asym_id> <mmCIF:label_atom_id>C2</mmCIF:label_atom_id> <mmCIF:label_comp_id>APS</mmCIF:label_comp_id> <mmCIF:label_seq_id xsi:nil="true" /> <mmCIF:occupancy>0.58</mmCIF:occupancy> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="103"> <mmCIF:B_iso_or_equiv>16.85</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>4.800</mmCIF:Cartn_x> <mmCIF:Cartn_y>26.678</mmCIF:Cartn_y> <mmCIF:Cartn_z>7.393</mmCIF:Cartn_z> <mmCIF:auth_seq_id>300</mmCIF:auth_seq_id> <mmCIF:footnote_id>1</mmCIF:footnote_id> <mmCIF:group_PDB>HETATM</mmCIF:group_PDB> <mmCIF:label_alt_id>1</mmCIF:label_alt_id> <mmCIF:label_asym_id>C</mmCIF:label_asym_id> <mmCIF:label_atom_id>O3</mmCIF:label_atom_id> <mmCIF:label_comp_id>APS</mmCIF:label_comp_id> <mmCIF:label_seq_id xsi:nil="true" /> <mmCIF:occupancy>0.58</mmCIF:occupancy> <mmCIF:type_symbol>O</mmCIF:type_symbol> </mmCIF:atom_site> <mmCIF:atom_site id="104"> <mmCIF:B_iso_or_equiv>16.43</mmCIF:B_iso_or_equiv> <mmCIF:Cartn_x>5.930</mmCIF:Cartn_x> <mmCIF:Cartn_y>27.841</mmCIF:Cartn_y> <mmCIF:Cartn_z>5.869</mmCIF:Cartn_z> <mmCIF:auth_seq_id>300</mmCIF:auth_seq_id> <mmCIF:footnote_id>1</mmCIF:footnote_id> <mmCIF:group_PDB>HETATM</mmCIF:group_PDB> <mmCIF:label_alt_id>1</mmCIF:label_alt_id> <mmCIF:label_asym_id>C</mmCIF:label_asym_id> <mmCIF:label_atom_id>N4</mmCIF:label_atom_id> <mmCIF:label_comp_id>APS</mmCIF:label_comp_id> <mmCIF:label_seq_id xsi:nil="true" /> <mmCIF:occupancy>0.58</mmCIF:occupancy> <mmCIF:type_symbol>N</mmCIF:type_symbol> </mmCIF:atom_site> </mmCIF:atom_siteCategory> Equivalent isotropic atomic displacement parameter, B~eq~, in angstroms squared, calculated as the geometric mean of the anisotropic atomic displacement parameters. B~eq~ = (B~i~ B~j~ B~k~)^1/3^ B~n~ = the principal components of the orthogonalized B^ij^ The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred. The standard uncertainty (estimated standard deviation) of attribute B_equiv_geom_mean in category atom_site. Isotropic atomic displacement parameter, or equivalent isotropic atomic displacement parameter, B~eq~, calculated from the anisotropic displacement parameters. B~eq~ = (1/3) sum~i~[sum~j~(B^ij^ A~i~ A~j~ a*~i~ a*~j~)] A = the real space cell lengths a* = the reciprocal space cell lengths B^ij^ = 8 pi^2^ U^ij^ Ref: Fischer, R. X. & Tillmanns, E. (1988). Acta Cryst. C44, 775-776. The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred. The standard uncertainty (estimated standard deviation) of attribute B_iso_or_equiv in category atom_site. The x atom-site coordinate in angstroms specified according to a set of orthogonal Cartesian axes related to the cell axes as specified by the description given in attribute Cartn_transform_axes in category atom_sites. The standard uncertainty (estimated standard deviation) of attribute Cartn_x in category atom_site. The y atom-site coordinate in angstroms specified according to a set of orthogonal Cartesian axes related to the cell axes as specified by the description given in attribute Cartn_transform_axes in category atom_sites. The standard uncertainty (estimated standard deviation) of attribute Cartn_y in category atom_site. The z atom-site coordinate in angstroms specified according to a set of orthogonal Cartesian axes related to the cell axes as specified by the description given in attribute Cartn_transform_axes in category atom_sites. The standard uncertainty (estimated standard deviation) of attribute Cartn_z in category atom_site. Equivalent isotropic atomic displacement parameter, U~eq~, in angstroms squared, calculated as the geometric mean of the anisotropic atomic displacement parameters. U~eq~ = (U~i~ U~j~ U~k~)^1/3^ U~n~ = the principal components of the orthogonalized U^ij^ The standard uncertainty (estimated standard deviation) of attribute U_equiv_geom_mean in category atom_site. Isotropic atomic displacement parameter, or equivalent isotropic atomic displacement parameter, U~eq~, calculated from anisotropic atomic displacement parameters. U~eq~ = (1/3) sum~i~[sum~j~(U^ij^ A~i~ A~j~ a*~i~ a*~j~)] A = the real space cell lengths a* = the reciprocal space cell lengths Ref: Fischer, R. X. & Tillmanns, E. (1988). Acta Cryst. C44, 775-776. The standard uncertainty (estimated standard deviation) of attribute U_iso_or_equiv in category atom_site. The Wyckoff symbol (letter) as listed in the space-group tables of International Tables for Crystallography, Vol. A (2002). A standard code used to describe the type of atomic displacement parameters used for the site. The [1][1] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as: T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred. The standard uncertainty (estimated standard deviation) of attribute aniso_B[1][1] in category atom_site. The [1][2] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as: T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred. The standard uncertainty (estimated standard deviation) of attribute aniso_B[1][2] in category atom_site. The [1][3] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as: T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred. The standard uncertainty (estimated standard deviation) of attribute aniso_B[1][3] in category atom_site. The [2][2] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as: T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred. The standard uncertainty (estimated standard deviation) of attribute aniso_B[2][2] in category atom_site. The [2][3] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as: T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred. The standard uncertainty (estimated standard deviation) of attribute aniso_B[2][3] in category atom_site. The [3][3] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as: T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred. The standard uncertainty (estimated standard deviation) of attribute aniso_B[3][3] in category atom_site. The [1][1] element of the standard anisotropic atomic displacement matrix U, which appears in the structure-factor term as: T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The standard uncertainty (estimated standard deviation) of attribute aniso_U[1][1] in category atom_site. The [1][2] element of the standard anisotropic atomic displacement matrix U, which appears in the structure-factor term as: T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The standard uncertainty (estimated standard deviation) of attribute aniso_U[1][2] in category atom_site. The [1][3] element of the standard anisotropic atomic displacement matrix U, which appears in the structure-factor term as: T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The standard uncertainty (estimated standard deviation) of attribute aniso_U[1][3] in category atom_site. The [2][2] element of the standard anisotropic atomic displacement matrix U, which appears in the structure-factor term as: T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The standard uncertainty (estimated standard deviation) of attribute aniso_U[2][2] in category atom_site. The [2][3] element of the standard anisotropic atomic displacement matrix U, which appears in the structure-factor term as: T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The standard uncertainty (estimated standard deviation) of attribute aniso_U[2][3] in category atom_site. The [3][3] element of the standard anisotropic atomic displacement matrix U, which appears in the structure-factor term as: T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The standard uncertainty (estimated standard deviation) of attribute aniso_U[3][3] in category atom_site. Ratio of the maximum to minimum principal axes of displacement (thermal) ellipsoids. The number of hydrogen atoms attached to the atom at this site excluding any hydrogen atoms for which coordinates (measured or calculated) are given. water oxygen 2 hydroxyl oxygen 1 ammonium nitrogen 4 An alternative identifier for attribute label_asym_id in category atom_site that may be provided by an author in order to match the identification used in the publication that describes the structure. An alternative identifier for attribute label_atom_id in category atom_site that may be provided by an author in order to match the identification used in the publication that describes the structure. An alternative identifier for attribute label_comp_id in category atom_site that may be provided by an author in order to match the identification used in the publication that describes the structure. An alternative identifier for attribute label_seq_id in category atom_site that may be provided by an author in order to match the identification used in the publication that describes the structure. Note that this is not necessarily a number, that the values do not have to be positive, and that the value does not have to correspond to the value of attribute label_seq_id in category atom_site. The value of attribute label_seq_id in category atom_site is required to be a sequential list of positive integers. The author may assign values to attribute auth_seq_id in category atom_site in any desired way. For instance, the values may be used to relate this structure to a numbering scheme in a homologous structure, including sequence gaps or insertion codes. Alternatively, a scheme may be used for a truncated polymer that maintains the numbering scheme of the full length polymer. In all cases, the scheme used here must match the scheme used in the publication that describes the structure. The attribute id in category atom_site of the atom site to which the 'geometry-calculated' atom site is attached. A standard code to signal whether the site coordinates have been determined from the intensities or calculated from the geometry of surrounding sites, or have been assigned dummy values. The abbreviation 'c' may be used in place of 'calc'. This data item is a pointer to attribute number in category chemical_conn_atom in the CHEMICAL_CONN_ATOM category. A description of the constraints applied to parameters at this site during refinement. See also attribute refinement_flags in category atom_site and attribute ls_number_constraints in category refine. pop=1.0-pop(Zn3) A description of special aspects of this site. See also attribute refinement_flags in category atom_site. Ag/Si disordered A code which identifies a cluster of atoms that show long-range positional disorder but are locally ordered. Within each such cluster of atoms, attribute disorder_group in category atom_site is used to identify the sites that are simultaneously occupied. This field is only needed if there is more than one cluster of disordered atoms showing independent local order. *** This data item would not in general be used in a macromolecular data block. *** A code which identifies a group of positionally disordered atom sites that are locally simultaneously occupied. Atoms that are positionally disordered over two or more sites (e.g. the hydrogen atoms of a methyl group that exists in two orientations) can be assigned to two or more groups. Sites belonging to the same group are simultaneously occupied, but those belonging to different groups are not. A minus prefix (e.g. '-1') is used to indicate sites disordered about a special position. *** This data item would not in general be used in a macromolecular data block. *** The value of attribute footnote_id in category atom_site must match an ID specified by attribute id in category atom_sites_footnote in the ATOM_SITES_FOOTNOTE list. The x coordinate of the atom-site position specified as a fraction of attribute length_a in category cell. The standard uncertainty (estimated standard deviation) of attribute fract_x in category atom_site. The y coordinate of the atom-site position specified as a fraction of attribute length_b in category cell. The standard uncertainty (estimated standard deviation) of attribute fract_y in category atom_site. The z coordinate of the atom-site position specified as a fraction of attribute length_c in category cell. The standard uncertainty (estimated standard deviation) of attribute fract_z in category atom_site. The group of atoms to which the atom site belongs. This data item is provided for compatibility with the original Protein Data Bank format, and only for that purpose. A component of the identifier for this atom site. For further details, see the definition of the ATOM_SITE_ALT category. This data item is a pointer to attribute id in category atom_sites_alt in the ATOM_SITES_ALT category. A component of the identifier for this atom site. For further details, see the definition of the STRUCT_ASYM category. This data item is a pointer to attribute id in category struct_asym in the STRUCT_ASYM category. A component of the identifier for this atom site. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. A component of the identifier for this atom site. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. This data item is a pointer to attribute id in category entity in the ENTITY category. This data item is a pointer to attribute num in category entity_poly_seq in the ENTITY_POLY_SEQ category. The fraction of the atom type present at this site. The sum of the occupancies of all the atom types at this site may not significantly exceed 1.0 unless it is a dummy site. The standard uncertainty (estimated standard deviation) of attribute occupancy in category atom_site. A concatenated series of single-letter codes which indicate the refinement restraints or constraints applied to this site. This item should not be used. It has been replaced by attribute refinement_flags_posn in category atom_site, *_adp and *_occupancy. It is retained in this dictionary only to provide compatibility with old CIFs. A code which indicates the refinement restraints or constraints applied to the atomic displacement parameters of this site. A code which indicates that refinement restraints or constraints were applied to the occupancy of this site. A code which indicates the refinement restraints or constraints applied to the positional coordinates of this site. A description of restraints applied to specific parameters at this site during refinement. See also attribute refinement_flags in category atom_site and attribute ls_number_restraints in category refine. restrained to planar ring The multiplicity of a site due to the space-group symmetry as is given in International Tables for Crystallography Vol. A (2002). A standard code used to describe the type of atomic displacement parameters used for the site. This data item is a pointer to attribute symbol in category atom_type in the ATOM_TYPE category. The value of attribute id in category atom_site must uniquely identify a record in the ATOM_SITE list. Note that this item need not be a number; it can be any unique identifier. This data item was introduced to provide compatibility between small-molecule and macromolecular CIFs. In a small-molecule CIF, _atom_site_label is the identifier for the atom. In a macromolecular CIF, the atom identifier is the aggregate of _atom_site.label_alt_id, _atom_site.label_asym_id, _atom_site.label_atom_id, _atom_site.label_comp_id and attribute label_seq_id in category atom_site. For the two types of files to be compatible, a formal identifier for the category had to be introduced that was independent of the different modes of identifying the atoms. For compatibility with older CIFs, _atom_site_label is aliased to attribute id in category atom_site. 5 C12 Ca3g28 Fe3+17 H*251 boron2a C_a_phe_83_a_0 Zn_Zn_301_A_0 Data items in the ATOM_SITE_ANISOTROP category record details about anisotropic displacement parameters. If the ATOM_SITE_ANISOTROP category is used for storing these data, the corresponding ATOM_SITE data items are not used. Example 1 - based on NDB structure BDL005 of Holbrook, Dickerson & Kim [Acta Cryst. (1985), B41, 255-262]. <mmCIF:atom_site_anisotropCategory> <mmCIF:atom_site_anisotrop id="1"> <mmCIF:U11>8642</mmCIF:U11> <mmCIF:U12>4866</mmCIF:U12> <mmCIF:U13>7299</mmCIF:U13> <mmCIF:U22>-342</mmCIF:U22> <mmCIF:U23>-258</mmCIF:U23> <mmCIF:U33>-1427</mmCIF:U33> <mmCIF:type_symbol>O</mmCIF:type_symbol> </mmCIF:atom_site_anisotrop> <mmCIF:atom_site_anisotrop id="2"> <mmCIF:U11>5174</mmCIF:U11> <mmCIF:U12>4871</mmCIF:U12> <mmCIF:U13>6243</mmCIF:U13> <mmCIF:U22>-1885</mmCIF:U22> <mmCIF:U23>-2051</mmCIF:U23> <mmCIF:U33>-1377</mmCIF:U33> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site_anisotrop> <mmCIF:atom_site_anisotrop id="3"> <mmCIF:U11>6202</mmCIF:U11> <mmCIF:U12>5020</mmCIF:U12> <mmCIF:U13>4395</mmCIF:U13> <mmCIF:U22>-1130</mmCIF:U22> <mmCIF:U23>-556</mmCIF:U23> <mmCIF:U33>-632</mmCIF:U33> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site_anisotrop> <mmCIF:atom_site_anisotrop id="4"> <mmCIF:U11>4224</mmCIF:U11> <mmCIF:U12>4700</mmCIF:U12> <mmCIF:U13>5046</mmCIF:U13> <mmCIF:U22>1105</mmCIF:U22> <mmCIF:U23>-161</mmCIF:U23> <mmCIF:U33>345</mmCIF:U33> <mmCIF:type_symbol>O</mmCIF:type_symbol> </mmCIF:atom_site_anisotrop> <mmCIF:atom_site_anisotrop id="5"> <mmCIF:U11>8684</mmCIF:U11> <mmCIF:U12>4688</mmCIF:U12> <mmCIF:U13>4171</mmCIF:U13> <mmCIF:U22>-1850</mmCIF:U22> <mmCIF:U23>-433</mmCIF:U23> <mmCIF:U33>-292</mmCIF:U33> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site_anisotrop> <mmCIF:atom_site_anisotrop id="6"> <mmCIF:U11>11226</mmCIF:U11> <mmCIF:U12>5255</mmCIF:U12> <mmCIF:U13>3532</mmCIF:U13> <mmCIF:U22>-341</mmCIF:U22> <mmCIF:U23>2685</mmCIF:U23> <mmCIF:U33>1328</mmCIF:U33> <mmCIF:type_symbol>O</mmCIF:type_symbol> </mmCIF:atom_site_anisotrop> <mmCIF:atom_site_anisotrop id="7"> <mmCIF:U11>10214</mmCIF:U11> <mmCIF:U12>2428</mmCIF:U12> <mmCIF:U13>5614</mmCIF:U13> <mmCIF:U22>-2610</mmCIF:U22> <mmCIF:U23>-1940</mmCIF:U23> <mmCIF:U33>902</mmCIF:U33> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site_anisotrop> <mmCIF:atom_site_anisotrop id="8"> <mmCIF:U11>4590</mmCIF:U11> <mmCIF:U12>3488</mmCIF:U12> <mmCIF:U13>5827</mmCIF:U13> <mmCIF:U22>751</mmCIF:U22> <mmCIF:U23>-770</mmCIF:U23> <mmCIF:U33>986</mmCIF:U33> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:atom_site_anisotrop> <mmCIF:atom_site_anisotrop id="9"> <mmCIF:U11>5014</mmCIF:U11> <mmCIF:U12>4434</mmCIF:U12> <mmCIF:U13>3447</mmCIF:U13> <mmCIF:U22>-17</mmCIF:U22> <mmCIF:U23>-1593</mmCIF:U23> <mmCIF:U33>539</mmCIF:U33> <mmCIF:type_symbol>N</mmCIF:type_symbol> </mmCIF:atom_site_anisotrop> </mmCIF:atom_site_anisotropCategory> The [1][1] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as: T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred. The standard uncertainty (estimated standard deviation) of attribute B[1][1] in category atom_site_anisotrop. The [1][2] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as: T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred. The standard uncertainty (estimated standard deviation) of attribute B[1][2] in category atom_site_anisotrop. The [1][3] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as: T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred. The standard uncertainty (estimated standard deviation) of attribute B[1][3] in category atom_site_anisotrop. The [2][2] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as: T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred. The standard uncertainty (estimated standard deviation) of attribute B[2][2] in category atom_site_anisotrop. The [2][3] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as: T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred. The standard uncertainty (estimated standard deviation) of attribute B[2][3] in category atom_site_anisotrop. The [3][3] element of the anisotropic atomic displacement matrix B, which appears in the structure-factor term as: T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The IUCr Commission on Nomenclature recommends against the use of B for reporting atomic displacement parameters. U, being directly proportional to B, is preferred. The standard uncertainty (estimated standard deviation) of attribute B[3][3] in category atom_site_anisotrop. The [1][1] element of the standard anisotropic atomic displacement matrix U, which appears in the structure-factor term as: T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The standard uncertainty (estimated standard deviation) of attribute U[1][1] in category atom_site_anisotrop. The [1][2] element of the standard anisotropic atomic displacement matrix U, which appears in the structure-factor term as: T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The standard uncertainty (estimated standard deviation) of attribute U[1][2] in category atom_site_anisotrop. The [1][3] element of the standard anisotropic atomic displacement matrix U, which appears in the structure-factor term as: T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The standard uncertainty (estimated standard deviation) of attribute U[1][3] in category atom_site_anisotrop. The [2][2] element of the standard anisotropic atomic displacement matrix U, which appears in the structure-factor term as: T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The standard uncertainty (estimated standard deviation) of attribute U[2][2] in category atom_site_anisotrop. The [2][3] element of the standard anisotropic atomic displacement matrix U, which appears in the structure-factor term as: T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The standard uncertainty (estimated standard deviation) of attribute U[2][3] in category atom_site_anisotrop. The [3][3] element of the standard anisotropic atomic displacement matrix U, which appears in the structure-factor term as: T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]} h = the Miller indices a* = the reciprocal space cell lengths These matrix elements may appear with atomic coordinates in the ATOM_SITE category, or they may appear in the separate ATOM_SITE_ANISOTROP category, but they may not appear in both places. Similarly, anisotropic displacements may appear as either B's or U's, but not as both. The unique elements of the real symmetric matrix are entered by row. The standard uncertainty (estimated standard deviation) of attribute U[3][3] in category atom_site_anisotrop. Ratio of the maximum to minimum principal axes of displacement (thermal) ellipsoids. This data item is a pointer to attribute symbol in category atom_type in the ATOM_TYPE category. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. Data items in the ATOM_SITES category record details about the crystallographic cell and cell transformations, which are common to all atom sites. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:atom_sitesCategory> <mmCIF:atom_sites entry_id="5HVP"> <mmCIF:Cartn_transf_matrix11>58.39</mmCIF:Cartn_transf_matrix11> <mmCIF:Cartn_transf_matrix12>0.00</mmCIF:Cartn_transf_matrix12> <mmCIF:Cartn_transf_matrix13>0.00</mmCIF:Cartn_transf_matrix13> <mmCIF:Cartn_transf_matrix21>0.00</mmCIF:Cartn_transf_matrix21> <mmCIF:Cartn_transf_matrix22>86.70</mmCIF:Cartn_transf_matrix22> <mmCIF:Cartn_transf_matrix23>0.00</mmCIF:Cartn_transf_matrix23> <mmCIF:Cartn_transf_matrix31>0.00</mmCIF:Cartn_transf_matrix31> <mmCIF:Cartn_transf_matrix32>0.00</mmCIF:Cartn_transf_matrix32> <mmCIF:Cartn_transf_matrix33>46.27</mmCIF:Cartn_transf_matrix33> <mmCIF:Cartn_transf_vector1>0.00</mmCIF:Cartn_transf_vector1> <mmCIF:Cartn_transf_vector2>0.00</mmCIF:Cartn_transf_vector2> <mmCIF:Cartn_transf_vector3>0.00</mmCIF:Cartn_transf_vector3> <mmCIF:Cartn_transform_axes>c along z, astar along x, b along y</mmCIF:Cartn_transform_axes> </mmCIF:atom_sites> </mmCIF:atom_sitesCategory> The [1][1] element of the 3x3 matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute Cartn_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2| |z'| |31 32 33| |z| |3| The [1][2] element of the 3x3 matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute Cartn_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2| |z'| |31 32 33| |z| |3| The [1][3] element of the 3x3 matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute Cartn_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2| |z'| |31 32 33| |z| |3| The [2][1] element of the 3x3 matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute Cartn_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2| |z'| |31 32 33| |z| |3| The [2][2] element of the 3x3 matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute Cartn_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2| |z'| |31 32 33| |z| |3| The [2][3] element of the 3x3 matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute Cartn_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2| |z'| |31 32 33| |z| |3| The [3][1] element of the 3x3 matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute Cartn_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2| |z'| |31 32 33| |z| |3| The [3][2] element of the 3x3 matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute Cartn_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2| |z'| |31 32 33| |z| |3| The [3][3] element of the 3x3 matrix used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute Cartn_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2| |z'| |31 32 33| |z| |3| The [1] element of the three-element vector used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The rotation matrix is defined in attribute Cartn_transf_matrix[][]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2| |z'| |31 32 33| |z| |3| The [2] element of the three-element vector used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The rotation matrix is defined in attribute Cartn_transf_matrix[][]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2| |z'| |31 32 33| |z| |3| The [3] element of the three-element vector used to transform fractional coordinates in the ATOM_SITE category to Cartesian coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The rotation matrix is defined in attribute Cartn_transf_matrix[][]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2| |z'| |31 32 33| |z| |3| A description of the relative alignment of the crystal cell axes to the Cartesian orthogonal axes as applied in the transformation matrix attribute Cartn_transf_matrix[][] in category atom_sites. a parallel to x; b in the plane of y and z The [1][1] element of the 3x3 matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute fract_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2| |z'| |31 32 33| |z| |3| The [1][2] element of the 3x3 matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute fract_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2| |z'| |31 32 33| |z| |3| The [1][3] element of the 3x3 matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute fract_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2| |z'| |31 32 33| |z| |3| The [2][1] element of the 3x3 matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute fract_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2| |z'| |31 32 33| |z| |3| The [2][2] element of the 3x3 matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute fract_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2| |z'| |31 32 33| |z| |3| The [2][3] element of the 3x3 matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute fract_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2| |z'| |31 32 33| |z| |3| The [3][1] element of the 3x3 matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute fract_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2| |z'| |31 32 33| |z| |3| The [3][2] element of the 3x3 matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute fract_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2| |z'| |31 32 33| |z| |3| The [3][3] element of the 3x3 matrix used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x1 translation is defined in attribute fract_transf_vector[]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2| |z'| |31 32 33| |z| |3| The [1] element of the three-element vector used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x3 rotation is defined in attribute fract_transf_matrix[][]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2| |z'| |31 32 33| |z| |3| The [2] element of the three-element vector used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x3 rotation is defined in attribute fract_transf_matrix[][]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2| |z'| |31 32 33| |z| |3| The [3] element of the three-element vector used to transform Cartesian coordinates in the ATOM_SITE category to fractional coordinates in the same category. The axial alignments of this transformation are described in attribute Cartn_transform_axes. in category atom_sites The 3x3 rotation is defined in attribute fract_transf_matrix[][]. in category atom_sites |x'| |11 12 13| |x| |1| |y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2| |z'| |31 32 33| |z| |3| This code identifies the method used to locate the hydrogen atoms. *** This data item would not in general be used in a macromolecular data block. *** This code identifies the method used to locate the initial atom sites. *** This data item would not in general be used in a macromolecular data block. *** This code identifies the method used to locate the non-hydrogen-atom sites not found by attribute solution_primary. in category atom_sites *** This data item would not in general be used in a macromolecular data block. *** Additional information about the atomic coordinates not coded elsewhere in the CIF. This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the ATOM_SITES_ALT category record details about the structural ensembles that should be generated from atom sites or groups of atom sites that are modelled in alternative conformations in this data block. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:atom_sites_altCategory> <mmCIF:atom_sites_alt id="1"> <mmCIF:details> Atom sites with the alternative ID set to 1 have been modeled in alternative conformations with respect to atom sites marked with alternative ID 2. The conformations of amino-acid side chains and solvent atoms with alternative ID set to 1 correlate with the conformation of the inhibitor marked with alternative ID 1. They have been given an occupancy of 0.58 to match the occupancy assigned to the inhibitor.</mmCIF:details> </mmCIF:atom_sites_alt> <mmCIF:atom_sites_alt id="2"> <mmCIF:details> Atom sites with the alternative ID set to 2 have been modeled in alternative conformations with respect to atom sites marked with alternative ID 1. The conformations of amino-acid side chains and solvent atoms with alternative ID set to 2 correlate with the conformation of the inhibitor marked with alternative ID 2. They have been given an occupancy of 0.42 to match the occupancy assigned to the inhibitor.</mmCIF:details> </mmCIF:atom_sites_alt> <mmCIF:atom_sites_alt id="3"> <mmCIF:details> Atom sites with the alternative ID set to 3 have been modeled in alternative conformations with respect to atoms marked with alternative ID 4. The conformations of amino-acid side chains and solvent atoms with alternative ID set to 3 do not correlate with the conformation of the inhibitor. These atom sites have arbitrarily been given an occupancy of 0.50.</mmCIF:details> </mmCIF:atom_sites_alt> <mmCIF:atom_sites_alt id="4"> <mmCIF:details> Atom sites with the alternative ID set to 4 have been modeled in alternative conformations with respect to atoms marked with alternative ID 3. The conformations of amino-acid side chains and solvent atoms with alternative ID set to 4 do not correlate with the conformation of the inhibitor. These atom sites have arbitrarily been given an occupancy of 0.50.</mmCIF:details> </mmCIF:atom_sites_alt> </mmCIF:atom_sites_altCategory> A description of special aspects of the modelling of atoms in alternative conformations. The value of attribute id in category atom_sites_alt must uniquely identify a record in the ATOM_SITES_ALT list. Note that this item need not be a number; it can be any unique identifier. orientation 1 molecule abc Data items in the ATOM_SITES_ALT_ENS category record details about the ensemble structure generated from atoms with various alternative conformation IDs. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:atom_sites_alt_ensCategory> <mmCIF:atom_sites_alt_ens id="Ensemble 1-A"> <mmCIF:details> The inhibitor binds to the enzyme in two, roughly twofold symmetric alternative conformations. This conformational ensemble includes the more populated conformation of the inhibitor (ID=1) and the amino-acid side chains and solvent structure that correlate with this inhibitor conformation. Also included are one set (ID=3) of side chains with alternative conformations when the conformations are not correlated with the inhibitor conformation.</mmCIF:details> </mmCIF:atom_sites_alt_ens> <mmCIF:atom_sites_alt_ens id="Ensemble 1-B"> <mmCIF:details> The inhibitor binds to the enzyme in two, roughly twofold symmetric alternative conformations. This conformational ensemble includes the more populated conformation of the inhibitor (ID=1) and the amino-acid side chains and solvent structure that correlate with this inhibitor conformation. Also included are one set (ID=4) of side chains with alternative conformations when the conformations are not correlated with the inhibitor conformation.</mmCIF:details> </mmCIF:atom_sites_alt_ens> <mmCIF:atom_sites_alt_ens id="Ensemble 2-A"> <mmCIF:details> The inhibitor binds to the enzyme in two, roughly twofold symmetric alternative conformations. This conformational ensemble includes the less populated conformation of the inhibitor (ID=2) and the amino-acid side chains and solvent structure that correlate with this inhibitor conformation. Also included are one set (ID=3) of side chains with alternative conformations when the conformations are not correlated with the inhibitor conformation.</mmCIF:details> </mmCIF:atom_sites_alt_ens> <mmCIF:atom_sites_alt_ens id="Ensemble 2-B"> <mmCIF:details> The inhibitor binds to the enzyme in two, roughly twofold symmetric alternative conformations. This conformational ensemble includes the less populated conformation of the inhibitor (ID=2) and the amino-acid side chains and solvent structure that correlate with this inhibitor conformation. Also included are one set (ID=4) of side chains with alternative conformations when the conformations are not correlated with the inhibitor conformation.</mmCIF:details> </mmCIF:atom_sites_alt_ens> </mmCIF:atom_sites_alt_ensCategory> A description of special aspects of the ensemble structure generated from atoms with various alternative IDs. The value of attribute id in category atom_sites_alt_ens must uniquely identify a record in the ATOM_SITES_ALT_ENS list. Note that this item need not be a number; it can be any unique identifier. Data items in the ATOM_SITES_ALT_GEN category record details about the interpretation of multiple conformations in the structure. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:atom_sites_alt_genCategory> <mmCIF:atom_sites_alt_gen alt_id="1" ens_id="Ensemble 1-A"></mmCIF:atom_sites_alt_gen> <mmCIF:atom_sites_alt_gen alt_id="3" ens_id="Ensemble 1-A"></mmCIF:atom_sites_alt_gen> <mmCIF:atom_sites_alt_gen alt_id="1" ens_id="Ensemble 1-B"></mmCIF:atom_sites_alt_gen> <mmCIF:atom_sites_alt_gen alt_id="4" ens_id="Ensemble 1-B"></mmCIF:atom_sites_alt_gen> <mmCIF:atom_sites_alt_gen alt_id="2" ens_id="Ensemble 2-A"></mmCIF:atom_sites_alt_gen> <mmCIF:atom_sites_alt_gen alt_id="3" ens_id="Ensemble 2-A"></mmCIF:atom_sites_alt_gen> <mmCIF:atom_sites_alt_gen alt_id="2" ens_id="Ensemble 2-B"></mmCIF:atom_sites_alt_gen> <mmCIF:atom_sites_alt_gen alt_id="4" ens_id="Ensemble 2-B"></mmCIF:atom_sites_alt_gen> </mmCIF:atom_sites_alt_genCategory> This data item is a pointer to attribute id in category atom_sites_alt in the ATOM_SITES_ALT category. This data item is a pointer to attribute id in category atom_sites_alt_ens in the ATOM_SITES_ALT_ENS category. Data items in the ATOM_SITES_FOOTNOTE category record detailed comments about an atom site or a group of atom sites. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:atom_sites_footnoteCategory> <mmCIF:atom_sites_footnote id="1"> <mmCIF:text> The inhibitor binds to the enzyme in two alternative orientations. The two orientations have been assigned alternative IDs *1* and *2*.</mmCIF:text> </mmCIF:atom_sites_footnote> <mmCIF:atom_sites_footnote id="2"> <mmCIF:text> Side chains of these residues adopt alternative orientations that correlate with the alternative orientations of the inhibitor. Side chains with alternative ID *1* and occupancy 0.58 correlate with inhibitor orientation *1*. Side chains with alternative ID *2* and occupancy 0.42 correlate with inhibitor orientation *2*.</mmCIF:text> </mmCIF:atom_sites_footnote> <mmCIF:atom_sites_footnote id="3"> <mmCIF:text> The positions of these water molecules correlate with the alternative orientations of the inhibitor. Water molecules with alternative ID *1* and occupancy 0.58 correlate with inhibitor orientation *1*. Water molecules with alternative ID *2* and occupancy 0.42 correlate with inhibitor orientation *2*.</mmCIF:text> </mmCIF:atom_sites_footnote> <mmCIF:atom_sites_footnote id="4"> <mmCIF:text> Side chains of these residues adopt alternative orientations that do not correlate with the alternative orientation of the inhibitor.</mmCIF:text> </mmCIF:atom_sites_footnote> <mmCIF:atom_sites_footnote id="5"> <mmCIF:text> The positions of these water molecules correlate with alternative orientations of amino-acid side chains that do not correlate with alternative orientations of the inhibitor.</mmCIF:text> </mmCIF:atom_sites_footnote> </mmCIF:atom_sites_footnoteCategory> The text of the footnote. Footnotes are used to describe an atom site or a group of atom sites in the ATOM_SITE list. For example, footnotes may be used to indicate atoms for which the electron density is very weak, or atoms for which static disorder has been modelled. A code that identifies the footnote. a b 1 2 Data items in the ATOM_TYPE category record details about the properties of the atoms that occupy the atom sites, such as the atomic scattering factors. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:atom_typeCategory> <mmCIF:atom_type symbol="C"> <mmCIF:oxidation_number>0</mmCIF:oxidation_number> <mmCIF:scat_Cromer_Mann_a1>2.31000</mmCIF:scat_Cromer_Mann_a1> <mmCIF:scat_Cromer_Mann_a2>20.8439</mmCIF:scat_Cromer_Mann_a2> <mmCIF:scat_Cromer_Mann_a3>1.02000</mmCIF:scat_Cromer_Mann_a3> <mmCIF:scat_Cromer_Mann_a4>10.2075</mmCIF:scat_Cromer_Mann_a4> <mmCIF:scat_Cromer_Mann_b1>1.58860</mmCIF:scat_Cromer_Mann_b1> <mmCIF:scat_Cromer_Mann_b2>0.568700</mmCIF:scat_Cromer_Mann_b2> <mmCIF:scat_Cromer_Mann_b3>0.865000</mmCIF:scat_Cromer_Mann_b3> <mmCIF:scat_Cromer_Mann_b4>51.6512</mmCIF:scat_Cromer_Mann_b4> <mmCIF:scat_Cromer_Mann_c>0.21560</mmCIF:scat_Cromer_Mann_c> </mmCIF:atom_type> <mmCIF:atom_type symbol="N"> <mmCIF:oxidation_number>0</mmCIF:oxidation_number> <mmCIF:scat_Cromer_Mann_a1>12.2126</mmCIF:scat_Cromer_Mann_a1> <mmCIF:scat_Cromer_Mann_a2>0.005700</mmCIF:scat_Cromer_Mann_a2> <mmCIF:scat_Cromer_Mann_a3>3.13220</mmCIF:scat_Cromer_Mann_a3> <mmCIF:scat_Cromer_Mann_a4>9.89330</mmCIF:scat_Cromer_Mann_a4> <mmCIF:scat_Cromer_Mann_b1>2.01250</mmCIF:scat_Cromer_Mann_b1> <mmCIF:scat_Cromer_Mann_b2>28.9975</mmCIF:scat_Cromer_Mann_b2> <mmCIF:scat_Cromer_Mann_b3>1.16630</mmCIF:scat_Cromer_Mann_b3> <mmCIF:scat_Cromer_Mann_b4>0.582600</mmCIF:scat_Cromer_Mann_b4> <mmCIF:scat_Cromer_Mann_c>-11.529</mmCIF:scat_Cromer_Mann_c> </mmCIF:atom_type> <mmCIF:atom_type symbol="O"> <mmCIF:oxidation_number>0</mmCIF:oxidation_number> <mmCIF:scat_Cromer_Mann_a1>3.04850</mmCIF:scat_Cromer_Mann_a1> <mmCIF:scat_Cromer_Mann_a2>13.2771</mmCIF:scat_Cromer_Mann_a2> <mmCIF:scat_Cromer_Mann_a3>2.28680</mmCIF:scat_Cromer_Mann_a3> <mmCIF:scat_Cromer_Mann_a4>5.70110</mmCIF:scat_Cromer_Mann_a4> <mmCIF:scat_Cromer_Mann_b1>1.54630</mmCIF:scat_Cromer_Mann_b1> <mmCIF:scat_Cromer_Mann_b2>0.323900</mmCIF:scat_Cromer_Mann_b2> <mmCIF:scat_Cromer_Mann_b3>0.867000</mmCIF:scat_Cromer_Mann_b3> <mmCIF:scat_Cromer_Mann_b4>32.9089</mmCIF:scat_Cromer_Mann_b4> <mmCIF:scat_Cromer_Mann_c>0.250800</mmCIF:scat_Cromer_Mann_c> </mmCIF:atom_type> <mmCIF:atom_type symbol="S"> <mmCIF:oxidation_number>0</mmCIF:oxidation_number> <mmCIF:scat_Cromer_Mann_a1>6.90530</mmCIF:scat_Cromer_Mann_a1> <mmCIF:scat_Cromer_Mann_a2>1.46790</mmCIF:scat_Cromer_Mann_a2> <mmCIF:scat_Cromer_Mann_a3>5.20340</mmCIF:scat_Cromer_Mann_a3> <mmCIF:scat_Cromer_Mann_a4>22.2151</mmCIF:scat_Cromer_Mann_a4> <mmCIF:scat_Cromer_Mann_b1>1.43790</mmCIF:scat_Cromer_Mann_b1> <mmCIF:scat_Cromer_Mann_b2>0.253600</mmCIF:scat_Cromer_Mann_b2> <mmCIF:scat_Cromer_Mann_b3>1.58630</mmCIF:scat_Cromer_Mann_b3> <mmCIF:scat_Cromer_Mann_b4>56.1720</mmCIF:scat_Cromer_Mann_b4> <mmCIF:scat_Cromer_Mann_c>0.866900</mmCIF:scat_Cromer_Mann_c> </mmCIF:atom_type> <mmCIF:atom_type symbol="CL"> <mmCIF:oxidation_number>-1</mmCIF:oxidation_number> <mmCIF:scat_Cromer_Mann_a1>18.2915</mmCIF:scat_Cromer_Mann_a1> <mmCIF:scat_Cromer_Mann_a2>0.006600</mmCIF:scat_Cromer_Mann_a2> <mmCIF:scat_Cromer_Mann_a3>7.20840</mmCIF:scat_Cromer_Mann_a3> <mmCIF:scat_Cromer_Mann_a4>1.17170</mmCIF:scat_Cromer_Mann_a4> <mmCIF:scat_Cromer_Mann_b1>6.53370</mmCIF:scat_Cromer_Mann_b1> <mmCIF:scat_Cromer_Mann_b2>19.5424</mmCIF:scat_Cromer_Mann_b2> <mmCIF:scat_Cromer_Mann_b3>2.33860</mmCIF:scat_Cromer_Mann_b3> <mmCIF:scat_Cromer_Mann_b4>60.4486</mmCIF:scat_Cromer_Mann_b4> <mmCIF:scat_Cromer_Mann_c>-16.378</mmCIF:scat_Cromer_Mann_c> </mmCIF:atom_type> </mmCIF:atom_typeCategory> Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. <mmCIF:atom_typeCategory> <mmCIF:atom_type symbol="C"> <mmCIF:number_in_cell>72</mmCIF:number_in_cell> <mmCIF:oxidation_number>0</mmCIF:oxidation_number> <mmCIF:scat_dispersion_imag>.009</mmCIF:scat_dispersion_imag> <mmCIF:scat_dispersion_real>.017</mmCIF:scat_dispersion_real> <mmCIF:scat_source>International_Tables_Vol_IV_Table_2.2B</mmCIF:scat_source> </mmCIF:atom_type> <mmCIF:atom_type symbol="H"> <mmCIF:number_in_cell>100</mmCIF:number_in_cell> <mmCIF:oxidation_number>0</mmCIF:oxidation_number> <mmCIF:scat_dispersion_imag>0</mmCIF:scat_dispersion_imag> <mmCIF:scat_dispersion_real>0</mmCIF:scat_dispersion_real> <mmCIF:scat_source>International_Tables_Vol_IV_Table_2.2B</mmCIF:scat_source> </mmCIF:atom_type> <mmCIF:atom_type symbol="O"> <mmCIF:number_in_cell>12</mmCIF:number_in_cell> <mmCIF:oxidation_number>0</mmCIF:oxidation_number> <mmCIF:scat_dispersion_imag>.032</mmCIF:scat_dispersion_imag> <mmCIF:scat_dispersion_real>.047</mmCIF:scat_dispersion_real> <mmCIF:scat_source>International_Tables_Vol_IV_Table_2.2B</mmCIF:scat_source> </mmCIF:atom_type> <mmCIF:atom_type symbol="N"> <mmCIF:number_in_cell>4</mmCIF:number_in_cell> <mmCIF:oxidation_number>0</mmCIF:oxidation_number> <mmCIF:scat_dispersion_imag>.018</mmCIF:scat_dispersion_imag> <mmCIF:scat_dispersion_real>.029</mmCIF:scat_dispersion_real> <mmCIF:scat_source>International_Tables_Vol_IV_Table_2.2B</mmCIF:scat_source> </mmCIF:atom_type> </mmCIF:atom_typeCategory> Mass percentage of this atom type derived from chemical analysis. A description of the atom(s) designated by this atom type. In most cases, this is the element name and oxidation state of a single atom species. For disordered or nonstoichiometric structures it will describe a combination of atom species. deuterium 0.34Fe+0.66Ni Total number of atoms of this atom type in the unit cell. Formal oxidation state of this atom type in the structure. The effective intramolecular bonding radius in angstroms of this atom type. The effective intermolecular bonding radius in angstroms of this atom type. The Cromer-Mann scattering-factor coefficient a1 used to calculate the scattering factors for this atom type. Ref: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B or: International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5. The Cromer-Mann scattering-factor coefficient a2 used to calculate the scattering factors for this atom type. Ref: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B or: International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5. The Cromer-Mann scattering-factor coefficient a3 used to calculate the scattering factors for this atom type. Ref: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B or: International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5. The Cromer-Mann scattering-factor coefficient a4 used to calculate the scattering factors for this atom type. Ref: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B or: International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5. The Cromer-Mann scattering-factor coefficient b1 used to calculate the scattering factors for this atom type. Ref: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B or: International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5. The Cromer-Mann scattering-factor coefficient b2 used to calculate the scattering factors for this atom type. Ref: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B or: International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5. The Cromer-Mann scattering-factor coefficient b3 used to calculate the scattering factors for this atom type. Ref: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B or: International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5. The Cromer-Mann scattering-factor coefficient b4 used to calculate the scattering factors for this atom type. Ref: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B or: International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5. The Cromer-Mann scattering-factor coefficient c used to calculate the scattering factors for this atom type. Ref: International Tables for X-ray Crystallography (1974). Vol. IV, Table 2.2B or: International Tables for Crystallography (2004). Vol. C, Tables 6.1.1.4 and 6.1.1.5. The imaginary component of the anomalous-dispersion scattering factor, f'', in electrons for this atom type and the radiation identified by attribute id in category diffrn_radiation_wavelength. The real component of the anomalous-dispersion scattering factor, f', in electrons for this atom type and the radiation identified by attribute id in category diffrn_radiation_wavelength. Reference to the source of the real and imaginary dispersion corrections for scattering factors used for this atom type. International Tables Vol. IV Table 2.3.1 The bound coherent scattering length in femtometres for the atom type at the isotopic composition used for the diffraction experiment. Reference to the source of the scattering factors or scattering lengths used for this atom type. International Tables Vol. IV Table 2.4.6B A table of scattering factors as a function of sin theta over lambda. This table should be well commented to indicate the items present. Regularly formatted lists are strongly recommended. The code used to identify the atom species (singular or plural) representing this atom type. Normally this code is the element symbol. The code may be composed of any character except an underscore with the additional proviso that digits designate an oxidation state and must be followed by a + or - character. C Cu2+ H(SDS) dummy FeNi Data items in the AUDIT category record details about the creation and subsequent updating of the data block. Note that these items apply only to the creation and updating of the data block, and should not be confused with the data items in the JOURNAL category that record different stages in the publication of the material in the data block. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:auditCategory> <mmCIF:audit revision_id="1"> <mmCIF:creation_date>1992-12-08</mmCIF:creation_date> <mmCIF:creation_method> Created by hand from PDB entry 5HVP, from the J. Biol. Chem. paper describing this structure and from laboratory records</mmCIF:creation_method> <mmCIF:update_record> 1992-12-09 adjusted to reflect comments from B. McKeever 1992-12-10 adjusted to reflect comments from H. Berman 1992-12-12 adjusted to reflect comments from K. Watenpaugh</mmCIF:update_record> </mmCIF:audit> </mmCIF:auditCategory> Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. A date that the data block was created. The date format is yyyy-mm-dd. 1990-07-12 A description of how data were entered into the data block. spawned by the program QBEE A record of any changes to the data block. The update format is a date (yyyy-mm-dd) followed by a description of the changes. The latest update entry is added to the bottom of this record. 1990-07-15 Updated by the Co-editor The value of attribute revision_id in category audit must uniquely identify a record in the AUDIT list. rev1 Data items in the AUDIT_AUTHOR category record details about the author(s) of the data block. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:audit_authorCategory> <mmCIF:audit_author name="Fitzgerald, Paula M.D."> <mmCIF:address> Department of Biophysical Chemistry Merck Research Laboratories P. O. Box 2000, Ry80M203 Rahway, New Jersey 07065 USA</mmCIF:address> </mmCIF:audit_author> <mmCIF:audit_author name="McKeever, Brian M."> <mmCIF:address> Department of Biophysical Chemistry Merck Research Laboratories P. O. Box 2000, Ry80M203 Rahway, New Jersey 07065 USA</mmCIF:address> </mmCIF:audit_author> <mmCIF:audit_author name="Van Middlesworth, J.F."> <mmCIF:address> Department of Biophysical Chemistry Merck Research Laboratories P. O. Box 2000, Ry80M203 Rahway, New Jersey 07065 USA</mmCIF:address> </mmCIF:audit_author> <mmCIF:audit_author name="Springer, James P."> <mmCIF:address> Department of Biophysical Chemistry Merck Research Laboratories P. O. Box 2000, Ry80M203 Rahway, New Jersey 07065 USA</mmCIF:address> </mmCIF:audit_author> </mmCIF:audit_authorCategory> The address of an author of this data block. If there are multiple authors, attribute address in category audit_author is looped with attribute name in category audit_author. Department Institute Street City and postcode COUNTRY The name of an author of this data block. If there are multiple authors, _audit_author.name is looped with _audit_author.address. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s). Bleary, Percival R. O'Neil, F.K. Van den Bossche, G. Yang, D.-L. Simonov, Yu.A Data items in the AUDIT_CONFORM category describe the dictionary versions against which the data names appearing in the current data block are conformant. Example 1 - any file conforming to the current CIF core dictionary. <mmCIF:audit_conformCategory> <mmCIF:audit_conform dict_name="cif_core.dic" dict_version="2.3.1"> <mmCIF:dict_location>ftp://ftp.iucr.org/pub/cif_core.2.3.1.dic</mmCIF:dict_location> </mmCIF:audit_conform> </mmCIF:audit_conformCategory> A file name or uniform resource locator (URL) for the dictionary to which the current data block conforms. The string identifying the highest-level dictionary defining data names used in this file. The version number of the dictionary to which the current data block conforms. Data items in the AUDIT_CONTACT_AUTHOR category record details about the name and address of the author to be contacted concerning the content of this data block. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:audit_contact_authorCategory> <mmCIF:audit_contact_author name="Fitzgerald, Paula M.D."> <mmCIF:address> Department of Biophysical Chemistry Merck Research Laboratories PO Box 2000, Ry80M203 Rahway, New Jersey 07065 USA</mmCIF:address> <mmCIF:email>paula_fitzgerald@merck.com</mmCIF:email> <mmCIF:fax>1(908)5946645</mmCIF:fax> <mmCIF:phone>1(908)5945510</mmCIF:phone> </mmCIF:audit_contact_author> </mmCIF:audit_contact_authorCategory> The mailing address of the author of the data block to whom correspondence should be addressed. Department Institute Street City and postcode COUNTRY The electronic mail address of the author of the data block to whom correspondence should be addressed, in a form recognizable to international networks. The format of e-mail addresses is given in Section 3.4, Address Specification, of Internet Message Format, RFC 2822, P. Resnick (Editor), Network Standards Group, April 2001. name@host.domain.country bm@iucr.org The facsimile telephone number of the author of the data block to whom correspondence should be addressed. The recommended style starts with the international dialing prefix, followed by the area code in parentheses, followed by the local number with no spaces. 12(34)9477334 12()349477334 The telephone number of the author of the data block to whom correspondence should be addressed. The recommended style starts with the international dialing prefix, followed by the area code in parentheses, followed by the local number and any extension number prefixed by 'x', with no spaces. 12(34)9477330 12()349477330 12(34)9477330x5543 The name of the author of the data block to whom correspondence should be addressed. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s). Bleary, Percival R. O'Neil, F.K. Van den Bossche, G. Yang, D.-L. Simonov, Yu.A Data items in the AUDIT_LINK category record details about the relationships between data blocks in the current CIF. Example 1 - multiple structure paper, as illustrated in A Guide to CIF for Authors (1995). IUCr: Chester. <mmCIF:audit_linkCategory> <mmCIF:audit_link block_code="morA_pub" block_description="discursive text of paper with two structures"></mmCIF:audit_link> <mmCIF:audit_link block_code="morA_(1)" block_description="structure 1 of 2"></mmCIF:audit_link> <mmCIF:audit_link block_code="morA_(2)" block_description="structure 2 of 2"></mmCIF:audit_link> </mmCIF:audit_linkCategory> Example 2 - example file for the one-dimensional incommensurately modulated structure of K~2~SeO~4~. <mmCIF:audit_linkCategory> <mmCIF:audit_link block_code="KSE_PUB" block_description="publication details"></mmCIF:audit_link> <mmCIF:audit_link block_code="KSE_COM" block_description="experimental data common to ref./mod. structures"></mmCIF:audit_link> <mmCIF:audit_link block_code="KSE_REF" block_description="reference structure"></mmCIF:audit_link> <mmCIF:audit_link block_code="KSE_MOD" block_description="modulated structure"></mmCIF:audit_link> </mmCIF:audit_linkCategory> The value of attribute code in category audit_block associated with a data block in the current file related to the current data block. The special value '.' may be used to refer to the current data block for completeness. A textual description of the relationship of the referenced data block to the current one. Data items in the CELL category record details about the crystallographic cell parameters. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:cellCategory> <mmCIF:cell entry_id="5HVP"> <mmCIF:angle_alpha>90.00</mmCIF:angle_alpha> <mmCIF:angle_beta>90.00</mmCIF:angle_beta> <mmCIF:angle_gamma>90.00</mmCIF:angle_gamma> <mmCIF:details> The cell parameters were refined every twenty frames during data integration. The cell lengths given are the mean of 55 such refinements; the esds given are the root mean square deviations of these 55 observations from that mean.</mmCIF:details> <mmCIF:length_a>58.39</mmCIF:length_a> <mmCIF:length_a_esd>0.05</mmCIF:length_a_esd> <mmCIF:length_b>86.70</mmCIF:length_b> <mmCIF:length_b_esd>0.12</mmCIF:length_b_esd> <mmCIF:length_c>46.27</mmCIF:length_c> <mmCIF:length_c_esd>0.06</mmCIF:length_c_esd> <mmCIF:volume>234237</mmCIF:volume> </mmCIF:cell> </mmCIF:cellCategory> Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. The number of the polymeric chains in a unit cell. In the case of heteropolymers, Z is the number of occurrences of the most populous chain. This data item is provided for compatibility with the original Protein Data Bank format, and only for that purpose. Unit-cell angle alpha of the reported structure in degrees. The standard uncertainty (estimated standard deviation) of attribute angle_alpha in category cell. Unit-cell angle beta of the reported structure in degrees. The standard uncertainty (estimated standard deviation) of attribute angle_beta in category cell. Unit-cell angle gamma of the reported structure in degrees. The standard uncertainty (estimated standard deviation) of attribute angle_gamma in category cell. A description of special aspects of the cell choice, noting possible alternative settings. pseudo-orthorhombic standard setting from 45 deg rotation around c The number of the formula units in the unit cell as specified by _chemical_formula.structural, _chemical_formula.moiety or attribute sum in category chemical_formula. Unit-cell length a corresponding to the structure reported in angstroms. The standard uncertainty (estimated standard deviation) of attribute length_a in category cell. Unit-cell length b corresponding to the structure reported in angstroms. The standard uncertainty (estimated standard deviation) of attribute length_b in category cell. Unit-cell length c corresponding to the structure reported in angstroms. The standard uncertainty (estimated standard deviation) of attribute length_c in category cell. The angle (recip-alpha) defining the reciprocal cell in degrees. (recip-alpha), (recip-alpha) and (recip-alpha) related to the angles in the real cell by: cos(recip-alpha) = [cos(beta)*cos(gamma) - cos(alpha)]/[sin(beta)*sin(gamma)] cos(recip-beta) = [cos(gamma)*cos(alpha) - cos(beta)]/[sin(gamma)*sin(alpha)] cos(recip-gamma) = [cos(alpha)*cos(beta) - cos(gamma)]/[sin(alpha)*sin(beta)] Ref: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley & Sons Inc. The estimated standard deviation of attribute reciprocal_angle_alpha in category cell. The angle (recip-beta) defining the reciprocal cell in degrees. (recip-alpha), (recip-alpha) and (recip-alpha) related to the angles in the real cell by: cos(recip-alpha) = [cos(beta)*cos(gamma) - cos(alpha)]/[sin(beta)*sin(gamma)] cos(recip-beta) = [cos(gamma)*cos(alpha) - cos(beta)]/[sin(gamma)*sin(alpha)] cos(recip-gamma) = [cos(alpha)*cos(beta) - cos(gamma)]/[sin(alpha)*sin(beta)] Ref: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley & Sons Inc. The estimated standard deviation of attribute reciprocal_angle_beta in category cell. The angle (recip-gamma) defining the reciprocal cell in degrees. (recip-alpha), (recip-alpha) and (recip-alpha) related to the angles in the real cell by: cos(recip-alpha) = [cos(beta)*cos(gamma) - cos(alpha)]/[sin(beta)*sin(gamma)] cos(recip-beta) = [cos(gamma)*cos(alpha) - cos(beta)]/[sin(gamma)*sin(alpha)] cos(recip-gamma) = [cos(alpha)*cos(beta) - cos(gamma)]/[sin(alpha)*sin(beta)] Ref: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley & Sons Inc. The estimated standard deviation of attribute reciprocal_angle_gamma in category cell. The reciprocal cell length (recip-a) in inverse Angstroms. (recip-a), (recip-b) and (recip-c) are related to the real cell by the following equation: recip-a = b*c*sin(alpha)/V recip-b = c*a*sin(beta)/V recip-c = a*b*sin(gamma)/V where V is the cell volume. Ref: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley & Sons Inc. The estimated standard deviation of attribute reciprocal_length_a in category cell. The reciprocal cell length (recip-b) in inverse Angstroms. (recip-a), (recip-b) and (recip-c) are related to the real cell by the following equation: recip-a = b*c*sin(alpha)/V recip-b = c*a*sin(beta)/V recip-c = a*b*sin(gamma)/V where V is the cell volume. Ref: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley & Sons Inc. The estimated standard deviation of attribute reciprocal_length_b in category cell. The reciprocal cell length (recip-c) in inverse Angstroms. (recip-a), (recip-b) and (recip-c) are related to the real cell by the following equation: recip-a = b*c*sin(alpha)/V recip-b = c*a*sin(beta)/V recip-c = a*b*sin(gamma)/V where V is the cell volume. Ref: Buerger, M. J. (1942). X-ray Crystallography, p. 360. New York: John Wiley & Sons Inc. The estimated standard deviation of attribute reciprocal_length_c in category cell. Cell volume V in angstroms cubed. V = a b c (1 - cos^2^~alpha~ - cos^2^~beta~ - cos^2^~gamma~ + 2 cos~alpha~ cos~beta~ cos~gamma~)^1/2^ a = attribute length_a in category cell b = attribute length_b in category cell c = attribute length_c in category cell alpha = attribute angle_alpha in category cell beta = attribute angle_beta in category cell gamma = attribute angle_gamma in category cell The standard uncertainty (estimated standard deviation) of attribute volume in category cell. This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the CELL_MEASUREMENT category record details about the measurement of the crystallographic cell parameters. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:cell_measurementCategory> <mmCIF:cell_measurement entry_id="5HVP"> <mmCIF:temp>293</mmCIF:temp> <mmCIF:temp_esd>3</mmCIF:temp_esd> <mmCIF:theta_max>31</mmCIF:theta_max> <mmCIF:theta_min>11</mmCIF:theta_min> <mmCIF:wavelength>1.54</mmCIF:wavelength> </mmCIF:cell_measurement> </mmCIF:cell_measurementCategory> Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. The pressure in kilopascals at which the unit-cell parameters were measured (not the pressure at which the sample was synthesized). The standard uncertainty (estimated standard deviation) of attribute pressure in category cell_measurement. Description of the radiation used to measure the unit-cell data. See also attribute wavelength in category cell_measurement. neutron Cu K\a synchrotron The total number of reflections used to determine the unit cell. These reflections may be specified as CELL_MEASUREMENT_REFLN data items. The temperature in kelvins at which the unit-cell parameters were measured (not the temperature of synthesis). The standard uncertainty (estimated standard deviation) of attribute temp in category cell_measurement. The maximum theta angle of reflections used to measure the unit cell in degrees. The minimum theta angle of reflections used to measure the unit cell in degrees. The wavelength in angstroms of the radiation used to measure the unit cell. If this is not specified, the wavelength is assumed to be that specified in the category DIFFRN_RADIATION_WAVELENGTH. This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the CELL_MEASUREMENT_REFLN category record details about the reflections used to determine the crystallographic cell parameters. The CELL_MEASUREMENT_REFLN data items would in general be used only for diffractometer data. Example 1 - extracted from the CAD-4 listing of Rb~2~S~2~O~6~ at room temperature (unpublished). <mmCIF:cell_measurement_reflnCategory> <mmCIF:cell_measurement_refln index_h="-2" index_k="4" index_l="1"> <mmCIF:theta>8.67</mmCIF:theta> </mmCIF:cell_measurement_refln> <mmCIF:cell_measurement_refln index_h="0" index_k="3" index_l="2"> <mmCIF:theta>9.45</mmCIF:theta> </mmCIF:cell_measurement_refln> <mmCIF:cell_measurement_refln index_h="3" index_k="0" index_l="2"> <mmCIF:theta>9.46</mmCIF:theta> </mmCIF:cell_measurement_refln> <mmCIF:cell_measurement_refln index_h="-3" index_k="4" index_l="1"> <mmCIF:theta>8.93</mmCIF:theta> </mmCIF:cell_measurement_refln> <mmCIF:cell_measurement_refln index_h="-2" index_k="1" index_l="-2"> <mmCIF:theta>7.53</mmCIF:theta> </mmCIF:cell_measurement_refln> <mmCIF:cell_measurement_refln index_h="10" index_k="0" index_l="0"> <mmCIF:theta>23.77</mmCIF:theta> </mmCIF:cell_measurement_refln> <mmCIF:cell_measurement_refln index_h="0" index_k="10" index_l="0"> <mmCIF:theta>23.78</mmCIF:theta> </mmCIF:cell_measurement_refln> <mmCIF:cell_measurement_refln index_h="-5" index_k="4" index_l="1"> <mmCIF:theta>11.14</mmCIF:theta> </mmCIF:cell_measurement_refln> </mmCIF:cell_measurement_reflnCategory> Theta angle for a reflection used for measurement of the unit cell in degrees. Miller index h of a reflection used for measurement of the unit cell. Miller index k of a reflection used for measurement of the unit cell. Miller index l of a reflection used for measurement of the unit cell. Data items in the CHEM_COMP category give details about each of the chemical components from which the relevant chemical structures can be constructed, such as name, mass or charge. The related categories CHEM_COMP_ATOM, CHEM_COMP_BOND, CHEM_COMP_ANGLE etc. describe the detailed geometry of these chemical components. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:chem_compCategory> <mmCIF:chem_comp id="phe"> <mmCIF:model_source>1987 Protin/Prolsq Ideals file</mmCIF:model_source> <mmCIF:name>phenylalanine</mmCIF:name> </mmCIF:chem_comp> <mmCIF:chem_comp id="val"> <mmCIF:model_source>1987 Protin/Prolsq Ideals file</mmCIF:model_source> <mmCIF:name>alanine</mmCIF:name> </mmCIF:chem_comp> </mmCIF:chem_compCategory> The formula for the chemical component. Formulae are written according to the following rules: (1) Only recognized element symbols may be used. (2) Each element symbol is followed by a 'count' number. A count of '1' may be omitted. (3) A space or parenthesis must separate each cluster of (element symbol + count), but in general parentheses are not used. (4) The order of elements depends on whether carbon is present or not. If carbon is present, the order should be: C, then H, then the other elements in alphabetical order of their symbol. If carbon is not present, the elements are listed purely in alphabetic order of their symbol. This is the 'Hill' system used by Chemical Abstracts. C18 H19 N7 O8 S Formula mass in daltons of the chemical component. A description of special aspects of the generation of the coordinates for the model of the component. geometry idealized but not minimized A pointer to an external reference file from which the atomic description of the component is taken. The source of the coordinates for the model of the component. CSD entry ABCDEF built using Quanta/Charmm A description of the class of a nonstandard monomer if the nonstandard monomer represents a modification of a standard monomer. iodinated base phosphorylated amino acid brominated base modified amino acid glycosylated amino acid A description of special details of a nonstandard monomer. 'yes' indicates that this is a 'standard' monomer, 'no' indicates that it is 'nonstandard'. Nonstandard monomers should be described in more detail using the _chem_comp.mon_nstd_parent, _chem_comp.mon_nstd_class and attribute mon_nstd_details in category chem_comp data items. The name of the parent monomer of the nonstandard monomer, if the nonstandard monomer represents a modification of a standard monomer. tyrosine cytosine The identifier for the parent component of the nonstandard component. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. The full name of the component. alanine valine adenine cytosine The total number of atoms in the component. The number of non-hydrogen atoms in the component. For standard polymer components, the one-letter code for the component. If there is not a standard one-letter code for this component, or if this is a non-polymer component, the one-letter code should be given as 'X'. This code may be preceded by a '+' character to indicate that the component is a modification of a standard component. alanine or adenine A ambiguous asparagine/aspartic acid B arginine R asparagine N aspartic acid D cysteine or cystine or cytosine C glutamine Q glutamic acid E ambiguous glutamine/glutamic acid Z glycine or guanine G histidine H isoleucine I leucine L lysine K methionine M phenylalanine F proline P serine S threonine or thymine T tryptophan W tyrosine Y valine V uracil U water O other X For standard polymer components, the three-letter code for the component. If there is not a standard three-letter code for this component, or if this is a non-polymer component, the three-letter code should be given as 'UNK'. This code may be preceded by a '+' character to indicate that the component is a modification of a standard component. alanine ALA arginine ARG asparagine ASN aspartic acid ASP ambiguous asparagine/aspartic acid ASX cysteine CYS glutamine GLN glutamic acid GLU glycine GLY ambiguous glutamine/glutamic acid GLX histidine HIS isoleucine ILE leucine LEU lysine LYS methionine MET phenylalanine PHE proline PRO serine SER threonine THR tryptophan TRP tyrosine TRY valine VAL 1-methyladenosine 1MA 5-methylcytosine 5MC 2(prime)-O-methylcytodine OMC 1-methylguanosine 1MG N(2)-methylguanosine 2MG N(2)-dimethylguanosine M2G 7-methylguanosine 7MG 2(prime)-O-methylguanosine 0MG dihydrouridine H2U ribosylthymidine 5MU pseudouridine PSU acetic acid ACE formic acid FOR water HOH other UNK For standard polymer components, the type of the monomer. Note that monomers that will form polymers are of three types: linking monomers, monomers with some type of N-terminal (or 5') cap and monomers with some type of C-terminal (or 3') cap. The value of attribute id in category chem_comp must uniquely identify each item in the CHEM_COMP list. For protein polymer entities, this is the three-letter code for the amino acid. For nucleic acid polymer entities, this is the one-letter code for the base. ala val A C Data items in the CHEM_COMP_ANGLE category record details about angles in a chemical component. Angles are designated by three atoms, with the second atom forming the vertex of the angle. Target values may be specified as angles in degrees, as a distance between the first and third atoms, or both. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:chem_comp_angleCategory> <mmCIF:chem_comp_angle atom_id_1="N" atom_id_2="CA" atom_id_3="C" comp_id="phe"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CA" atom_id_2="C" atom_id_3="O" comp_id="phe"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CB" atom_id_2="CA" atom_id_3="C" comp_id="phe"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CB" atom_id_2="CA" atom_id_3="N" comp_id="phe"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CA" atom_id_2="CB" atom_id_3="CG" comp_id="phe"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CB" atom_id_2="CG" atom_id_3="CD1" comp_id="phe"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CB" atom_id_2="CG" atom_id_3="CD2" comp_id="phe"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CD1" atom_id_2="CG" atom_id_3="CD2" comp_id="phe"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CG" atom_id_2="CD1" atom_id_3="CE1" comp_id="phe"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CD1" atom_id_2="CE1" atom_id_3="CZ" comp_id="phe"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CE1" atom_id_2="CZ" atom_id_3="CE2" comp_id="phe"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CZ" atom_id_2="CE2" atom_id_3="CD2" comp_id="phe"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CG" atom_id_2="CD2" atom_id_3="CE2" comp_id="phe"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="N" atom_id_2="CA" atom_id_3="C" comp_id="val"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CA" atom_id_2="C" atom_id_3="O" comp_id="val"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CB" atom_id_2="CA" atom_id_3="C" comp_id="val"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CB" atom_id_2="CA" atom_id_3="N" comp_id="val"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CA" atom_id_2="CB" atom_id_3="CG1" comp_id="val"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CA" atom_id_2="CB" atom_id_3="CG2" comp_id="val"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> <mmCIF:chem_comp_angle atom_id_1="CG1" atom_id_2="CB" atom_id_3="CG2" comp_id="val"> <mmCIF:value_angle>xxx.xx</mmCIF:value_angle> <mmCIF:value_dist>x.xx</mmCIF:value_dist> </mmCIF:chem_comp_angle> </mmCIF:chem_comp_angleCategory> The value that should be taken as the target value for the angle associated with the specified atoms, expressed in degrees. The standard uncertainty (estimated standard deviation) of attribute value_angle in category chem_comp_angle. The value that should be taken as the target value for the angle associated with the specified atoms, expressed as the distance between the atoms specified by attribute atom_id_1 in category chem_comp_angle and attribute atom_id_3 in category chem_comp_angle. The standard uncertainty (estimated standard deviation) of attribute value_dist in category chem_comp_angle. The ID of the first of the three atoms that define the angle. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. The ID of the second of the three atoms that define the angle. The second atom is taken to be the apex of the angle. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. The ID of the third of the three atoms that define the angle. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. Data items in the CHEM_COMP_ATOM category record details about the atoms in a chemical component. Specifying the atomic coordinates for the components in this category is an alternative to specifying the structure of the component via bonds, angles, planes etc. in the appropriate CHEM_COMP subcategories. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:chem_comp_atomCategory> <mmCIF:chem_comp_atom atom_id="N" comp_id="phe"> <mmCIF:model_Cartn_x>1.20134</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>0.84658</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>0.00000</mmCIF:model_Cartn_z> <mmCIF:substruct_code>main</mmCIF:substruct_code> <mmCIF:type_symbol>N</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="CA" comp_id="phe"> <mmCIF:model_Cartn_x>0.00000</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>0.00000</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>0.00000</mmCIF:model_Cartn_z> <mmCIF:substruct_code>main</mmCIF:substruct_code> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="C" comp_id="phe"> <mmCIF:model_Cartn_x>-1.25029</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>0.88107</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>0.00000</mmCIF:model_Cartn_z> <mmCIF:substruct_code>main</mmCIF:substruct_code> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="O" comp_id="phe"> <mmCIF:model_Cartn_x>-2.18525</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>0.66029</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>-0.78409</mmCIF:model_Cartn_z> <mmCIF:substruct_code>main</mmCIF:substruct_code> <mmCIF:type_symbol>O</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="CB" comp_id="phe"> <mmCIF:model_Cartn_x>0.00662</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>-1.03603</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>1.11081</mmCIF:model_Cartn_z> <mmCIF:substruct_code>side</mmCIF:substruct_code> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="CG" comp_id="phe"> <mmCIF:model_Cartn_x>0.03254</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>-0.49711</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>2.50951</mmCIF:model_Cartn_z> <mmCIF:substruct_code>side</mmCIF:substruct_code> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="CD1" comp_id="phe"> <mmCIF:model_Cartn_x>-1.15813</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>-0.12084</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>3.13467</mmCIF:model_Cartn_z> <mmCIF:substruct_code>side</mmCIF:substruct_code> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="CE1" comp_id="phe"> <mmCIF:model_Cartn_x>-1.15720</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>0.38038</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>4.42732</mmCIF:model_Cartn_z> <mmCIF:substruct_code>side</mmCIF:substruct_code> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="CZ" comp_id="phe"> <mmCIF:model_Cartn_x>0.05385</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>0.51332</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>5.11032</mmCIF:model_Cartn_z> <mmCIF:substruct_code>side</mmCIF:substruct_code> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="CE2" comp_id="phe"> <mmCIF:model_Cartn_x>1.26137</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>0.11613</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>4.50975</mmCIF:model_Cartn_z> <mmCIF:substruct_code>side</mmCIF:substruct_code> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="CD2" comp_id="phe"> <mmCIF:model_Cartn_x>1.23668</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>-0.38351</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>3.20288</mmCIF:model_Cartn_z> <mmCIF:substruct_code>side</mmCIF:substruct_code> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="N" comp_id="val"> <mmCIF:model_Cartn_x>1.20134</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>0.84658</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>0.00000</mmCIF:model_Cartn_z> <mmCIF:substruct_code>main</mmCIF:substruct_code> <mmCIF:type_symbol>N</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="CA" comp_id="val"> <mmCIF:model_Cartn_x>0.00000</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>0.00000</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>0.00000</mmCIF:model_Cartn_z> <mmCIF:substruct_code>main</mmCIF:substruct_code> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="C" comp_id="val"> <mmCIF:model_Cartn_x>-1.25029</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>0.88107</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>0.00000</mmCIF:model_Cartn_z> <mmCIF:substruct_code>main</mmCIF:substruct_code> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="O" comp_id="val"> <mmCIF:model_Cartn_x>-2.18525</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>0.66029</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>-0.78409</mmCIF:model_Cartn_z> <mmCIF:substruct_code>main</mmCIF:substruct_code> <mmCIF:type_symbol>O</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="CB" comp_id="val"> <mmCIF:model_Cartn_x>0.05260</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>-0.99339</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>1.17429</mmCIF:model_Cartn_z> <mmCIF:substruct_code>side</mmCIF:substruct_code> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="CG1" comp_id="val"> <mmCIF:model_Cartn_x>-0.13288</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>-0.31545</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>2.52668</mmCIF:model_Cartn_z> <mmCIF:substruct_code>side</mmCIF:substruct_code> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chem_comp_atom> <mmCIF:chem_comp_atom atom_id="CG2" comp_id="val"> <mmCIF:model_Cartn_x>-0.94265</mmCIF:model_Cartn_x> <mmCIF:model_Cartn_y>-2.12930</mmCIF:model_Cartn_y> <mmCIF:model_Cartn_z>0.99811</mmCIF:model_Cartn_z> <mmCIF:substruct_code>side</mmCIF:substruct_code> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chem_comp_atom> </mmCIF:chem_comp_atomCategory> An alternative identifier for the atom. This data item would be used in cases where alternative nomenclatures exist for labelling atoms in a group. The net integer charge assigned to this atom. This is the formal charge assignment normally found in chemical diagrams. for an ammonium nitrogen 1 for a chloride ion -1 The x component of the coordinates for this atom in this component specified as orthogonal angstroms. The choice of reference axis frame for the coordinates is arbitrary. The set of coordinates input for the entity here is intended to correspond to the atomic model used to generate restraints for structure refinement, not to atom sites in the ATOM_SITE list. The standard uncertainty (estimated standard deviation) of attribute model_Cartn_x in category chem_comp_atom. The y component of the coordinates for this atom in this component specified as orthogonal angstroms. The choice of reference axis frame for the coordinates is arbitrary. The set of coordinates input for the entity here is intended to correspond to the atomic model used to generate restraints for structure refinement, not to atom sites in the ATOM_SITE list. The standard uncertainty (estimated standard deviation) of attribute model_Cartn_y in category chem_comp_atom. The z component of the coordinates for this atom in this component specified as orthogonal angstroms. The choice of reference axis frame for the coordinates is arbitrary. The set of coordinates input for the entity here is intended to correspond to the atomic model used to generate restraints for structure refinement, not to atom sites in the ATOM_SITE list. The standard uncertainty (estimated standard deviation) of attribute model_Cartn_z in category chem_comp_atom. The partial charge assigned to this atom. This data item assigns the atom to a substructure of the component, if appropriate. This data item is a pointer to attribute symbol in category atom_type in the ATOM_TYPE category. The value of attribute atom_id in category chem_comp_atom must uniquely identify each atom in each monomer in the CHEM_COMP_ATOM list. The atom identifiers need not be unique over all atoms in the data block; they need only be unique for each atom in a component. Note that this item need not be a number; it can be any unique identifier. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. Data items in the CHEM_COMP_BOND category record details about the bonds between atoms in a chemical component. Target values may be specified as bond orders, as a distance between the two atoms, or both. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:chem_comp_bondCategory> <mmCIF:chem_comp_bond atom_id_1="N" atom_id_2="CA" comp_id="phe"> <mmCIF:value_order>sing</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="CA" atom_id_2="C" comp_id="phe"> <mmCIF:value_order>sing</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="C" atom_id_2="O" comp_id="phe"> <mmCIF:value_order>doub</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="CB" atom_id_2="CA" comp_id="phe"> <mmCIF:value_order>sing</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="CB" atom_id_2="CG" comp_id="phe"> <mmCIF:value_order>sing</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="CG" atom_id_2="CD1" comp_id="phe"> <mmCIF:value_order>arom</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="CD1" atom_id_2="CE1" comp_id="phe"> <mmCIF:value_order>arom</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="CE1" atom_id_2="CZ" comp_id="phe"> <mmCIF:value_order>arom</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="CZ" atom_id_2="CE2" comp_id="phe"> <mmCIF:value_order>arom</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="CE2" atom_id_2="CD2" comp_id="phe"> <mmCIF:value_order>arom</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="CD2" atom_id_2="CG" comp_id="phe"> <mmCIF:value_order>arom</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="N" atom_id_2="CA" comp_id="val"> <mmCIF:value_order>sing</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="CA" atom_id_2="C" comp_id="val"> <mmCIF:value_order>sing</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="C" atom_id_2="O" comp_id="val"> <mmCIF:value_order>doub</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="CB" atom_id_2="CA" comp_id="val"> <mmCIF:value_order>sing</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="CB" atom_id_2="CG1" comp_id="val"> <mmCIF:value_order>sing</mmCIF:value_order> </mmCIF:chem_comp_bond> <mmCIF:chem_comp_bond atom_id_1="CB" atom_id_2="CG2" comp_id="val"> <mmCIF:value_order>sing</mmCIF:value_order> </mmCIF:chem_comp_bond> </mmCIF:chem_comp_bondCategory> The value that should be taken as the target for the chemical bond associated with the specified atoms, expressed as a distance. The standard uncertainty (estimated standard deviation) of attribute value_dist in category chem_comp_bond. The value that should be taken as the target for the chemical bond associated with the specified atoms, expressed as a bond order. The ID of the first of the two atoms that define the bond. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. The ID of the second of the two atoms that define the bond. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. Data items in the CHEM_COMP_CHIR category provide details about the chiral centres in a chemical component. The atoms bonded to the chiral atom are specified in the CHEM_COMP_CHIR_ATOM category. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:chem_comp_chirCategory> <mmCIF:chem_comp_chir comp_id="phe" id="phe1"> <mmCIF:atom_id>CA</mmCIF:atom_id> </mmCIF:chem_comp_chir> <mmCIF:chem_comp_chir comp_id="val" id="val1"> <mmCIF:atom_id>CA</mmCIF:atom_id> </mmCIF:chem_comp_chir> </mmCIF:chem_comp_chirCategory> The chiral configuration of the atom that is a chiral centre. The ID of the atom that is a chiral centre. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. The total number of atoms bonded to the atom specified by attribute atom_id in category chem_comp_chir. The number of non-hydrogen atoms bonded to the atom specified by attribute atom_id in category chem_comp_chir. A flag to indicate whether a chiral volume should match the standard value in both magnitude and sign, or in magnitude only. The chiral volume, V~c~, for chiral centres that involve a chiral atom bonded to three non-hydrogen atoms and one hydrogen atom. V~c~ = V1 * (V2 X V3) V1 = the vector distance from the atom specified by attribute atom_id in category chem_comp_chir to the first atom in the CHEM_COMP_CHIR_ATOM list V2 = the vector distance from the atom specified by attribute atom_id in category chem_comp_chir to the second atom in the CHEM_COMP_CHIR_ATOM list V3 = the vector distance from the atom specified by attribute atom_id in category chem_comp_chir to the third atom in the CHEM_COMP_CHIR_ATOM list * = the vector dot product X = the vector cross product The standard uncertainty (estimated standard deviation) of attribute volume_three in category chem_comp_chir. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. The value of attribute id in category chem_comp_chir must uniquely identify a record in the CHEM_COMP_CHIR list. Data items in the CHEM_COMP_CHIR_ATOM category enumerate the atoms bonded to a chiral atom within a chemical component. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:chem_comp_chir_atomCategory> <mmCIF:chem_comp_chir_atom atom_id="N" chir_id="1" comp_id="phe"></mmCIF:chem_comp_chir_atom> <mmCIF:chem_comp_chir_atom atom_id="C" chir_id="1" comp_id="phe"></mmCIF:chem_comp_chir_atom> <mmCIF:chem_comp_chir_atom atom_id="CB" chir_id="1" comp_id="phe"></mmCIF:chem_comp_chir_atom> <mmCIF:chem_comp_chir_atom atom_id="N" chir_id="1" comp_id="val"></mmCIF:chem_comp_chir_atom> <mmCIF:chem_comp_chir_atom atom_id="C" chir_id="1" comp_id="val"></mmCIF:chem_comp_chir_atom> <mmCIF:chem_comp_chir_atom atom_id="CB" chir_id="1" comp_id="val"></mmCIF:chem_comp_chir_atom> </mmCIF:chem_comp_chir_atomCategory> The standard uncertainty (estimated standard deviation) of the position of this atom from the plane defined by all of the atoms in the plane. The ID of an atom bonded to the chiral atom. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. This data item is a pointer to attribute id in category chem_comp_chir in the CHEM_COMP_CHIR category. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. Data items in the CHEM_COMP_LINK category give details about the links between chemical components. A description of special aspects of a link between chemical components in the structure. The type of the first of the two components joined by the link. This data item is a pointer to attribute type in category chem_comp in the CHEM_COMP category. The type of the second of the two components joined by the link. This data item is a pointer to attribute type in category chem_comp in the CHEM_COMP category. This data item is a pointer to attribute id in category chem_link in the CHEM_LINK category. Data items in the CHEM_COMP_PLANE category provide identifiers for the planes in a chemical component. The atoms in the plane are specified in the CHEM_COMP_PLANE_ATOM category. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:chem_comp_planeCategory> <mmCIF:chem_comp_plane comp_id="phe" id="phe1"></mmCIF:chem_comp_plane> </mmCIF:chem_comp_planeCategory> The total number of atoms in the plane. The number of non-hydrogen atoms in the plane. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. The value of attribute id in category chem_comp_plane must uniquely identify a record in the CHEM_COMP_PLANE list. Data items in the CHEM_COMP_PLANE_ATOM category enumerate the atoms in a plane within a chemical component. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:chem_comp_plane_atomCategory> <mmCIF:chem_comp_plane_atom atom_id="CB" comp_id="phe" plane_id="phe1"></mmCIF:chem_comp_plane_atom> <mmCIF:chem_comp_plane_atom atom_id="CG" comp_id="phe" plane_id="phe1"></mmCIF:chem_comp_plane_atom> <mmCIF:chem_comp_plane_atom atom_id="CD1" comp_id="phe" plane_id="phe1"></mmCIF:chem_comp_plane_atom> <mmCIF:chem_comp_plane_atom atom_id="CE1" comp_id="phe" plane_id="phe1"></mmCIF:chem_comp_plane_atom> <mmCIF:chem_comp_plane_atom atom_id="CZ" comp_id="phe" plane_id="phe1"></mmCIF:chem_comp_plane_atom> <mmCIF:chem_comp_plane_atom atom_id="CE2" comp_id="phe" plane_id="phe1"></mmCIF:chem_comp_plane_atom> <mmCIF:chem_comp_plane_atom atom_id="CD2" comp_id="phe" plane_id="phe1"></mmCIF:chem_comp_plane_atom> </mmCIF:chem_comp_plane_atomCategory> This data item is the standard deviation of the out-of-plane distance for this atom. The ID of an atom involved in the plane. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. This data item is a pointer to attribute id in category chem_comp_plane in the CHEM_COMP_PLANE category. Data items in the CHEM_COMP_TOR category record details about the torsion angles in a chemical component. As torsion angles can have more than one target value, the target values are specified in the CHEM_COMP_TOR_VALUE category. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:chem_comp_torCategory> <mmCIF:chem_comp_tor comp_id="phe" id="phe_chi1"> <mmCIF:atom_id_1>N</mmCIF:atom_id_1> <mmCIF:atom_id_2>CA</mmCIF:atom_id_2> <mmCIF:atom_id_3>CB</mmCIF:atom_id_3> <mmCIF:atom_id_4>CG</mmCIF:atom_id_4> </mmCIF:chem_comp_tor> <mmCIF:chem_comp_tor comp_id="phe" id="phe_chi2"> <mmCIF:atom_id_1>CA</mmCIF:atom_id_1> <mmCIF:atom_id_2>CB</mmCIF:atom_id_2> <mmCIF:atom_id_3>CG</mmCIF:atom_id_3> <mmCIF:atom_id_4>CD1</mmCIF:atom_id_4> </mmCIF:chem_comp_tor> <mmCIF:chem_comp_tor comp_id="phe" id="phe_ring1"> <mmCIF:atom_id_1>CB</mmCIF:atom_id_1> <mmCIF:atom_id_2>CG</mmCIF:atom_id_2> <mmCIF:atom_id_3>CD1</mmCIF:atom_id_3> <mmCIF:atom_id_4>CE1</mmCIF:atom_id_4> </mmCIF:chem_comp_tor> <mmCIF:chem_comp_tor comp_id="phe" id="phe_ring2"> <mmCIF:atom_id_1>CB</mmCIF:atom_id_1> <mmCIF:atom_id_2>CG</mmCIF:atom_id_2> <mmCIF:atom_id_3>CD2</mmCIF:atom_id_3> <mmCIF:atom_id_4>CE2</mmCIF:atom_id_4> </mmCIF:chem_comp_tor> <mmCIF:chem_comp_tor comp_id="phe" id="phe_ring3"> <mmCIF:atom_id_1>CG</mmCIF:atom_id_1> <mmCIF:atom_id_2>CD1</mmCIF:atom_id_2> <mmCIF:atom_id_3>CE1</mmCIF:atom_id_3> <mmCIF:atom_id_4>CZ</mmCIF:atom_id_4> </mmCIF:chem_comp_tor> <mmCIF:chem_comp_tor comp_id="phe" id="phe_ring4"> <mmCIF:atom_id_1>CD1</mmCIF:atom_id_1> <mmCIF:atom_id_2>CE1</mmCIF:atom_id_2> <mmCIF:atom_id_3>CZ</mmCIF:atom_id_3> <mmCIF:atom_id_4>CE2</mmCIF:atom_id_4> </mmCIF:chem_comp_tor> <mmCIF:chem_comp_tor comp_id="phe" id="phe_ring5"> <mmCIF:atom_id_1>CE1</mmCIF:atom_id_1> <mmCIF:atom_id_2>CZ</mmCIF:atom_id_2> <mmCIF:atom_id_3>CE2</mmCIF:atom_id_3> <mmCIF:atom_id_4>CD2</mmCIF:atom_id_4> </mmCIF:chem_comp_tor> </mmCIF:chem_comp_torCategory> The ID of the first of the four atoms that define the torsion angle. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. The ID of the second of the four atoms that define the torsion angle. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. The ID of the third of the four atoms that define the torsion angle. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. The ID of the fourth of the four atoms that define the torsion angle. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. The value of attribute id in category chem_comp_tor must uniquely identify a record in the CHEM_COMP_TOR list. Data items in the CHEM_COMP_TOR_VALUE category record details about the target values for the torsion angles enumerated in the CHEM_COMP_TOR list. Target values may be specified as angles in degrees, as a distance between the first and fourth atoms, or both. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:chem_comp_tor_valueCategory> <mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_chi1"> <mmCIF:angle>-60.0</mmCIF:angle> <mmCIF:dist>2.88</mmCIF:dist> </mmCIF:chem_comp_tor_value> <mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_chi1"> <mmCIF:angle>180.0</mmCIF:angle> <mmCIF:dist>3.72</mmCIF:dist> </mmCIF:chem_comp_tor_value> <mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_chi1"> <mmCIF:angle>60.0</mmCIF:angle> <mmCIF:dist>2.88</mmCIF:dist> </mmCIF:chem_comp_tor_value> <mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_chi2"> <mmCIF:angle>90.0</mmCIF:angle> <mmCIF:dist>3.34</mmCIF:dist> </mmCIF:chem_comp_tor_value> <mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_chi2"> <mmCIF:angle>-90.0</mmCIF:angle> <mmCIF:dist>3.34</mmCIF:dist> </mmCIF:chem_comp_tor_value> <mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_ring1"> <mmCIF:angle>180.0</mmCIF:angle> <mmCIF:dist>3.75</mmCIF:dist> </mmCIF:chem_comp_tor_value> <mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_ring2"> <mmCIF:angle>180.0</mmCIF:angle> <mmCIF:dist>3.75</mmCIF:dist> </mmCIF:chem_comp_tor_value> <mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_ring3"> <mmCIF:angle>0.0</mmCIF:angle> <mmCIF:dist>2.80</mmCIF:dist> </mmCIF:chem_comp_tor_value> <mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_ring4"> <mmCIF:angle>0.0</mmCIF:angle> <mmCIF:dist>2.80</mmCIF:dist> </mmCIF:chem_comp_tor_value> <mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_ring5"> <mmCIF:angle>0.0</mmCIF:angle> <mmCIF:dist>2.80</mmCIF:dist> </mmCIF:chem_comp_tor_value> </mmCIF:chem_comp_tor_valueCategory> A value that should be taken as a potential target value for the torsion angle associated with the specified atoms, expressed in degrees. The standard uncertainty (estimated standard deviation) of attribute angle in category chem_comp_tor_value. A value that should be taken as a potential target value for the torsion angle associated with the specified atoms, expressed as the distance between the atoms specified by _chem_comp_tor.atom_id_1 and _chem_comp_tor.atom_id_4 in the referenced record in the CHEM_COMP_TOR list. Note that the torsion angle cannot be fully specified by a distance (for instance, a torsion angle of -60 degree will yield the same distance as a 60 degree angle). However, the distance specification can be useful for refinement in situations in which the angle is already close to the desired value. The standard uncertainty (estimated standard deviation) of attribute dist in category chem_comp_tor_value. This data item is a pointer to attribute comp_id in category chem_comp_atom in the CHEM_COMP_ATOM category. This data item is a pointer to attribute id in category chem_comp_tor in the CHEM_COMP_TOR category. Data items in the CHEM_LINK category give details about the links between chemical components. A description of special aspects of a link between chemical components in the structure. The value of attribute id in category chem_link must uniquely identify each item in the CHEM_LINK list. peptide oligosaccharide 1,4 DNA Data items in the CHEM_LINK_ANGLE category record details about angles in a link between chemical components. Example 1 - Engh & Huber parameters [Acta Cryst. (1991), A47, 392-400] as interpreted by J. P. Priestle (1995). Consistent Stereochemical Dictionaries for Refinement and Model Building. CCP4 Daresbury Study Weekend, DL-CONF-95-001, ISSN 1358-6254. Warrington: Daresbury Laboratory. <mmCIF:chem_link_angleCategory> <mmCIF:chem_link_angle atom_id_1="N" atom_id_2="CA" atom_id_3="C" link_id="PEPTIDE"> <mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id> <mmCIF:atom_2_comp_id>1</mmCIF:atom_2_comp_id> <mmCIF:atom_3_comp_id>1</mmCIF:atom_3_comp_id> <mmCIF:value_angle>111.2</mmCIF:value_angle> <mmCIF:value_angle_esd>2.8</mmCIF:value_angle_esd> </mmCIF:chem_link_angle> <mmCIF:chem_link_angle atom_id_1="CA" atom_id_2="C" atom_id_3="O" link_id="PEPTIDE"> <mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id> <mmCIF:atom_2_comp_id>1</mmCIF:atom_2_comp_id> <mmCIF:atom_3_comp_id>1</mmCIF:atom_3_comp_id> <mmCIF:value_angle>120.8</mmCIF:value_angle> <mmCIF:value_angle_esd>1.7</mmCIF:value_angle_esd> </mmCIF:chem_link_angle> <mmCIF:chem_link_angle atom_id_1="CA" atom_id_2="C" atom_id_3="N" link_id="PEPTIDE"> <mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id> <mmCIF:atom_2_comp_id>1</mmCIF:atom_2_comp_id> <mmCIF:atom_3_comp_id>2</mmCIF:atom_3_comp_id> <mmCIF:value_angle>116.2</mmCIF:value_angle> <mmCIF:value_angle_esd>2.0</mmCIF:value_angle_esd> </mmCIF:chem_link_angle> <mmCIF:chem_link_angle atom_id_1="O" atom_id_2="C" atom_id_3="N" link_id="PEPTIDE"> <mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id> <mmCIF:atom_2_comp_id>1</mmCIF:atom_2_comp_id> <mmCIF:atom_3_comp_id>2</mmCIF:atom_3_comp_id> <mmCIF:value_angle>123.0</mmCIF:value_angle> <mmCIF:value_angle_esd>1.6</mmCIF:value_angle_esd> </mmCIF:chem_link_angle> <mmCIF:chem_link_angle atom_id_1="C" atom_id_2="N" atom_id_3="CA" link_id="PEPTIDE"> <mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id> <mmCIF:atom_2_comp_id>2</mmCIF:atom_2_comp_id> <mmCIF:atom_3_comp_id>2</mmCIF:atom_3_comp_id> <mmCIF:value_angle>121.7</mmCIF:value_angle> <mmCIF:value_angle_esd>1.8</mmCIF:value_angle_esd> </mmCIF:chem_link_angle> </mmCIF:chem_link_angleCategory> This data item indicates whether atom 1 is found in the first or the second of the two components connected by the link. This data item indicates whether atom 2 is found in the first or the second of the two components connected by the link. This data item indicates whether atom 3 is found in the first or the second of the two components connected by the link. The value that should be taken as the target value for the angle associated with the specified atoms, expressed in degrees. The standard uncertainty (estimated standard deviation) of attribute value_angle in category chem_link_angle. The value that should be taken as the target value for the angle associated with the specified atoms, expressed as the distance between the atoms specified by attribute atom_id_1 in category chem_comp_angle and attribute atom_id_3 in category chem_comp_angle. The standard uncertainty (estimated standard deviation) of attribute value_dist in category chem_comp_angle. The ID of the first of the three atoms that define the angle. An atom with this ID must exist in the component of the type specified by attribute type_comp_1 in category chem_comp_link (or attribute type_comp_2 in category chem_comp_link, where the appropriate data item is indicated by the value of attribute atom_1_comp_id) in category chem_comp_angle. The ID of the second of the three atoms that define the angle. The second atom is taken to be the apex of the angle. An atom with this ID must exist in the component of the type specified by attribute type_comp_1 in category chem_comp_link (or attribute type_comp_2 in category chem_comp_link, where the appropriate data item is indicated by the value of attribute atom_2_comp_id) in category chem_comp_angle. The ID of the third of the three atoms that define the angle. An atom with this ID must exist in the component of the type specified by attribute type_comp_1 in category chem_comp_link (or attribute type_comp_2 in category chem_comp_link, where the appropriate data item is indicated by the value of attribute atom_3_comp_id) in category chem_comp_angle. This data item is a pointer to attribute id in category chem_link in the CHEM_LINK category. Data items in the CHEM_LINK_BOND category record details about bonds in a link between components in the chemical structure. Example 1 - Engh & Huber parameters [Acta Cryst. (1991), A47, 392-400] as interpreted by J. P. Priestle (1995). Consistent Stereochemical Dictionaries for Refinement and Model Building. CCP4 Daresbury Study Weekend, DL-CONF-95-001, ISSN 1358-6254. Warrington: Daresbury Laboratory. <mmCIF:chem_link_bondCategory> <mmCIF:chem_link_bond atom_id_1="N" atom_id_2="CA" link_id="PEPTIDE"> <mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id> <mmCIF:atom_2_comp_id>1</mmCIF:atom_2_comp_id> <mmCIF:value_dist>1.458</mmCIF:value_dist> <mmCIF:value_dist_esd>0.019</mmCIF:value_dist_esd> </mmCIF:chem_link_bond> <mmCIF:chem_link_bond atom_id_1="CA" atom_id_2="C" link_id="PEPTIDE"> <mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id> <mmCIF:atom_2_comp_id>1</mmCIF:atom_2_comp_id> <mmCIF:value_dist>1.525</mmCIF:value_dist> <mmCIF:value_dist_esd>0.021</mmCIF:value_dist_esd> </mmCIF:chem_link_bond> <mmCIF:chem_link_bond atom_id_1="C" atom_id_2="N" link_id="PEPTIDE"> <mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id> <mmCIF:atom_2_comp_id>2</mmCIF:atom_2_comp_id> <mmCIF:value_dist>1.329</mmCIF:value_dist> <mmCIF:value_dist_esd>0.014</mmCIF:value_dist_esd> </mmCIF:chem_link_bond> <mmCIF:chem_link_bond atom_id_1="C" atom_id_2="O" link_id="PEPTIDE"> <mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id> <mmCIF:atom_2_comp_id>1</mmCIF:atom_2_comp_id> <mmCIF:value_dist>1.231</mmCIF:value_dist> <mmCIF:value_dist_esd>0.020</mmCIF:value_dist_esd> </mmCIF:chem_link_bond> </mmCIF:chem_link_bondCategory> This data item indicates whether atom 1 is found in the first or the second of the two components connected by the link. This data item indicates whether atom 2 is found in the first or the second of the two chemical components connected by the link. The value that should be taken as the target for the chemical bond associated with the specified atoms, expressed as a distance. The standard uncertainty (estimated standard deviation) of attribute value_dist in category chem_link_bond. The value that should be taken as the target for the chemical bond associated with the specified atoms, expressed as a bond order. The ID of the first of the two atoms that define the bond. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense. The ID of the second of the two atoms that define the bond. As this data item does not point to a specific atom in a specific component, it is not a child in the linkage sense. This data item is a pointer to attribute id in category chem_link in the CHEM_LINK category. Data items in the CHEM_LINK_CHIR category provide details about the chiral centres in a link between two chemical components. The atoms bonded to the chiral atom are specified in the CHEM_LINK_CHIR_ATOM category. This data item indicates whether the chiral atom is found in the first or the second of the two components connected by the link. The chiral configuration of the atom that is a chiral centre. The ID of the atom that is a chiral centre. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense. The total number of atoms bonded to the atom specified by attribute atom_id in category chem_link_chir. The number of non-hydrogen atoms bonded to the atom specified by attribute atom_id in category chem_link_chir. A flag to indicate whether a chiral volume should match the standard value in both magnitude and sign, or in magnitude only. The chiral volume, V(c), for chiral centres that involve a chiral atom bonded to three non-hydrogen atoms and one hydrogen atom. V~c~ = V1 * (V2 X V3) V1 = the vector distance from the atom specified by attribute atom_id in category chem_link_chir to the first atom in the CHEM_LINK_CHIR_ATOM list V2 = the vector distance from the atom specified by attribute atom_id in category chem_link_chir to the second atom in the CHEM_LINK_CHIR_ATOM list V3 = the vector distance from the atom specified by attribute atom_id in category chem_link_chir to the third atom in the CHEM_LINK_CHIR_ATOM list * = the vector dot product X = the vector cross product The standard uncertainty (estimated standard deviation) of attribute volume_three in category chem_link_chir. The value of attribute id in category chem_link_chir must uniquely identify a record in the CHEM_LINK_CHIR list. This data item is a pointer to attribute id in category chem_link in the CHEM_LINK category. Data items in the CHEM_LINK_CHIR_ATOM category enumerate the atoms bonded to a chiral atom in a link between two chemical components. This data item indicates whether the atom bonded to a chiral atom is found in the first or the second of the two components connected by the link. The standard uncertainty (estimated standard deviation) of the position of this atom from the plane defined by all of the atoms in the plane. The ID of an atom bonded to the chiral atom. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense. This data item is a pointer to attribute id in category chem_link_chir in the CHEM_LINK_CHIR category. Data items in the CHEM_LINK_PLANE category provide identifiers for the planes in a link between two chemical components. The atoms in the plane are specified in the CHEM_LINK_PLANE_ATOM category. The total number of atoms in the plane. The number of non-hydrogen atoms in the plane. The value of attribute id in category chem_link_plane must uniquely identify a record in the CHEM_LINK_PLANE list. This data item is a pointer to attribute id in category chem_link in the CHEM_LINK category. Data items in the CHEM_LINK_PLANE_ATOM category enumerate the atoms in a plane in a link between two chemical components. This data item indicates whether the atom in a plane is found in the first or the second of the two components connected by the link. The ID of an atom involved in the plane. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense. This data item is a pointer to attribute id in category chem_link_plane in the CHEM_LINK_PLANE category. Data items in the CHEM_LINK_TOR category record details about the torsion angles in a link between two chemical components. As torsion angles can have more than one target value, the target values are specified in the CHEM_LINK_TOR_VALUE category. This data item indicates whether atom 1 is found in the first or the second of the two components connected by the link. This data item indicates whether atom 2 is found in the first or the second of the two components connected by the link. This data item indicates whether atom 3 is found in the first or the second of the two components connected by the link. This data item indicates whether atom 4 is found in the first or the second of the two components connected by the link. The ID of the first of the four atoms that define the torsion angle. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense. The ID of the second of the four atoms that define the torsion angle. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense. The ID of the third of the four atoms that define the torsion angle. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense. The ID of the fourth of the four atoms that define the torsion angle. As this data item does not point to a specific atom in a specific chemical component, it is not a child in the linkage sense. The value of attribute id in category chem_link_tor must uniquely identify a record in the CHEM_LINK_TOR list. This data item is a pointer to attribute id in category chem_link in the CHEM_LINK category. Data items in the CHEM_LINK_TOR_VALUE category record details about the target values for the torsion angles enumerated in the CHEM_LINK_TOR list. Target values may be specified as angles in degrees, as a distance between the first and fourth atoms, or both. A value that should be taken as a potential target value for the torsion angle associated with the specified atoms, expressed in degrees. The standard uncertainty (estimated standard deviation) of attribute angle in category chem_link_tor_value. A value that should be taken as a potential target value for the torsion angle associated with the specified atoms, expressed as the distance between the atoms specified by _chem_link_tor.atom_id_1 and _chem_link_tor.atom_id_4 in the referenced record in the CHEM_LINK_TOR list. Note that the torsion angle cannot be fully specified by a distance (for instance, a torsion angle of -60 degree will yield the same distance as a 60 degree angle). However, the distance specification can be useful for refinement in situations in which the angle is already close to the desired value. The standard uncertainty (estimated standard deviation) of attribute dist in category chem_link_tor_value. This data item is a pointer to attribute id in category chem_link_tor in the CHEM_LINK_TOR category. Data items in the CHEMICAL category would not in general be used in a macromolecular CIF. See instead the ENTITY data items. Data items in the CHEMICAL category record details about the composition and chemical properties of the compounds. The formula data items must agree with those that specify the density, unit-cell and Z values. Example 1 - based on data set 9597gaus of Alyea, Ferguson & Kannan [Acta Cryst. (1996), C52, 765-767]. <mmCIF:chemicalCategory> <mmCIF:chemical entry_id="9597gaus"> <mmCIF:name_systematic>trans-bis(tricyclohexylphosphine)tetracarbonylmolybdenum(0)</mmCIF:name_systematic> </mmCIF:chemical> </mmCIF:chemicalCategory> Necessary conditions for the assignment of attribute absolute_configuration in category chemical are given by H. D. Flack and G. Bernardinelli (1999, 2000). Ref: Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55, 908-915. (http://www.iucr.org/paper?sh0129) Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148. (http://www.iucr.org/paper?ks0021) Description of the source of the compound under study, or of the parent molecule if a simple derivative is studied. This includes the place of discovery for minerals or the actual source of a natural product. From Norilsk (USSR) Extracted from the bark of Cinchona Naturalis The temperature in kelvins at which the crystalline solid changes to a liquid. A temperature in kelvins above which the melting point (the temperature at which the crystalline solid changes to a liquid) lies. _chemical.melting_point_gt and _chemical.melting_point_lt allow a range of temperatures to be given. attribute melting_point in category chemical should always be used in preference to these two items whenever possible. A temperature in kelvins below which the melting point (the temperature at which the crystalline solid changes to a liquid) lies. _chemical.melting_point_gt and _chemical.melting_point_lt allow a range of temperatures to be given. attribute melting_point in category chemical should always be used in preference to these two items whenever possible. Trivial name by which the compound is commonly known. 1-bromoestradiol Mineral name accepted by the International Mineralogical Association. Use only for natural minerals. See also attribute compound_source in category chemical. chalcopyrite Commonly used structure-type name. Usually only applied to minerals or inorganic compounds. perovskite sphalerite A15 IUPAC or Chemical Abstracts full name of the compound. 1-bromoestra-1,3,5(10)-triene-3,17\b-diol The optical rotation in solution of the compound is specified in the following format: '[\a]^TEMP^~WAVE~ = SORT (c = CONC, SOLV)' where: TEMP is the temperature of the measurement in degrees Celsius, WAVE is an indication of the wavelength of the light used for the measurement, CONC is the concentration of the solution given as the mass of the substance in g in 100 ml of solution, SORT is the signed value (preceded by a + or a - sign) of 100.\a/(l.c), where \a is the signed optical rotation in degrees measured in a cell of length l in dm and c is the value of CONC as defined above, and SOLV is the chemical formula of the solvent. [\a]^25^~D~ = +108 (c = 3.42, CHCl~3~) A free-text description of the biological properties of the material. diverse biological activities including use as a laxative and strong antibacterial activity against S. aureus and weak activity against cyclooxygenase-1 (COX-1) antibiotic activity against Bacillus subtilis (ATCC 6051) but no significant activity against Candida albicans (ATCC 14053), Aspergillus flavus (NRRL 6541) and Fusarium verticillioides (NRRL 25457) weakly potent lipoxygenase nonredox inhibitor no influenza A virus sialidase inhibitory and plaque reduction activities low toxicity against Drosophila melanogaster A free-text description of the physical properties of the material. air-sensitive moisture-sensitive hygroscopic deliquescent oxygen-sensitive photo-sensitive pyrophoric semiconductor ferromagnetic at low temperature paramagnetic and thermochromic The temperature in kelvins at which the solid decomposes. 350 The estimated standard deviation of attribute temperature_decomposition in category chemical. A temperature in kelvins above which the solid is known to decompose. attribute temperature_decomposition_gt in category chemical and attribute temperature_decomposition_lt in category chemical allow a range of temperatures to be given. attribute temperature_decomposition in category chemical should always be used in preference to these two items whenever possible. 350 A temperature in kelvins below which the solid is known to decompose. attribute temperature_decomposition_gt in category chemical and attribute temperature_decomposition_lt in category chemical allow a range of temperatures to be given. attribute temperature_decomposition in category chemical should always be used in preference to these two items whenever possible. 350 The temperature in kelvins at which the solid sublimes. 350 The estimated standard deviation of attribute temperature_sublimation in category chemical. A temperature in kelvins above which the solid is known to sublime. attribute temperature_sublimation_gt in category chemical and attribute temperature_sublimation_lt in category chemical allow a range of temperatures to be given. attribute temperature_sublimation in category chemical should always be used in preference to these two items whenever possible. 350 A temperature in kelvins below which the solid is known to sublime. attribute temperature_sublimation_gt in category chemical and attribute temperature_sublimation_lt in category chemical allow a range of temperatures to be given. attribute temperature_sublimation in category chemical should always be used in preference to these two items whenever possible. 350 This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the CHEMICAL_CONN_ATOM category would not, in general, be used in a macromolecular CIF. See instead the ENTITY data items. Data items in the CHEMICAL_CONN_ATOM and CHEMICAL_CONN_BOND categories record details about the two-dimensional (2D) chemical structure of the molecular species. They allow a 2D chemical diagram to be reconstructed for use in a publication or in a database search for structural and substructural relationships. The CHEMICAL_CONN_ATOM data items provide information about the chemical properties of the atoms in the structure. In cases where crystallographic and molecular symmetry elements coincide, they must also contain symmetry-generated atoms, so that the CHEMICAL_CONN_ATOM and CHEMICAL_CONN_BOND data items will always describe a complete chemical entity. Example 1 - based on data set DPTD of Yamin, Suwandi, Fun, Sivakumar & bin Shawkataly [Acta Cryst. (1996), C52, 951-953]. <mmCIF:chemical_conn_atomCategory> <mmCIF:chemical_conn_atom number="1"> <mmCIF:NCA>1</mmCIF:NCA> <mmCIF:NH>0</mmCIF:NH> <mmCIF:display_x>.39</mmCIF:display_x> <mmCIF:display_y>.81</mmCIF:display_y> <mmCIF:type_symbol>S</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="2"> <mmCIF:NCA>2</mmCIF:NCA> <mmCIF:NH>0</mmCIF:NH> <mmCIF:display_x>.39</mmCIF:display_x> <mmCIF:display_y>.96</mmCIF:display_y> <mmCIF:type_symbol>S</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="3"> <mmCIF:NCA>3</mmCIF:NCA> <mmCIF:NH>0</mmCIF:NH> <mmCIF:display_x>.14</mmCIF:display_x> <mmCIF:display_y>.88</mmCIF:display_y> <mmCIF:type_symbol>N</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="4"> <mmCIF:NCA>3</mmCIF:NCA> <mmCIF:NH>0</mmCIF:NH> <mmCIF:display_x>.33</mmCIF:display_x> <mmCIF:display_y>.88</mmCIF:display_y> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="5"> <mmCIF:NCA>2</mmCIF:NCA> <mmCIF:NH>2</mmCIF:NH> <mmCIF:display_x>.11</mmCIF:display_x> <mmCIF:display_y>.96</mmCIF:display_y> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="6"> <mmCIF:NCA>2</mmCIF:NCA> <mmCIF:NH>2</mmCIF:NH> <mmCIF:display_x>.03</mmCIF:display_x> <mmCIF:display_y>.96</mmCIF:display_y> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="7"> <mmCIF:NCA>2</mmCIF:NCA> <mmCIF:NH>2</mmCIF:NH> <mmCIF:display_x>.03</mmCIF:display_x> <mmCIF:display_y>.80</mmCIF:display_y> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="8"> <mmCIF:NCA>2</mmCIF:NCA> <mmCIF:NH>2</mmCIF:NH> <mmCIF:display_x>.11</mmCIF:display_x> <mmCIF:display_y>.80</mmCIF:display_y> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="9"> <mmCIF:NCA>1</mmCIF:NCA> <mmCIF:NH>0</mmCIF:NH> <mmCIF:display_x>.54</mmCIF:display_x> <mmCIF:display_y>.81</mmCIF:display_y> <mmCIF:type_symbol>S</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="10"> <mmCIF:NCA>2</mmCIF:NCA> <mmCIF:NH>0</mmCIF:NH> <mmCIF:display_x>.54</mmCIF:display_x> <mmCIF:display_y>.96</mmCIF:display_y> <mmCIF:type_symbol>S</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="11"> <mmCIF:NCA>3</mmCIF:NCA> <mmCIF:NH>0</mmCIF:NH> <mmCIF:display_x>.80</mmCIF:display_x> <mmCIF:display_y>.88</mmCIF:display_y> <mmCIF:type_symbol>N</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="12"> <mmCIF:NCA>3</mmCIF:NCA> <mmCIF:NH>0</mmCIF:NH> <mmCIF:display_x>.60</mmCIF:display_x> <mmCIF:display_y>.88</mmCIF:display_y> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="13"> <mmCIF:NCA>2</mmCIF:NCA> <mmCIF:NH>2</mmCIF:NH> <mmCIF:display_x>.84</mmCIF:display_x> <mmCIF:display_y>.96</mmCIF:display_y> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="14"> <mmCIF:NCA>2</mmCIF:NCA> <mmCIF:NH>2</mmCIF:NH> <mmCIF:display_x>.91</mmCIF:display_x> <mmCIF:display_y>.96</mmCIF:display_y> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="15"> <mmCIF:NCA>2</mmCIF:NCA> <mmCIF:NH>2</mmCIF:NH> <mmCIF:display_x>.91</mmCIF:display_x> <mmCIF:display_y>.80</mmCIF:display_y> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> <mmCIF:chemical_conn_atom number="16"> <mmCIF:NCA>2</mmCIF:NCA> <mmCIF:NH>2</mmCIF:NH> <mmCIF:display_x>.84</mmCIF:display_x> <mmCIF:display_y>.80</mmCIF:display_y> <mmCIF:type_symbol>C</mmCIF:type_symbol> </mmCIF:chemical_conn_atom> </mmCIF:chemical_conn_atomCategory> The number of connected atoms excluding terminal hydrogen atoms. The total number of hydrogen atoms attached to this atom, regardless of whether they are included in the refinement or the ATOM_SITE list. This number is the same as attribute attached_hydrogens in category atom_site only if none of the hydrogen atoms appear in the ATOM_SITE list. The net integer charge assigned to this atom. This is the formal charge assignment normally found in chemical diagrams. for an ammonium nitrogen 1 for a chloride ion -1 The 2D Cartesian x coordinate of the position of this atom in a recognizable chemical diagram. The coordinate origin is at the lower left corner, the x axis is horizontal and the y axis is vertical. The coordinates must lie in the range 0.0 to 1.0. These coordinates can be obtained from projections of a suitable uncluttered view of the molecular structure. The 2D Cartesian y coordinate of the position of this atom in a recognizable chemical diagram. The coordinate origin is at the lower left corner, the x axis is horizontal and the y axis is vertical. The coordinates must lie in the range 0.0 to 1.0. These coordinates can be obtained from projections of a suitable uncluttered view of the molecular structure. This data item is a pointer to attribute symbol in category atom_type in the ATOM_TYPE category. The chemical sequence number to be associated with this atom. Within an ATOM_SITE list, this number must match one of the attribute chemical_conn_number in category atom_site values. Data items in the CHEMICAL_CONN_BOND category would not, in general, be used in a macromolecular CIF. See instead the ENTITY data items. Data items in the CHEMICAL_CONN_ATOM and CHEMICAL_CONN_BOND categories record details about the two-dimensional (2D) chemical structure of the molecular species. They allow a 2D chemical diagram to be reconstructed for use in a publication or in a database search for structural and substructural relationships. The CHEMICAL_CONN_BOND data items specify the connections between the atoms in the CHEMICAL_CONN_ATOM list and the nature of the chemical bond between these atoms. Example 1 - based on data set DPTD of Yamin, Suwandi, Fun, Sivakumar & bin Shawkataly [Acta Cryst. (1996), C52, 951-953]. <mmCIF:chemical_conn_bondCategory> <mmCIF:chemical_conn_bond atom_1="4" atom_2="1"> <mmCIF:type>doub</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="4" atom_2="3"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="4" atom_2="2"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="5" atom_2="3"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="6" atom_2="5"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="7" atom_2="6"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="8" atom_2="7"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="8" atom_2="3"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="10" atom_2="2"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="12" atom_2="9"> <mmCIF:type>doub</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="12" atom_2="11"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="12" atom_2="10"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="13" atom_2="11"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="14" atom_2="13"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="15" atom_2="14"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="16" atom_2="15"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="16" atom_2="11"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="17" atom_2="5"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="18" atom_2="5"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="19" atom_2="6"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="20" atom_2="6"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="21" atom_2="7"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="22" atom_2="7"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="23" atom_2="8"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="24" atom_2="8"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="25" atom_2="13"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="26" atom_2="13"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="27" atom_2="14"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="28" atom_2="14"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="29" atom_2="15"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="30" atom_2="15"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="31" atom_2="16"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> <mmCIF:chemical_conn_bond atom_1="32" atom_2="16"> <mmCIF:type>sing</mmCIF:type> </mmCIF:chemical_conn_bond> </mmCIF:chemical_conn_bondCategory> The chemical bond type associated with the connection between the two sites attribute atom_1 in category chemical_conn_bond and attribute atom_2 in category chemical_conn_bond. This data item is a pointer to attribute number in category chemical_conn_atom in the CHEMICAL_CONN_ATOM category. This data item is a pointer to attribute number in category chemical_conn_atom in the CHEMICAL_CONN_ATOM category. Data items in the CHEMICAL_FORMULA category would not, in general, be used in a macromolecular CIF. See instead the ENTITY data items. Data items in the CHEMICAL_FORMULA category specify the composition and chemical properties of the compound. The formula data items must agree with those that specify the density, unit-cell and Z values. The following rules apply to the construction of the data items _chemical_formula.analytical, _chemical_formula.structural and attribute sum in category chemical_formula. For the data item attribute moiety in category chemical_formula, the formula construction is broken up into residues or moieties, i.e. groups of atoms that form a molecular unit or molecular ion. The rules given below apply within each moiety but different requirements apply to the way that moieties are connected (see attribute moiety). in category chemical_formula (1) Only recognized element symbols may be used. (2) Each element symbol is followed by a 'count' number. A count of '1' may be omitted. (3) A space or parenthesis must separate each cluster of (element symbol + count). (4) Where a group of elements is enclosed in parentheses, the multiplier for the group must follow the closing parenthesis. That is, all element and group multipliers are assumed to be printed as subscripted numbers. (An exception to this rule exists for attribute moiety in category chemical_formula formulae where pre- and post-multipliers are permitted for molecular units.) (5) Unless the elements are ordered in a manner that corresponds to their chemical structure, as in attribute structural in category chemical_formula, the order of the elements within any group or moiety should be: C, then H, then the other elements in alphabetical order of their symbol. This is the 'Hill' system used by Chemical Abstracts. This ordering is used in _chemical_formula.moiety and _chemical_formula.sum. Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276-2277]. <mmCIF:chemical_formulaCategory> <mmCIF:chemical_formula entry_id="TOZ"> <mmCIF:moiety>C18 H25 N O3</mmCIF:moiety> <mmCIF:sum>C18 H25 N O3</mmCIF:sum> <mmCIF:weight>303.40</mmCIF:weight> </mmCIF:chemical_formula> </mmCIF:chemical_formulaCategory> Formula determined by standard chemical analysis including trace elements. See the CHEMICAL_FORMULA category description for rules for writing chemical formulae. Parentheses are used only for standard uncertainties (estimated standard deviations). Fe2.45(2) Ni1.60(3) S4 Formula expressed in conformance with IUPAC rules for inorganic and metal-organic compounds where these conflict with the rules for any other CHEMICAL_FORMULA entries. Typically used for formatting a formula in accordance with journal rules. This should appear in the data block in addition to the most appropriate of the other CHEMICAL_FORMULA data names. Ref: IUPAC (1990). Nomenclature of Inorganic Chemistry. Oxford: Blackwell Scientific Publications. [Co Re (C12 H22 P)2 (C O)6].0.5C H3 O H Formula with each discrete bonded residue or ion shown as a separate moiety. See the CHEMICAL_FORMULA category description for rules for writing chemical formulae. In addition to the general formulae requirements, the following rules apply: (1) Moieties are separated by commas ','. (2) The order of elements within a moiety follows general rule (5) in the CHEMICAL_FORMULA category description. (3) Parentheses are not used within moieties but may surround a moiety. Parentheses may not be nested. (4) Charges should be placed at the end of the moiety. The charge '+' or '-' may be preceded by a numerical multiplier and should be separated from the last (element symbol + count) by a space. Pre- or post-multipliers may be used for individual moieties. C7 H4 Cl Hg N O3 S C12 H17 N4 O S 1+, C6 H2 N3 O7 1- C12 H16 N2 O6, 5(H2 O1) (Cd 2+)3, (C6 N6 Cr 3-)2, 2(H2 O) See the CHEMICAL_FORMULA category description for the rules for writing chemical formulae for inorganics, organometallics, metal complexes etc., in which bonded groups are preserved as discrete entities within parentheses, with post-multipliers as required. The order of the elements should give as much information as possible about the chemical structure. Parentheses may be used and nested as required. This formula should correspond to the structure as actually reported, i.e. trace elements not included in atom-type and atom-site data should not be included in this formula (see also attribute analytical) in category chemical_formula. Ca ((Cl O3)2 O)2 (H2 O)6 (Pt (N H3)2 (C5 H7 N3 O)2) (Cl O4)2 See the CHEMICAL_FORMULA category description for the rules for writing chemical formulae in which all discrete bonded residues and ions are summed over the constituent elements, following the ordering given in general rule (5) in the CHEMICAL_FORMULA category description. Parentheses are not normally used. C18 H19 N7 O8 S Formula mass in daltons. This mass should correspond to the formulae given under attribute structural, in category chemical_formula _chemical_formula.moiety or _chemical_formula.sum and, together with the Z value and cell parameters, should yield the density given as attribute density_diffrn in category exptl_crystal. Formula mass in daltons measured by a non-diffraction experiment. This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the CITATION category record details about the literature cited as being relevant to the contents of the data block. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:citationCategory> <mmCIF:citation id="primary"> <mmCIF:book_id_ISBN xsi:nil="true" /> <mmCIF:book_publisher xsi:nil="true" /> <mmCIF:book_title xsi:nil="true" /> <mmCIF:coordinate_linkage>yes</mmCIF:coordinate_linkage> <mmCIF:country>US</mmCIF:country> <mmCIF:details> The publication that directly relates to this coordinate set.</mmCIF:details> <mmCIF:journal_abbrev>J. Biol. Chem.</mmCIF:journal_abbrev> <mmCIF:journal_id_ASTM>HBCHA3</mmCIF:journal_id_ASTM> <mmCIF:journal_id_CSD>071</mmCIF:journal_id_CSD> <mmCIF:journal_id_ISSN>0021-9258</mmCIF:journal_id_ISSN> <mmCIF:journal_issue xsi:nil="true" /> <mmCIF:journal_volume>265</mmCIF:journal_volume> <mmCIF:page_first>14209</mmCIF:page_first> <mmCIF:page_last>14219</mmCIF:page_last> <mmCIF:title> Crystallographic analysis of a complex between human immunodeficiency virus type 1 protease and acetyl-pepstatin at 2.0-Angstroms resolution.</mmCIF:title> <mmCIF:year>1990</mmCIF:year> </mmCIF:citation> <mmCIF:citation id="2"> <mmCIF:book_id_ISBN xsi:nil="true" /> <mmCIF:book_publisher xsi:nil="true" /> <mmCIF:book_title xsi:nil="true" /> <mmCIF:coordinate_linkage>no</mmCIF:coordinate_linkage> <mmCIF:country>UK</mmCIF:country> <mmCIF:details> Determination of the structure of the unliganded enzyme.</mmCIF:details> <mmCIF:journal_abbrev>Nature</mmCIF:journal_abbrev> <mmCIF:journal_id_ASTM>NATUAS</mmCIF:journal_id_ASTM> <mmCIF:journal_id_CSD>006</mmCIF:journal_id_CSD> <mmCIF:journal_id_ISSN>0028-0836</mmCIF:journal_id_ISSN> <mmCIF:journal_issue xsi:nil="true" /> <mmCIF:journal_volume>337</mmCIF:journal_volume> <mmCIF:page_first>615</mmCIF:page_first> <mmCIF:page_last>619</mmCIF:page_last> <mmCIF:title> Three-dimensional structure of aspartyl-protease from human immunodeficiency virus HIV-1.</mmCIF:title> <mmCIF:year>1989</mmCIF:year> </mmCIF:citation> <mmCIF:citation id="3"> <mmCIF:book_id_ISBN xsi:nil="true" /> <mmCIF:book_publisher xsi:nil="true" /> <mmCIF:book_title xsi:nil="true" /> <mmCIF:coordinate_linkage>no</mmCIF:coordinate_linkage> <mmCIF:country>US</mmCIF:country> <mmCIF:details> Crystallization of the unliganded enzyme.</mmCIF:details> <mmCIF:journal_abbrev>J. Biol. Chem.</mmCIF:journal_abbrev> <mmCIF:journal_id_ASTM>HBCHA3</mmCIF:journal_id_ASTM> <mmCIF:journal_id_CSD>071</mmCIF:journal_id_CSD> <mmCIF:journal_id_ISSN>0021-9258</mmCIF:journal_id_ISSN> <mmCIF:journal_issue xsi:nil="true" /> <mmCIF:journal_volume>264</mmCIF:journal_volume> <mmCIF:page_first>1919</mmCIF:page_first> <mmCIF:page_last>1921</mmCIF:page_last> <mmCIF:title> Crystallization of the aspartylprotease from human immunodeficiency virus, HIV-1.</mmCIF:title> <mmCIF:year>1989</mmCIF:year> </mmCIF:citation> <mmCIF:citation id="4"> <mmCIF:book_id_ISBN xsi:nil="true" /> <mmCIF:book_publisher xsi:nil="true" /> <mmCIF:book_title xsi:nil="true" /> <mmCIF:coordinate_linkage>no</mmCIF:coordinate_linkage> <mmCIF:country>US</mmCIF:country> <mmCIF:details> Expression and purification of the enzyme.</mmCIF:details> <mmCIF:journal_abbrev>J. Biol. Chem.</mmCIF:journal_abbrev> <mmCIF:journal_id_ASTM>HBCHA3</mmCIF:journal_id_ASTM> <mmCIF:journal_id_CSD>071</mmCIF:journal_id_CSD> <mmCIF:journal_id_ISSN>0021-9258</mmCIF:journal_id_ISSN> <mmCIF:journal_issue xsi:nil="true" /> <mmCIF:journal_volume>264</mmCIF:journal_volume> <mmCIF:page_first>2307</mmCIF:page_first> <mmCIF:page_last>2312</mmCIF:page_last> <mmCIF:title> Human immunodeficiency virus protease. Bacterial expression and characterization of the purified aspartic protease.</mmCIF:title> <mmCIF:year>1989</mmCIF:year> </mmCIF:citation> </mmCIF:citationCategory> Abstract for the citation. This is used most when the citation is extracted from a bibliographic database that contains full text or abstract information. The Chemical Abstracts Service (CAS) abstract identifier; relevant for journal articles. The International Standard Book Number (ISBN) code assigned to the book cited; relevant for books or book chapters. The name of the publisher of the citation; relevant for books or book chapters. John Wiley and Sons The location of the publisher of the citation; relevant for books or book chapters. London The title of the book in which the citation appeared; relevant for books or book chapters. attribute coordinate_linkage in category citation states whether this citation is concerned with precisely the set of coordinates given in the data block. If, for instance, the publication described the same structure, but the coordinates had undergone further refinement prior to the creation of the data block, the value of this data item would be 'no'. The country of publication; relevant for books and book chapters. Identifier ('refcode') of the database record in the Cambridge Structural Database that contains details of the cited structure. LEKKUH Accession number used by Medline to categorize a specific bibliographic entry. 89064067 A description of special aspects of the relationship of the contents of the data block to the literature item cited. citation relates to this precise coordinate set citation relates to earlier low-resolution structure citation relates to further refinement of structure reported in citation 2 Abbreviated name of the cited journal as given in the Chemical Abstracts Service Source Index. J. Mol. Biol. Full name of the cited journal; relevant for journal articles. Journal of Molecular Biology The American Society for Testing and Materials (ASTM) code assigned to the journal cited (also referred to as the CODEN designator of the Chemical Abstracts Service); relevant for journal articles. The Cambridge Structural Database (CSD) code assigned to the journal cited; relevant for journal articles. This is also the system used at the Protein Data Bank (PDB). 0070 The International Standard Serial Number (ISSN) code assigned to the journal cited; relevant for journal articles. Issue number of the journal cited; relevant for journal articles. 2 Volume number of the journal cited; relevant for journal articles. 174 Language in which the cited article is written. German The first page of the citation; relevant for journal articles, books and book chapters. The last page of the citation; relevant for journal articles, books and book chapters. The title of the citation; relevant for journal articles, books and book chapters. Structure of diferric duck ovotransferrin at 2.35 \%A resolution. The year of the citation; relevant for journal articles, books and book chapters. 1984 The value of attribute id in category citation must uniquely identify a record in the CITATION list. The attribute id in category citation 'primary' should be used to indicate the citation that the author(s) consider to be the most pertinent to the contents of the data block. Note that this item need not be a number; it can be any unique identifier. primary 1 2 Data items in the CITATION_AUTHOR category record details about the authors associated with the citations in the CITATION list. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:citation_authorCategory> <mmCIF:citation_author citation_id="primary" name="Fitzgerald, P.M.D."> <mmCIF:ordinal>1</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="primary" name="McKeever, B.M."> <mmCIF:ordinal>2</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="primary" name="Van Middlesworth, J.F."> <mmCIF:ordinal>3</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="primary" name="Springer, J.P."> <mmCIF:ordinal>4</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="primary" name="Heimbach, J.C."> <mmCIF:ordinal>5</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="primary" name="Leu, C.-T."> <mmCIF:ordinal>6</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="primary" name="Herber, W.K."> <mmCIF:ordinal>7</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="primary" name="Dixon, R.A.F."> <mmCIF:ordinal>8</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="primary" name="Darke, P.L."> <mmCIF:ordinal>9</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="2" name="Navia, M.A."> <mmCIF:ordinal>1</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="2" name="Fitzgerald, P.M.D."> <mmCIF:ordinal>2</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="2" name="McKeever, B.M."> <mmCIF:ordinal>3</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="2" name="Leu, C.-T."> <mmCIF:ordinal>4</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="2" name="Heimbach, J.C."> <mmCIF:ordinal>5</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="2" name="Herber, W.K."> <mmCIF:ordinal>6</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="2" name="Sigal, I.S."> <mmCIF:ordinal>7</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="2" name="Darke, P.L."> <mmCIF:ordinal>8</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="2" name="Springer, J.P."> <mmCIF:ordinal>9</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="3" name="McKeever, B.M."> <mmCIF:ordinal>1</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="3" name="Navia, M.A."> <mmCIF:ordinal>2</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="3" name="Fitzgerald, P.M.D."> <mmCIF:ordinal>3</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="3" name="Springer, J.P."> <mmCIF:ordinal>4</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="3" name="Leu, C.-T."> <mmCIF:ordinal>5</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="3" name="Heimbach, J.C."> <mmCIF:ordinal>6</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="3" name="Herber, W.K."> <mmCIF:ordinal>7</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="3" name="Sigal, I.S."> <mmCIF:ordinal>8</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="3" name="Darke, P.L."> <mmCIF:ordinal>9</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="4" name="Darke, P.L."> <mmCIF:ordinal>1</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="4" name="Leu, C.-T."> <mmCIF:ordinal>2</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="4" name="Davis, L.J."> <mmCIF:ordinal>3</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="4" name="Heimbach, J.C."> <mmCIF:ordinal>4</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="4" name="Diehl, R.E."> <mmCIF:ordinal>5</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="4" name="Hill, W.S."> <mmCIF:ordinal>6</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="4" name="Dixon, R.A.F."> <mmCIF:ordinal>7</mmCIF:ordinal> </mmCIF:citation_author> <mmCIF:citation_author citation_id="4" name="Sigal, I.S."> <mmCIF:ordinal>8</mmCIF:ordinal> </mmCIF:citation_author> </mmCIF:citation_authorCategory> This data item defines the order of the author's name in the list of authors of a citation. This data item is a pointer to attribute id in category citation in the CITATION category. Name of an author of the citation; relevant for journal articles, books and book chapters. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s). Bleary, Percival R. O'Neil, F.K. Van den Bossche, G. Yang, D.-L. Simonov, Yu.A Data items in the CITATION_EDITOR category record details about the editors associated with the books or book chapters cited in the CITATION list. Example 1 - hypothetical example. <mmCIF:citation_editorCategory> <mmCIF:citation_editor citation_id="5" name="McKeever, B.M."></mmCIF:citation_editor> <mmCIF:citation_editor citation_id="5" name="Navia, M.A."></mmCIF:citation_editor> <mmCIF:citation_editor citation_id="5" name="Fitzgerald, P.M.D."></mmCIF:citation_editor> <mmCIF:citation_editor citation_id="5" name="Springer, J.P."></mmCIF:citation_editor> </mmCIF:citation_editorCategory> This data item defines the order of the editor's name in the list of editors of a citation. This data item is a pointer to attribute id in category citation in the CITATION category. Names of an editor of the citation; relevant for books and book chapters. The family name(s), followed by a comma and including any dynastic components, precedes the first name(s) or initial(s). Bleary, Percival R. O'Neil, F.K. Van den Bossche, G. Yang, D.-L. Simonov, Yu.A Data items in the COMPUTING category record details about the computer programs used in the crystal structure analysis. Data items in this category would not, in general, be used in a macromolecular CIF. The category SOFTWARE, which allows a more detailed description of computer programs and their attributes to be given, would be used instead. Example 1 - Rodr\'iguez-Romera, Ruiz-P\'erez & Solans [Acta Cryst. (1996), C52, 1415-1417]. Software used for cell refinement. Give the program or package name and a brief reference. CAD4 (Enraf-Nonius, 1989) Software used for data collection. Give the program or package name and a brief reference. CAD4 (Enraf-Nonius, 1989) Software used for data reduction. Give the program or package name and a brief reference. DIFDAT, SORTRF, ADDREF (Hall & Stewart, 1990) Software used for molecular graphics. Give the program or package name and a brief reference. FRODO (Jones, 1986), ORTEP (Johnson, 1965) Software used for generating material for publication. Give the program or package name and a brief reference. Software used for refinement of the structure. Give the program or package name and a brief reference. SHELX85 (Sheldrick, 1985) X-PLOR (Brunger, 1992) Software used for solution of the structure. Give the program or package name and a brief reference. SHELX85 (Sheldrick, 1985) This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the DATABASE category have been superseded by data items in the DATABASE_2 category. They are included here only for compliance with older CIFs. A history of changes made by the Cambridge Crystallographic Data Centre and incorporated into the Cambridge Structural Database (CSD). The code assigned by Chemical Abstracts. The code assigned by the Cambridge Structural Database. The code assigned by the Inorganic Crystal Structure Database. The code assigned by the Metals Data File. The code assigned by the NBS (NIST) Crystal Data Database. The code assigned by the Protein Data Bank. The code assigned by the Powder Diffraction File (JCPDS/ICDD). Deposition numbers assigned by the Cambridge Crystallographic Data Centre (CCDC) to files containing structural information archived by the CCDC. Deposition numbers assigned by the Fachinformationszentrum Karlsruhe (FIZ) to files containing structural information archived by the Cambridge Crystallographic Data Centre (CCDC). Deposition numbers assigned by various journals to files containing structural information archived by the Cambridge Crystallographic Data Centre (CCDC). The ASTM CODEN designator for a journal as given in the Chemical Source List maintained by the Chemical Abstracts Service. The journal code used in the Cambridge Structural Database. This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the DATABASE_2 category record details about the database identifiers of the data block. These data items are assigned by database managers and should only appear in a data block if they originate from that source. The name of this category, DATABASE_2, arose because the category name DATABASE was already in use in the core CIF dictionary, but was used differently from the way it needed to be used in the mmCIF dictionary. Since CIF data names cannot be changed once they have been adopted, a new category had to be created. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:database_2Category> <mmCIF:database_2 database_code="5HVP" database_id="PDB"></mmCIF:database_2> </mmCIF:database_2Category> The code assigned by the database identified in attribute database_id in category database_2. 1ABC ABCDEF An abbreviation that identifies the database. Data items in the DATABASE_PDB_CAVEAT category record details about features of the data block flagged as 'caveats' by the Protein Data Bank (PDB). These data items are included only for consistency with PDB format files. They should appear in a data block only if that data block was created by reformatting a PDB format file. Example 1 - hypothetical example. <mmCIF:database_PDB_caveatCategory> <mmCIF:database_PDB_caveat id="1"> <mmCIF:text> THE CRYSTAL TRANSFORMATION IS IN ERROR BUT IS</mmCIF:text> </mmCIF:database_PDB_caveat> <mmCIF:database_PDB_caveat id="2"> <mmCIF:text> UNCORRECTABLE AT THIS TIME</mmCIF:text> </mmCIF:database_PDB_caveat> </mmCIF:database_PDB_caveatCategory> The full text of the PDB caveat record. A unique identifier for the PDB caveat record. The DATABASE_PDB_MATRIX category provides placeholders for transformation matrices and vectors used by the Protein Data Bank (PDB). These data items are included only for consistency with older PDB format files. They should appear in a data block only if that data block was created by reformatting a PDB format file. The [1][1] element of the PDB ORIGX matrix. The [1][2] element of the PDB ORIGX matrix. The [1][3] element of the PDB ORIGX matrix. The [2][1] element of the PDB ORIGX matrix. The [2][2] element of the PDB ORIGX matrix. The [2][3] element of the PDB ORIGX matrix. The [3][1] element of the PDB ORIGX matrix. The [3][2] element of the PDB ORIGX matrix. The [3][3] element of the PDB ORIGX matrix. The [1] element of the PDB ORIGX vector. The [2] element of the PDB ORIGX vector. The [3] element of the PDB ORIGX vector. The [1][1] element of the PDB SCALE matrix. The [1][2] element of the PDB SCALE matrix. The [1][3] element of the PDB SCALE matrix. The [2][1] element of the PDB SCALE matrix. The [2][2] element of the PDB SCALE matrix. The [2][3] element of the PDB SCALE matrix. The [3][1] element of the PDB SCALE matrix. The [3][2] element of the PDB SCALE matrix. The [3][3] element of the PDB SCALE matrix. The [1] element of the PDB SCALE vector. The [2] element of the PDB SCALE vector. The [3] element of the PDB SCALE vector. This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the DATABASE_PDB_REMARK category record details about the data block as archived by the Protein Data Bank (PDB). Some data appearing in PDB REMARK records can be algorithmically extracted into the appropriate data items in the data block. These data items are included only for consistency with older PDB format files. They should appear in a data block only if that data block was created by reformatting a PDB format file. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:database_PDB_remarkCategory> <mmCIF:database_PDB_remark id="3"> <mmCIF:text> REFINEMENT. BY THE RESTRAINED LEAST-SQUARES PROCEDURE OF J. KONNERT AND W. HENDRICKSON (PROGRAM *PROLSQ*). THE R VALUE IS 0.176 FOR 12901 REFLECTIONS IN THE RESOLUTION RANGE 8.0 TO 2.0 ANGSTROMS WITH I .GT. SIGMA(I). RMS DEVIATIONS FROM IDEAL VALUES (THE VALUES OF SIGMA, IN PARENTHESES, ARE THE INPUT ESTIMATED STANDARD DEVIATIONS THAT DETERMINE THE RELATIVE WEIGHTS OF THE CORRESPONDING RESTRAINTS) DISTANCE RESTRAINTS (ANGSTROMS) BOND DISTANCE 0.018(0.020) ANGLE DISTANCE 0.038(0.030) PLANAR 1-4 DISTANCE 0.043(0.040) PLANE RESTRAINT (ANGSTROMS) 0.015(0.020) CHIRAL-CENTER RESTRAINT (ANGSTROMS**3) 0.177(0.150) NON-BONDED CONTACT RESTRAINTS (ANGSTROMS) SINGLE TORSION CONTACT 0.216(0.500) MULTIPLE TORSION CONTACT 0.207(0.500) POSSIBLE HYDROGEN BOND 0.245(0.500) CONFORMATIONAL TORSION ANGLE RESTRAINT (DEGREES) PLANAR (OMEGA) 2.6(3.0) STAGGERED 17.4(15.0) ORTHONORMAL 18.1(20.0)</mmCIF:text> </mmCIF:database_PDB_remark> <mmCIF:database_PDB_remark id="4"> <mmCIF:text> THE TWO CHAINS OF THE DIMERIC ENZYME HAS BEEN ASSIGNED THE THE CHAIN INDICATORS *A* AND *B*.</mmCIF:text> </mmCIF:database_PDB_remark> </mmCIF:database_PDB_remarkCategory> The full text of the PDB remark record. A unique identifier for the PDB remark record. Data items in the DATABASE_PDB_REV category record details about the history of the data block as archived by the Protein Data Bank (PDB). These data items are assigned by the PDB database managers and should only appear in a data block if they originate from that source. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:database_PDB_revCategory> <mmCIF:database_PDB_rev num="1"> <mmCIF:author_name>Fitzgerald, Paula M.D</mmCIF:author_name> <mmCIF:date>1991-10-15</mmCIF:date> <mmCIF:date_original>1990-04-30</mmCIF:date_original> <mmCIF:mod_type>0</mmCIF:mod_type> <mmCIF:status>full release</mmCIF:status> </mmCIF:database_PDB_rev> </mmCIF:database_PDB_revCategory> The name of the person responsible for submitting this revision to the PDB. The family name(s) followed by a comma precedes the first name(s) or initial(s). Bleary, Percival R. O'Neil, F.K. Van den Bossche, G. Yang, D.-L. Simonov, Yu.A Date the PDB revision took place. Taken from the REVDAT record. Date the entry first entered the PDB database in the form yyyy-mm-dd. Taken from the PDB HEADER record. 1980-08-21 Taken from the REVDAT record. Refer to the Protein Data Bank format description at http://www.rcsb.org/pdb/docs/format/pdbguide2.2/guide2.2_frame.html for details. The PDB code for a subsequent PDB entry that replaced the PDB file corresponding to this data block. The PDB code for a previous PDB entry that was replaced by the PDB file corresponding to this data block. The status of this revision. The value of attribute num in category database_PDB_rev must uniquely and sequentially identify a record in the DATABASE_PDB_REV list. Note that this item must be a number and that modification numbers are assigned in increasing numerical order. Data items in the DATABASE_PDB_REV_RECORD category record details about specific record types that were changed in a given revision of a PDB entry. These data items are assigned by the PDB database managers and should only appear in a data block if they originate from that source. Example 1 - hypothetical example. <mmCIF:database_PDB_rev_recordCategory> <mmCIF:database_PDB_rev_record rev_num="1" type="CONECT"> <mmCIF:details> Error fix - incorrect connection between atoms 2312 and 2317</mmCIF:details> </mmCIF:database_PDB_rev_record> <mmCIF:database_PDB_rev_record rev_num="2" type="MATRIX"> <mmCIF:details>For consistency with 1995-08-04 style-guide</mmCIF:details> </mmCIF:database_PDB_rev_record> <mmCIF:database_PDB_rev_record rev_num="3" type="ORIGX"> <mmCIF:details>Based on new data from author</mmCIF:details> </mmCIF:database_PDB_rev_record> </mmCIF:database_PDB_rev_recordCategory> A description of special aspects of the revision of records in this PDB entry. Based on new data from author For consistency with 1995-08-04 style-guide For consistency with structural class This data item is a pointer to attribute num in category database_PDB_rev in the DATABASE_PDB_REV category. The types of records that were changed in this revision to a PDB entry. CRYST1 SCALE MTRIX ATOM HETATM The DATABASE_PDB_TVECT category provides placeholders for the TVECT matrices and vectors used by the Protein Data Bank (PDB). These data items are included only for consistency with older PDB format files. They should appear in a data block only if the data block was created by reformatting a PDB format file. A description of special aspects of this TVECT. The [1] element of the PDB TVECT vector. The [2] element of the PDB TVECT vector. The [3] element of the PDB TVECT vector. The value of attribute id in category database_PDB_tvect must uniquely identify a record in the DATABASE_PDB_TVECT list. Note that this item need not be a number; it can be any unique identifier. Data items in the DIFFRN category record details about the diffraction data and their measurement. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:diffrnCategory> <mmCIF:diffrn id="Set1"> <mmCIF:ambient_environment> Mother liquor from the reservoir of the vapor diffusion experiment, mounted in room air</mmCIF:ambient_environment> <mmCIF:ambient_temp>293(3)</mmCIF:ambient_temp> <mmCIF:crystal_support> 0.7 mm glass capillary, sealed with dental wax</mmCIF:crystal_support> <mmCIF:crystal_treatment> Equilibrated in rotating anode radiation enclosure for 18 hours prior to beginning of data collection</mmCIF:crystal_treatment> </mmCIF:diffrn> </mmCIF:diffrnCategory> Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [(1991). Acta Cryst. C47, 2276-2277]. <mmCIF:diffrnCategory> <mmCIF:diffrn id="d1"> <mmCIF:ambient_temp>293</mmCIF:ambient_temp> <mmCIF:details> \q scan width (1.0 + 0.14tan\q)\&#37;, \q scan rate 1.2\&#37; per min. Background counts for 5 sec on each side every scan.</mmCIF:details> </mmCIF:diffrn> </mmCIF:diffrnCategory> The gas or liquid surrounding the sample, if not air. The mean hydrostatic pressure in kilopascals at which the intensities were measured. The estimated standard deviation of attribute ambient_pressure in category diffrn. The mean hydrostatic pressure in kilopascals above which the intensities were measured. attribute ambient_pressure_gt in category diffrn and attribute ambient_pressure_lt in category diffrn allow a pressure range to be given. attribute ambient_pressure in category diffrn should always be used in preference to these two items whenever possible. The mean hydrostatic pressure in kilopascals below which the intensities were measured. attribute ambient_pressure_gt in category diffrn and attribute ambient_pressure_lt in category diffrn allow a pressure range to be given. attribute ambient_pressure in category diffrn should always be used in preference to these two items whenever possible. The mean temperature in kelvins at which the intensities were measured. A description of special aspects of temperature control during data collection. The standard uncertainty (estimated standard deviation) of attribute ambient_temp in category diffrn. The mean temperature in kelvins above which the intensities were measured. _diffrn.ambient_temp_gt and _diffrn.ambient_temp_lt allow a range of temperatures to be given. attribute ambient_temp in category diffrn should always be used in preference to these two items whenever possible. The mean temperature in kelvins below which the intensities were measured. _diffrn.ambient_temp_gt and _diffrn.ambient_temp_lt allow a range of temperatures to be given. attribute ambient_temp in category diffrn should always be used in preference to these two items whenever possible. This data item is a pointer to attribute id in category exptl_crystal in the EXPTL_CRYSTAL category. The physical device used to support the crystal during data collection. glass capillary quartz capillary fiber metal loop Remarks about how the crystal was treated prior to intensity measurement. Particularly relevant when intensities were measured at low temperature. equilibrated in hutch for 24 hours flash frozen in liquid nitrogen slow cooled with direct air stream Special details of the diffraction measurement process. Should include information about source instability, crystal motion, degradation and so on. This data item uniquely identifies a set of diffraction data. Data items in the DIFFRN_ATTENUATOR category record details about the diffraction attenuator scales employed. Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. <mmCIF:diffrn_attenuatorCategory> <mmCIF:diffrn_attenuator code="1"> <mmCIF:scale>16.976</mmCIF:scale> </mmCIF:diffrn_attenuator> </mmCIF:diffrn_attenuatorCategory> Material from which the attenuator is made. The scale factor applied when an intensity measurement is reduced by an attenuator identified by attribute code. in category diffrn_attenuator The measured intensity must be multiplied by this scale to convert it to the same scale as unattenuated intensities. A code associated with a particular attenuator setting. This code is referenced by the attribute attenuator_code in category diffrn_refln which is stored with the diffraction data. See attribute scale in category diffrn_attenuator. Data items in the DIFFRN_DETECTOR category describe the detector used to measure the scattered radiation, including any analyser and post-sample collimation. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:diffrn_detectorCategory> <mmCIF:diffrn_detector diffrn_id="d1"> <mmCIF:detector>multiwire</mmCIF:detector> <mmCIF:type>Siemens</mmCIF:type> </mmCIF:diffrn_detector> </mmCIF:diffrn_detectorCategory> The resolution of an area detector, in pixels/mm. A description of special aspects of the radiation detector. The general class of the radiation detector. photographic film scintillation counter CCD plate BF~3~ counter The deadtime in microseconds of the detector used to measure the diffraction intensities. The make, model or name of the detector device used. This data item is a pointer to attribute id in category diffrn in the DIFFRN category. Data items in the DIFFRN_MEASUREMENT category record details about the device used to orient and/or position the crystal during data measurement and the manner in which the diffraction data were measured. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:diffrn_measurementCategory> <mmCIF:diffrn_measurement diffrn_id="d1"> <mmCIF:details> 440 frames, 0.20 degrees, 150 sec, detector distance 12 cm, detector angle 22.5 degrees</mmCIF:details> <mmCIF:device>3-circle camera</mmCIF:device> <mmCIF:device_details>none</mmCIF:device_details> <mmCIF:device_type>Supper model x</mmCIF:device_type> <mmCIF:method>omega scan</mmCIF:method> </mmCIF:diffrn_measurement> </mmCIF:diffrn_measurementCategory> Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. <mmCIF:diffrn_measurementCategory> <mmCIF:diffrn_measurement diffrn_id="s1"> <mmCIF:device_type>Philips PW1100/20 diffractometer</mmCIF:device_type> <mmCIF:method>\q/2\q</mmCIF:method> </mmCIF:diffrn_measurement> </mmCIF:diffrn_measurementCategory> A description of special aspects of the intensity measurement. 440 frames, 0.20 degrees, 150 sec, detector distance 12 cm, detector angle 22.5 degrees The general class of goniometer or device used to support and orient the specimen. 3-circle camera 4-circle camera kappa-geometry camera oscillation camera precession camera A description of special aspects of the device used to measure the diffraction intensities. commercial goniometer modified locally to allow for 90\% \t arc The make, model or name of the measurement device (goniometer) used. Supper model q Huber model r Enraf-Nonius model s homemade Method used to measure intensities. profile data from theta/2theta scans The physical device used to support the crystal during data collection. glass capillary quartz capillary fiber metal loop This data item is a pointer to attribute id in category diffrn in the DIFFRN category. Data items in the DIFFRN_ORIENT_MATRIX category record details about the orientation matrix used in the measurement of the diffraction data. Example 1 - based on CAD-4 diffractometer data obtained for Yb(S-C5H4N)2(THF)4. <mmCIF:diffrn_orient_matrixCategory> <mmCIF:diffrn_orient_matrix diffrn_id="set1"> <mmCIF:UB11>-0.071479</mmCIF:UB11> <mmCIF:UB12>0.020208</mmCIF:UB12> <mmCIF:UB13>0.039076</mmCIF:UB13> <mmCIF:UB21>0.035372</mmCIF:UB21> <mmCIF:UB22>0.056209</mmCIF:UB22> <mmCIF:UB23>0.078324</mmCIF:UB23> <mmCIF:UB31>-0.007470</mmCIF:UB31> <mmCIF:UB32>0.067854</mmCIF:UB32> <mmCIF:UB33>-0.017832</mmCIF:UB33> <mmCIF:type> reciprocal axis matrix, multiplies hkl vector to generate diffractometer xyz vector and diffractometer angles</mmCIF:type> </mmCIF:diffrn_orient_matrix> </mmCIF:diffrn_orient_matrixCategory> The [1][1] element of the 3x3 matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also attribute type in category diffrn_orient_matrix. The [1][2] element of the 3x3 matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also attribute type in category diffrn_orient_matrix. The [1][3] element of the 3x3 matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also attribute type in category diffrn_orient_matrix. The [2][1] element of the 3x3 matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also attribute type in category diffrn_orient_matrix. The [2][2] element of the 3x3 matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also attribute type in category diffrn_orient_matrix. The [2][3] element of the 3x3 matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also attribute type in category diffrn_orient_matrix. The [3][1] element of the 3x3 matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also attribute type in category diffrn_orient_matrix. The [3][2] element of the 3x3 matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also attribute type in category diffrn_orient_matrix. The [3][3] element of the 3x3 matrix that defines the dimensions of the reciprocal cell and its orientation with respect to the local diffractometer axes. See also attribute type in category diffrn_orient_matrix. A description of the orientation matrix type and how it should be applied to define the orientation of the crystal precisely with respect to the diffractometer axes. This data item is a pointer to attribute id in category diffrn in the DIFFRN category. Data items in the DIFFRN_ORIENT_REFLN category record details about the reflections that define the orientation matrix used in the measurement of the diffraction intensities. Example 1 - based on CAD-4 diffractometer data obtained for Yb(S-C5H4N)2(THF)4. <mmCIF:diffrn_orient_reflnCategory> <mmCIF:diffrn_orient_refln diffrn_id="myset1" index_h="2" index_k="0" index_l="2"> <mmCIF:angle_chi>-28.45</mmCIF:angle_chi> <mmCIF:angle_kappa>-11.32</mmCIF:angle_kappa> <mmCIF:angle_omega>5.33</mmCIF:angle_omega> <mmCIF:angle_phi>101.78</mmCIF:angle_phi> <mmCIF:angle_psi>0.00</mmCIF:angle_psi> <mmCIF:angle_theta>10.66</mmCIF:angle_theta> </mmCIF:diffrn_orient_refln> </mmCIF:diffrn_orient_reflnCategory> Diffractometer angle chi of a reflection used to define the orientation matrix in degrees. See attribute UB[][] in category diffrn_orient_matrix and the Miller indices in the DIFFRN_ORIENT_REFLN category. Diffractometer angle kappa of a reflection used to define the orientation matrix in degrees. See attribute UB[][] in category diffrn_orient_matrix and the Miller indices in the DIFFRN_ORIENT_REFLN category. Diffractometer angle omega of a reflection used to define the orientation matrix in degrees. See attribute UB[][] in category diffrn_orient_matrix and the Miller indices in the DIFFRN_ORIENT_REFLN category. Diffractometer angle phi of a reflection used to define the orientation matrix in degrees. See attribute UB[][] in category diffrn_orient_matrix and the Miller indices in the DIFFRN_ORIENT_REFLN category. Diffractometer angle psi of a reflection used to define the orientation matrix in degrees. See attribute UB[][] in category diffrn_orient_matrix and the Miller indices in the DIFFRN_ORIENT_REFLN category. Diffractometer angle theta of a reflection used to define the orientation matrix in degrees. See attribute UB[][] in category diffrn_orient_matrix and the Miller indices in the DIFFRN_ORIENT_REFLN category. This data item is a pointer to attribute id in category diffrn in the DIFFRN category. Miller index h of a reflection used to define the orientation matrix. Miller index k of a reflection used to define the orientation matrix. Miller index l of a reflection used to define the orientation matrix. Data items in the DIFFRN_RADIATION category describe the radiation used in measuring the diffraction intensities, its collimation and monochromatization before the sample. Post-sample treatment of the beam is described by data items in the DIFFRN_DETECTOR category. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:diffrn_radiationCategory> <mmCIF:diffrn_radiation diffrn_id="set1"> <mmCIF:collimation>0.3 mm double pinhole</mmCIF:collimation> <mmCIF:monochromator>graphite</mmCIF:monochromator> <mmCIF:type>Cu K\a</mmCIF:type> <mmCIF:wavelength_id>1</mmCIF:wavelength_id> </mmCIF:diffrn_radiation> </mmCIF:diffrn_radiationCategory> Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. The collimation or focusing applied to the radiation. 0.3 mm double-pinhole 0.5 mm focusing mirrors Absorption edge in angstroms of the radiation filter used. Half-width in millimetres of the incident beam in the direction perpendicular to the diffraction plane. The method used to obtain monochromatic radiation. If a mono- chromator crystal is used, the material and the indices of the Bragg reflection are specified. Zr filter Ge 220 none equatorial mounted graphite The angle in degrees, as viewed from the specimen, between the perpendicular component of the polarization and the diffraction plane. See attribute polarisn_ratio in category diffrn_radiation. Polarization ratio of the diffraction beam incident on the crystal. This is the ratio of the perpendicularly polarized to the parallel-polarized component of the radiation. The perpendicular component forms an angle of attribute polarisn_norm in category diffrn_radiation to the normal to the diffraction plane of the sample (i.e. the plane containing the incident and reflected beams). The nature of the radiation used (i.e. the name of the subatomic particle or the region of the electromagnetic spectrum). It is strongly recommended that this information is given, so that the probe radiation can be simply determined. The nature of the radiation. This is typically a description of the X-ray wavelength in Siegbahn notation. CuK\a Cu K\a~1~ Cu K-L~2,3~ white-beam This data item is a pointer to attribute id in category diffrn_radiation_wavelength in the DIFFRN_RADIATION_WAVELENGTH category. The IUPAC symbol for the X-ray wavelength for the probe radiation. This data item is a pointer to attribute id in category diffrn in the DIFFRN category. Data items in the DIFFRN_RADIATION_WAVELENGTH category describe the wavelength of the radiation used to measure the diffraction intensities. Items may be looped to identify and assign weights to distinct components of a polychromatic beam. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:diffrn_radiation_wavelengthCategory> <mmCIF:diffrn_radiation_wavelength id="1"> <mmCIF:wavelength>1.54</mmCIF:wavelength> <mmCIF:wt>1.0</mmCIF:wt> </mmCIF:diffrn_radiation_wavelength> </mmCIF:diffrn_radiation_wavelengthCategory> The radiation wavelength in angstroms. The relative weight of a wavelength identified by the code attribute id in category diffrn_radiation_wavelength in the list of wavelengths. The code identifying each value of attribute wavelength. in category diffrn_radiation_wavelength Items in the DIFFRN_RADIATION_WAVELENGTH category are looped when multiple wavelengths are used. This code is used to link with the DIFFRN_REFLN category. The attribute wavelength_id in category diffrn_refln codes must match one of the codes defined in this category. x1 x2 neut Data items in the DIFFRN_REFLN category record details about the intensities in the diffraction data set identified by attribute diffrn_id. in category diffrn_refln The DIFFRN_REFLN data items refer to individual intensity measurements and must be included in looped lists. The DIFFRN_REFLNS data items specify the parameters that apply to all intensity measurements in the particular diffraction data set identified by attribute diffrn_id in category diffrn_reflns. Example 1 - based on CAD-4 diffractometer data obtained for Yb(S-C5H4N)2(THF)4 for data set 'set1' reflection 1102. <mmCIF:diffrn_reflnCategory> <mmCIF:diffrn_refln diffrn_id="set1" id="1102"> <mmCIF:angle_chi>32.21</mmCIF:angle_chi> <mmCIF:angle_kappa>20.12</mmCIF:angle_kappa> <mmCIF:angle_omega>11.54</mmCIF:angle_omega> <mmCIF:angle_phi>176.02</mmCIF:angle_phi> <mmCIF:angle_psi>0.00</mmCIF:angle_psi> <mmCIF:angle_theta>23.08</mmCIF:angle_theta> <mmCIF:attenuator_code>Ni.005</mmCIF:attenuator_code> <mmCIF:counts_bg_1>22</mmCIF:counts_bg_1> <mmCIF:counts_bg_2>25</mmCIF:counts_bg_2> <mmCIF:counts_net>3450</mmCIF:counts_net> <mmCIF:counts_peak>321</mmCIF:counts_peak> <mmCIF:counts_total>3499</mmCIF:counts_total> <mmCIF:detect_slit_horiz>0.04</mmCIF:detect_slit_horiz> <mmCIF:detect_slit_vert>0.02</mmCIF:detect_slit_vert> <mmCIF:elapsed_time>1.00</mmCIF:elapsed_time> <mmCIF:index_h>4</mmCIF:index_h> <mmCIF:index_k>0</mmCIF:index_k> <mmCIF:index_l>2</mmCIF:index_l> <mmCIF:intensity_net>202.56</mmCIF:intensity_net> <mmCIF:intensity_sigma>2.18</mmCIF:intensity_sigma> <mmCIF:scale_group_code>A24</mmCIF:scale_group_code> <mmCIF:scan_mode>om</mmCIF:scan_mode> <mmCIF:scan_mode_backgd>mo</mmCIF:scan_mode_backgd> <mmCIF:scan_rate>1.2</mmCIF:scan_rate> <mmCIF:scan_time_backgd>900.00</mmCIF:scan_time_backgd> <mmCIF:scan_width>1.0</mmCIF:scan_width> <mmCIF:sint_over_lambda>0.25426</mmCIF:sint_over_lambda> <mmCIF:standard_code>1</mmCIF:standard_code> <mmCIF:wavelength>1.54184</mmCIF:wavelength> <mmCIF:wavelength_id>Cu1fixed</mmCIF:wavelength_id> </mmCIF:diffrn_refln> </mmCIF:diffrn_reflnCategory> The diffractometer angle chi of a reflection in degrees. This angle corresponds to the specified orientation matrix and the original measured cell before any subsequent cell transformations. The diffractometer angle kappa of a reflection in degrees. This angle corresponds to the specified orientation matrix and the original measured cell before any subsequent cell transformations. The diffractometer angle omega of a reflection in degrees. This angle corresponds to the specified orientation matrix and the original measured cell before any subsequent cell transformations. The diffractometer angle phi of a reflection in degrees. This angle corresponds to the specified orientation matrix and the original measured cell before any subsequent cell transformations. The diffractometer angle psi of a reflection in degrees. This angle corresponds to the specified orientation matrix and the original measured cell before any subsequent cell transformations. The diffractometer angle theta of a reflection in degrees. This angle corresponds to the specified orientation matrix and the original measured cell before any subsequent cell transformations. The code identifying the attenuator setting for this reflection. This code must match one of the attribute code in category diffrn_attenuator values. The code identifying the class to which this reflection has been assigned. This code must match a value of attribute code in category diffrn_reflns_class. Reflections may be grouped into classes for a variety of purposes. For example, for modulated structures each reflection class may be defined by the number m=sum|m~i~|, where the m~i~ are the integer coefficients that, in addition to h,k,l, index the corresponding diffraction vector in the basis defined for the reciprocal lattice. The diffractometer counts for the measurement of the background before the peak. The diffractometer counts for the measurement of the background after the peak. The diffractometer counts for the measurement of net counts after background removal. The diffractometer counts for the measurement of counts for the peak scan or position. The diffractometer counts for the measurement of total counts (background plus peak). Total slit aperture in degrees in the diffraction plane. Total slit aperture in degrees perpendicular to the diffraction plane. Elapsed time in minutes from the start of the diffraction experiment to the measurement of this intensity. Miller index h of a reflection. The values of the Miller indices in the DIFFRN_REFLN category need not match the values of the Miller indices in the REFLN category if a transformation of the original measured cell has taken place. Details of the cell transformation are given in attribute reduction_process in category diffrn_reflns. See also attribute transf_matrix[][] in category diffrn_reflns. Miller index k of a reflection. The values of the Miller indices in the DIFFRN_REFLN category need not match the values of the Miller indices in the REFLN category if a transformation of the original measured cell has taken place. Details of the cell transformation are given in attribute reduction_process in category diffrn_reflns. See also attribute transf_matrix[][] in category diffrn_reflns. Miller index l of a reflection. The values of the Miller indices in the DIFFRN_REFLN category need not match the values of the Miller indices in the REFLN category if a transformation of the original measured cell has taken place. Details of the cell transformation are given in attribute reduction_process in category diffrn_reflns. See also attribute transf_matrix[][] in category diffrn_reflns. Net intensity calculated from the diffraction counts after the attenuator and standard scales have been applied. Standard uncertainty (estimated standard deviation) of the intensity calculated from the diffraction counts after the attenuator and standard scales have been applied. Standard uncertainty of the net intensity calculated from the diffraction counts after the attenuator and standard scales have been applied. The code identifying the scale applying to this reflection. This data item is a pointer to attribute code in category diffrn_scale_group in the DIFFRN_SCALE_GROUP category. The code identifying the mode of scanning for measurements using a diffractometer. See _diffrn_refln.scan_width and _diffrn_refln.scan_mode_backgd. The code identifying the mode of scanning a reflection to measure the background intensity. The rate of scanning a reflection in degrees per minute to measure the intensity. The time spent measuring each background in seconds. The scan width in degrees of the scan mode defined by the code attribute scan_mode in category diffrn_refln. The (sin theta)/lambda value in reciprocal angstroms for this reflection. The code identifying that this reflection was measured as a standard intensity. This data item is a pointer to attribute code in category diffrn_standard_refln in the DIFFRN_STANDARD_REFLN category. The mean wavelength in angstroms of the radiation used to measure the intensity of this reflection. This is an important parameter for data collected using energy-dispersive detectors or the Laue method. This data item is a pointer to attribute wavelength_id in category diffrn_radiation in the DIFFRN_RADIATION category. This data item is a pointer to attribute id in category diffrn in the DIFFRN category. The value of attribute id in category diffrn_refln must uniquely identify the reflection in the data set identified by the item attribute diffrn_id. in category diffrn_refln Note that this item need not be a number; it can be any unique identifier. Data items in the DIFFRN_REFLNS category record details about the set of intensities measured in the diffraction experiment. The DIFFRN_REFLN data items refer to individual intensity measurements and must be included in looped lists. The DIFFRN_REFLNS data items specify the parameters that apply to all intensity measurements in a diffraction data set. The residual [sum|avdel(I)| / sum|av(I)|] for symmetry-equivalent reflections used to calculate the average intensity av(I). The avdel(I) term is the average absolute difference between av(I) and the individual symmetry-equivalent intensities. Measure [sum|sigma(I)|/sum|net(I)|] for all measured reflections. Measure [sum u(net I)|/sum|net I|] for all measured reflections. The maximum value of the Miller index h for the reflection data specified by attribute index_h in category diffrn_refln. The minimum value of the Miller index h for the reflection data specified by attribute index_h in category diffrn_refln. The maximum value of the Miller index k for the reflection data specified by attribute index_k in category diffrn_refln. The minimum value of the Miller index k for the reflection data specified by attribute index_k in category diffrn_refln. The maximum value of the Miller index l for the reflection data specified by attribute index_l in category diffrn_refln. The minimum value of the Miller index l for the reflection data specified by attribute index_l in category diffrn_refln. The total number of measured intensities, excluding reflections that are classified as systematically absent. A description of the process used to reduce the intensity data into structure-factor magnitudes. data averaged using Fisher test Maximum theta angle in degrees for the measured diffraction intensities. Minimum theta angle in degrees for the measured diffraction intensities. The [1][1] element of the 3x3 matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category. The [1][2] element of the 3x3 matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category. The [1][3] element of the 3x3 matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category. The [2][1] element of the 3x3 matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category. The [2][2] element of the 3x3 matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category. The [2][3] element of the 3x3 matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category. The [3][1] element of the 3x3 matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category. The [3][2] element of the 3x3 matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category. The [3][3] element of the 3x3 matrix used to transform Miller indices in the DIFFRN_REFLN category into the Miller indices in the REFLN category. This data item is a pointer to attribute id in category diffrn in the DIFFRN category. Data items in the DIFFRN_REFLNS_CLASS category record details about the classes of reflections measured in the diffraction experiment. Example 1 - example corresponding to the one-dimensional incommensurately modulated structure of K~2~SeO~4~. Each reflection class is defined by the number m=sum|m~i~|, where the m~i~ are the integer coefficients that, in addition to h,k,l, index the corresponding diffraction vector in the basis defined for the reciprocal lattice. <mmCIF:diffrn_reflns_classCategory> <mmCIF:diffrn_reflns_class code="Main"> <mmCIF:av_R_eq>0.015</mmCIF:av_R_eq> <mmCIF:d_res_high>0.551</mmCIF:d_res_high> <mmCIF:d_res_low>6.136</mmCIF:d_res_low> <mmCIF:description>m=0; main reflections</mmCIF:description> <mmCIF:number>1580</mmCIF:number> </mmCIF:diffrn_reflns_class> <mmCIF:diffrn_reflns_class code="Sat1"> <mmCIF:av_R_eq>0.010</mmCIF:av_R_eq> <mmCIF:d_res_high>0.551</mmCIF:d_res_high> <mmCIF:d_res_low>6.136</mmCIF:d_res_low> <mmCIF:description>m=1; first-order satellites</mmCIF:description> <mmCIF:number>1045</mmCIF:number> </mmCIF:diffrn_reflns_class> </mmCIF:diffrn_reflns_classCategory> For each reflection class, the residual [sum av|del(I)|/sum|av(I)|] for symmetry-equivalent reflections used to calculate the average intensity av(I). The av|del(I)| term is the average absolute difference between av(I) and the individual intensities. Measure [sum|sigma(net I)|/sum|net I|] for all measured intensities in a reflection class. Measure [sum|u(net I)|/sum|net I|] for all measured intensities in a reflection class. The smallest value in angstroms for the interplanar spacings for the reflections in each measured reflection class. This is called the highest resolution for this reflection class. The largest value in angstroms of the interplanar spacings for the reflections for each measured reflection class. This is called the lowest resolution for this reflection class. Description of each reflection class. m=1 first order satellites H0L0 common projection reflections The total number of measured intensities for each reflection class, excluding the systematic absences arising from centring translations. The code identifying a certain reflection class. 1 m1 s2 Data items in the DIFFRN_SCALE_GROUP category record details of the scaling factors applied to place all intensities in the reflection lists on a common scale. Scaling groups might, for example, correspond to each film in a multi-film data set or each crystal in a multi-crystal data set. Example 1 - based on CAD-4 diffractometer data obtained for Yb(S-C5H4N)2(THF)4. <mmCIF:diffrn_scale_groupCategory> <mmCIF:diffrn_scale_group code="A24"> <mmCIF:I_net>1.021</mmCIF:I_net> </mmCIF:diffrn_scale_group> </mmCIF:diffrn_scale_groupCategory> The scale for a specific measurement group which is to be multiplied with the net intensity to place all intensities in the DIFFRN_REFLN or REFLN list on a common scale. The value of attribute code in category diffrn_scale_group must uniquely identify a record in the DIFFRN_SCALE_GROUP list. Note that this item need not be a number; it can be any unique identifier. 1 2 c1 c2 Data items in the DIFFRN_SOURCE category record details of the source of radiation used in the diffraction experiment. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:diffrn_sourceCategory> <mmCIF:diffrn_source diffrn_id="s1"> <mmCIF:current>180</mmCIF:current> <mmCIF:power>50</mmCIF:power> <mmCIF:size>8mm x 0.4 mm broad-focus</mmCIF:size> <mmCIF:source>rotating anode</mmCIF:source> <mmCIF:type>Rigaku RU-200</mmCIF:type> </mmCIF:diffrn_source> </mmCIF:diffrn_sourceCategory> The current in milliamperes at which the radiation source was operated. A description of special aspects of the radiation source used. The power in kilowatts at which the radiation source was operated. The dimensions of the source as viewed from the sample. 8mm x 0.4 mm fine-focus broad focus The general class of the radiation source. sealed X-ray tube nuclear reactor spallation source electron microscope rotating-anode X-ray tube synchrotron The complement of the angle in degrees between the normal to the surface of the X-ray tube target and the primary X-ray beam for beams generated by traditional X-ray tubes. 1.5 The chemical element symbol for the X-ray target (usually the anode) used to generate X-rays. This can also be used for spallation sources. The make, model or name of the source of radiation. NSLS beamline X8C Rigaku RU200 The voltage in kilovolts at which the radiation source was operated. This data item is a pointer to attribute id in category diffrn in the DIFFRN category. Data items in the DIFFRN_STANDARD_REFLN category record details about the reflections treated as standards during the measurement of a set of diffraction intensities. Note that these are the individual standard reflections, not the results of the analysis of the standard reflections. Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. <mmCIF:diffrn_standard_reflnCategory> <mmCIF:diffrn_standard_refln code="1" diffrn_id="s1"> <mmCIF:index_h>3</mmCIF:index_h> <mmCIF:index_k>2</mmCIF:index_k> <mmCIF:index_l>4</mmCIF:index_l> </mmCIF:diffrn_standard_refln> <mmCIF:diffrn_standard_refln code="1" diffrn_id="s1"> <mmCIF:index_h>1</mmCIF:index_h> <mmCIF:index_k>9</mmCIF:index_k> <mmCIF:index_l>1</mmCIF:index_l> </mmCIF:diffrn_standard_refln> <mmCIF:diffrn_standard_refln code="1" diffrn_id="s1"> <mmCIF:index_h>3</mmCIF:index_h> <mmCIF:index_k>0</mmCIF:index_k> <mmCIF:index_l>10</mmCIF:index_l> </mmCIF:diffrn_standard_refln> </mmCIF:diffrn_standard_reflnCategory> Miller index h of a standard reflection used in the diffraction measurement process. Miller index k of a standard reflection used in the diffraction measurement process. Miller index l of a standard reflection used in the diffraction measurement process. The code identifying a reflection measured as a standard reflection with the indices attribute index_h, in category diffrn_standard_refln attribute index_k in category diffrn_standard_refln and attribute index_l in category diffrn_standard_refln. This is the same code as the attribute standard_code in category diffrn_refln in the DIFFRN_REFLN list. 1 2 c1 c2 This data item is a pointer to attribute id in category diffrn in the DIFFRN category. Data items in the DIFFRN_STANDARDS category record details about the set of standard reflections used to monitor intensity stability during the measurement of diffraction intensities. Note that these records describe properties common to the set of standard reflections, not the standard reflections themselves. Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. <mmCIF:diffrn_standardsCategory> <mmCIF:diffrn_standards diffrn_id="s1"> <mmCIF:decay_>0</mmCIF:decay_> <mmCIF:interval_time>120</mmCIF:interval_time> <mmCIF:number>3</mmCIF:number> </mmCIF:diffrn_standards> </mmCIF:diffrn_standardsCategory> The percentage decrease in the mean of the intensities for the set of standard reflections from the start of the measurement process to the end. This value usually affords a measure of the overall decay in crystal quality during the diffraction measurement process. Negative values are used in exceptional instances where the final intensities are greater than the initial ones. The number of reflection intensities between the measurement of standard reflection intensities. The time in minutes between the measurement of standard reflection intensities. The number of unique standard reflections used during the measurement of the diffraction intensities. The standard uncertainty (estimated standard deviation) of the individual mean standard scales applied to the intensity data. The standard uncertainty of the individual mean standard scales applied to the intensity data. This data item is a pointer to attribute id in category diffrn in the DIFFRN category. Data items in the ENTITY category record details (such as chemical composition, name and source) about the molecular entities that are present in the crystallographic structure. Items in the various ENTITY subcategories provide a full chemical description of these molecular entities. Entities are of three types: polymer, non-polymer and water. Note that the water category includes only water; ordered solvent such as sulfate ion or acetone would be described as individual non-polymer entities. The ENTITY category is specific to macromolecular CIF applications and replaces the function of the CHEMICAL category in the CIF core. It is important to remember that the ENTITY data are not the result of the crystallographic experiment; those results are represented by the ATOM_SITE data items. ENTITY data items describe the chemistry of the molecules under investigation and can most usefully be thought of as the ideal groups to which the structure is restrained or constrained during refinement. It is also important to remember that entities do not correspond directly to the enumeration of the contents of the asymmetric unit. Entities are described only once, even in those structures that contain multiple observations of an entity. The STRUCT_ASYM data items, which reference the entity list, describe and label the contents of the asymmetric unit. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:entityCategory> <mmCIF:entity id="1"> <mmCIF:details> The enzymatically competent form of HIV protease is a dimer. This entity corresponds to one monomer of an active dimer.</mmCIF:details> <mmCIF:formula_weight>10916</mmCIF:formula_weight> <mmCIF:type>polymer</mmCIF:type> </mmCIF:entity> <mmCIF:entity id="2"> <mmCIF:details xsi:nil="true" /> <mmCIF:formula_weight>762</mmCIF:formula_weight> <mmCIF:type>non-polymer</mmCIF:type> </mmCIF:entity> <mmCIF:entity id="3"> <mmCIF:details xsi:nil="true" /> <mmCIF:formula_weight>18</mmCIF:formula_weight> <mmCIF:type>water</mmCIF:type> </mmCIF:entity> </mmCIF:entityCategory> A description of special aspects of the entity. Formula mass in daltons of the entity. The method by which the sample for the entity was produced. Entities isolated directly from natural sources (tissues, soil samples etc.) are expected to have further information in the ENTITY_SRC_NAT category. Entities isolated from genetically manipulated sources are expected to have further information in the ENTITY_SRC_GEN category. Defines the type of the entity. Polymer entities are expected to have corresponding ENTITY_POLY and associated entries. Non-polymer entities are expected to have corresponding CHEM_COMP and associated entries. Water entities are not expected to have corresponding entries in the ENTITY category. The value of attribute id in category entity must uniquely identify a record in the ENTITY list. Note that this item need not be a number; it can be any unique identifier. Data items in the ENTITY_KEYWORDS category specify keywords relevant to the molecular entities. Note that this list of keywords is separate from the list that is used for the STRUCT_BIOL data items and is intended to provide only the information that one would know about the molecular entity *if one did not know its structure*. Hence polypeptides are simply polypeptides, not cytokines or beta-alpha-barrels, and polyribonucleic acids are simply poly-RNA, not transfer- RNA. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:entity_keywordsCategory> <mmCIF:entity_keywords entity_id="1" text="polypeptide"></mmCIF:entity_keywords> <mmCIF:entity_keywords entity_id="2" text="natural product, inhibitor, reduced peptide"></mmCIF:entity_keywords> </mmCIF:entity_keywordsCategory> This data item is a pointer to attribute id in category entity in the ENTITY category. Keywords describing this entity. polypeptide natural product polysaccharide Data items in the ENTITY_LINK category give details about the links between entities. A description of special aspects of a link between chemical components in the structure. The entity ID of the first of the two entities joined by the link. This data item is a pointer to attribute id in category entity in the ENTITY category. The entity ID of the second of the two entities joined by the link. This data item is a pointer to attribute id in category entity in the ENTITY category. For a polymer entity, the sequence number in the first of the two entities containing the link. This data item is a pointer to attribute num in category entity_poly_seq in the ENTITY_POLY_SEQ category. For a polymer entity, the sequence number in the second of the two entities containing the link. This data item is a pointer to attribute num in category entity_poly_seq in the ENTITY_POLY_SEQ category. This data item is a pointer to attribute id in category chem_link in the CHEM_LINK category. Data items in the ENTITY_NAME_COM category record the common name or names associated with the entity. In some cases, the entity name may not be the same as the name of the biological structure. For example, haemoglobin alpha chain would be the entity common name, not haemoglobin. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:entity_name_comCategory> <mmCIF:entity_name_com entity_id="1" name="HIV-1 protease monomer"></mmCIF:entity_name_com> <mmCIF:entity_name_com entity_id="1" name="HIV-1 PR monomer"></mmCIF:entity_name_com> <mmCIF:entity_name_com entity_id="2" name="acetyl-pepstatin"></mmCIF:entity_name_com> <mmCIF:entity_name_com entity_id="2" name="acetyl-Ile-Val-Asp-Statine-Ala-Ile-Statine"></mmCIF:entity_name_com> <mmCIF:entity_name_com entity_id="3" name="water"></mmCIF:entity_name_com> </mmCIF:entity_name_comCategory> This data item is a pointer to attribute id in category entity in the ENTITY category. A common name for the entity. HIV protease monomer hemoglobin alpha chain 2-fluoro-1,4-dichloro benzene arbutin Data items in the ENTITY_NAME_SYS category record the systematic name or names associated with the entity and the system that was used to construct the systematic name. In some cases, the entity name may not be the same as the name of the biological structure. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:entity_name_sysCategory> <mmCIF:entity_name_sys entity_id="1" name="EC 3.4.23.16"></mmCIF:entity_name_sys> <mmCIF:entity_name_sys entity_id="2" name="acetyl-Ile-Val-Asp-Sta-Ala-Ile-Sta"></mmCIF:entity_name_sys> <mmCIF:entity_name_sys entity_id="3" name="water"></mmCIF:entity_name_sys> </mmCIF:entity_name_sysCategory> The system used to generate the systematic name of the entity. Chemical Abstracts conventions enzyme convention Sigma catalog This data item is a pointer to attribute id in category entity in the ENTITY category. The systematic name for the entity. hydroquinone-beta-D-pyranoside EC 2.1.1.1 2-fluoro-1,4-dichlorobenzene Data items in the ENTITY_POLY category record details about the polymer, such as the type of the polymer, the number of monomers and whether it has nonstandard features. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:entity_polyCategory> <mmCIF:entity_poly entity_id="1"> <mmCIF:nstd_chirality>no</mmCIF:nstd_chirality> <mmCIF:nstd_linkage>no</mmCIF:nstd_linkage> <mmCIF:nstd_monomer>no</mmCIF:nstd_monomer> <mmCIF:type>polypeptide(L)</mmCIF:type> <mmCIF:type_details xsi:nil="true" /> </mmCIF:entity_poly> </mmCIF:entity_polyCategory> A flag to indicate whether the polymer contains at least one monomer unit with chirality different from that specified in attribute type in category entity_poly. A flag to indicate whether the polymer contains at least one monomer-to-monomer link different from that implied by attribute type in category entity_poly. A flag to indicate whether the polymer contains at least one monomer that is not considered standard. The number of monomers in the polymer. The type of the polymer. A description of special aspects of the polymer type. monomer Ala 16 is a D-amino acid the oligomer contains alternating RNA and DNA units This data item is a pointer to attribute id in category entity in the ENTITY category. Data items in the ENTITY_POLY_SEQ category specify the sequence of monomers in a polymer. Allowance is made for the possibility of microheterogeneity in a sample by allowing a given sequence number to be correlated with more than one monomer ID. The corresponding ATOM_SITE entries should reflect this heterogeneity. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:entity_poly_seqCategory> <mmCIF:entity_poly_seq entity_id="1" mon_id="PRO" num="1"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="GLN" num="2"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="ILE" num="3"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="THR" num="4"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="LEU" num="5"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="TRP" num="6"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="GLN" num="7"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="ARG" num="8"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="PRO" num="9"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="LEU" num="10"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="VAL" num="11"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="THR" num="12"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="ILE" num="13"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="LYS" num="14"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="ILE" num="15"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="GLY" num="16"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="GLY" num="17"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="GLN" num="18"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="LEU" num="19"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="LYS" num="20"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="GLU" num="21"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="ALA" num="22"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="LEU" num="23"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="LEU" num="24"></mmCIF:entity_poly_seq> <mmCIF:entity_poly_seq entity_id="1" mon_id="ASP" num="25"></mmCIF:entity_poly_seq> </mmCIF:entity_poly_seqCategory> A flag to indicate whether this monomer in the polymer is heterogeneous in sequence. This would be rare. This data item is a pointer to attribute id in category entity in the ENTITY category. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. The value of attribute num in category entity_poly_seq must uniquely and sequentially identify a record in the ENTITY_POLY_SEQ list. Note that this item must be a number and that the sequence numbers must progress in increasing numerical order. Data items in the ENTITY_SRC_GEN category record details of the source from which the entity was obtained in cases where the source was genetically manipulated. The following are treated separately: items pertaining to the tissue from which the gene was obtained, items pertaining to the host organism for gene expression and items pertaining to the actual producing organism (plasmid). Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:entity_src_genCategory> <mmCIF:entity_src_gen entity_id="1"> <mmCIF:gene_src_common_name>HIV-1</mmCIF:gene_src_common_name> <mmCIF:gene_src_strain>NY-5</mmCIF:gene_src_strain> <mmCIF:host_org_common_name>bacteria</mmCIF:host_org_common_name> <mmCIF:host_org_genus>Escherichia</mmCIF:host_org_genus> <mmCIF:host_org_species>coli</mmCIF:host_org_species> <mmCIF:plasmid_name>pB322</mmCIF:plasmid_name> </mmCIF:entity_src_gen> </mmCIF:entity_src_genCategory> The common name of the natural organism from which the gene was obtained. man yeast bacteria A description of special aspects of the natural organism from which the gene was obtained. The genus of the natural organism from which the gene was obtained. Homo Saccharomyces Escherichia The species of the natural organism from which the gene was obtained. sapiens cerevisiae coli The strain of the natural organism from which the gene was obtained, if relevant. DH5a BMH 71-18 The tissue of the natural organism from which the gene was obtained. heart liver eye lens The subcellular fraction of the tissue of the natural organism from which the gene was obtained. mitochondria nucleus membrane The common name of the organism that served as host for the production of the entity. yeast bacteria A description of special aspects of the organism that served as host for the production of the entity. The genus of the organism that served as host for the production of the entity. Saccharomyces Escherichia The species of the organism that served as host for the production of the entity. cerevisiae coli The strain of the organism that served as host for the production of the entity. DH5a BMH 71-18 A description of special aspects of the plasmid that produced the entity in the host organism. The name of the plasmid that produced the entity in the host organism. pET3C pT123sab This data item is a pointer to attribute id in category entity in the ENTITY category. Data items in the ENTITY_SRC_NAT category record details of the source from which the entity was obtained in cases where the entity was isolated directly from a natural tissue. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:entity_src_natCategory> <mmCIF:entity_src_nat entity_id="2"> <mmCIF:common_name>bacteria</mmCIF:common_name> <mmCIF:details> Acetyl-pepstatin was isolated by Dr. K. Oda, Osaka Prefecture University, and provided to us by Dr. Ben Dunn, University of Florida, and Dr. J. Kay, University of Wales.</mmCIF:details> <mmCIF:genus>Actinomycetes</mmCIF:genus> </mmCIF:entity_src_nat> </mmCIF:entity_src_natCategory> The common name of the organism from which the entity was isolated. man yeast bacteria A description of special aspects of the organism from which the entity was isolated. The genus of the organism from which the entity was isolated. Homo Saccharomyces Escherichia The species of the organism from which the entity was isolated. sapiens cerevisiae coli The strain of the organism from which the entity was isolated. DH5a BMH 71-18 The tissue of the organism from which the entity was isolated. heart liver eye lens The subcellular fraction of the tissue of the organism from which the entity was isolated. mitochondria nucleus membrane This data item is a pointer to attribute id in category entity in the ENTITY category. There is only one item in the ENTRY category, attribute id in category entry. This data item gives a name to this entry and is indirectly a key to the categories (such as CELL, GEOM, EXPTL) that describe information pertinent to the entire data block. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:entryCategory> <mmCIF:entry id="5HVP"></mmCIF:entry> </mmCIF:entryCategory> Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. <mmCIF:entryCategory> <mmCIF:entry id="TOZ"></mmCIF:entry> </mmCIF:entryCategory> The value of attribute id in category entry identifies the data block. Note that this item need not be a number; it can be any unique identifier. Data items in the ENTRY_LINK category record the relationships between the current data block identified by attribute id in category entry and other data blocks within the current file which may be referenced in the current data block. Example 1 - example file for the one-dimensional incommensurately modulated structure of K~2~SeO~4~. <mmCIF:entry_linkCategory> <mmCIF:entry_link entry_id="KSE_TEXT" id="KSE_COM"> <mmCIF:details>experimental data common to ref./mod. structures</mmCIF:details> </mmCIF:entry_link> <mmCIF:entry_link entry_id="KSE_TEXT" id="KSE_REF"> <mmCIF:details>reference structure</mmCIF:details> </mmCIF:entry_link> <mmCIF:entry_link entry_id="KSE_TEXT" id="KSE_MOD"> <mmCIF:details>modulated structure</mmCIF:details> </mmCIF:entry_link> </mmCIF:entry_linkCategory> A description of the relationship between the data blocks identified by _entry_link.id and _entry_link.entry_id. This data item is a pointer to attribute id in category entry in the ENTRY category. The value of attribute id in category entry_link identifies a data block related to the current data block. Data items in the EXPTL category record details about the experimental work prior to the intensity measurements and details about the absorption-correction technique employed. Example 1 - based on laboratory records for Yb(S-C5H4N)2(THF)4. <mmCIF:exptlCategory> <mmCIF:exptl entry_id="datablock1"> <mmCIF:absorpt_coefficient_mu>1.22</mmCIF:absorpt_coefficient_mu> <mmCIF:absorpt_correction_T_max>0.896</mmCIF:absorpt_correction_T_max> <mmCIF:absorpt_correction_T_min>0.802</mmCIF:absorpt_correction_T_min> <mmCIF:absorpt_correction_type>integration</mmCIF:absorpt_correction_type> <mmCIF:absorpt_process_details> Gaussian grid method from SHELX76 Sheldrick, G. M., &quot;SHELX-76: structure determination and refinement program&quot;, Cambridge University, UK, 1976</mmCIF:absorpt_process_details> <mmCIF:crystals_number>1</mmCIF:crystals_number> <mmCIF:details> Enraf-Nonius LT2 liquid nitrogen variable-temperature device used</mmCIF:details> <mmCIF:method>single-crystal x-ray diffraction</mmCIF:method> <mmCIF:method_details> graphite monochromatized Cu K(alpha) fixed tube and Enraf-Nonius CAD4 diffractometer used</mmCIF:method_details> </mmCIF:exptl> </mmCIF:exptlCategory> The absorption coefficient mu in reciprocal millimetres calculated from the atomic content of the cell, the density and the radiation wavelength. The maximum transmission factor for the crystal and radiation. The maximum and minimum transmission factors are also referred to as the absorption correction A or 1/A*. The minimum transmission factor for the crystal and radiation. The maximum and minimum transmission factors are also referred to as the absorption correction A or 1/A*. The absorption correction type and method. The value 'empirical' should NOT be used unless more detailed information is not available. Description of the absorption process applied to the intensities. A literature reference should be supplied for psi-scan techniques. Tompa analytical The total number of crystals used in the measurement of intensities. Any special information about the experimental work prior to the intensity measurement. See also attribute preparation in category exptl_crystal. The method used in the experiment. single-crystal x-ray diffraction single-crystal neutron diffraction single-crystal electron diffraction fiber x-ray diffraction fiber neutron diffraction fiber electron diffraction single-crystal joint x-ray and neutron diffraction single-crystal joint x-ray and electron diffraction solution nmr solid-state nmr theoretical model other A description of special aspects of the experimental method. 29 structures minimized average structure This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the EXPTL_CRYSTAL category record the results of experimental measurements on the crystal or crystals used, such as shape, size or density. Example 1 - based on laboratory records for Yb(S-C5H4N)2(THF)4. <mmCIF:exptl_crystalCategory> <mmCIF:exptl_crystal id="xst2l"> <mmCIF:F_000>202</mmCIF:F_000> <mmCIF:colour>pale yellow</mmCIF:colour> <mmCIF:density_Matthews>1.01</mmCIF:density_Matthews> <mmCIF:density_diffrn>1.113</mmCIF:density_diffrn> <mmCIF:density_meas>1.11</mmCIF:density_meas> <mmCIF:density_meas_temp>294.5</mmCIF:density_meas_temp> <mmCIF:density_method>neutral buoyancy</mmCIF:density_method> <mmCIF:density_percent_sol>0.15</mmCIF:density_percent_sol> <mmCIF:description>hexagonal rod, uncut</mmCIF:description> <mmCIF:preparation> hanging drop, crystal soaked in 10&#37; ethylene glycol for 10 h, then placed in nylon loop at data collection time</mmCIF:preparation> <mmCIF:size_max>0.30</mmCIF:size_max> <mmCIF:size_mid>0.20</mmCIF:size_mid> <mmCIF:size_min>0.05</mmCIF:size_min> <mmCIF:size_rad>0.025</mmCIF:size_rad> </mmCIF:exptl_crystal> </mmCIF:exptl_crystalCategory> Example 2 - using separate items to define upper and lower limits for a value. Example 3 - here the density was measured at some unspecified temperature below room temperature. The effective number of electrons in the crystal unit cell contributing to F(000). This may contain dispersion contributions and is calculated as F(000) = [ sum (f~r~^2^ + f~i~^2^) ]^1/2^ f~r~ = real part of the scattering factors at theta = 0 degree f~i~ = imaginary part of the scattering factors at theta = 0 degree the sum is taken over each atom in the unit cell The colour of the crystal. dark green The enumeration list of standardized names developed for the International Centre for Diffraction Data. The colour of a crystal is given by the combination of attribute colour_modifier in category exptl_crystal with attribute colour_primary in category exptl_crystal, as in 'dark-green' or 'bluish-violet', if necessary combined with attribute colour_lustre in category exptl_crystal, as in 'metallic-green'. The enumeration list of standardized names developed for the International Centre for Diffraction Data. The colour of a crystal is given by the combination of attribute colour_modifier in category exptl_crystal with attribute colour_primary in category exptl_crystal, as in 'dark-green' or 'bluish-violet', if necessary combined with attribute colour_lustre in category exptl_crystal, as in 'metallic-green'. The enumeration list of standardized names developed for the International Centre for Diffraction Data. The colour of a crystal is given by the combination of attribute colour_modifier in category exptl_crystal with attribute colour_primary in category exptl_crystal, as in 'dark-green' or 'bluish-violet', if necessary combined with attribute colour_lustre in category exptl_crystal, as in 'metallic-green'. The density of the crystal, expressed as the ratio of the volume of the asymmetric unit to the molecular mass of a monomer of the structure, in units of angstroms^3^ per dalton. Ref: Matthews, B. W. (1968). J. Mol. Biol. 33, 491-497. Density values calculated from the crystal cell and contents. The units are megagrams per cubic metre (grams per cubic centimetre). Density values measured using standard chemical and physical methods. The units are megagrams per cubic metre (grams per cubic centimetre). The estimated standard deviation of attribute density_meas in category exptl_crystal. The value above which the density measured using standard chemical and physical methods lies. The units are megagrams per cubic metre (grams per cubic centimetre). _exptl_crystal.density_meas_gt and _exptl_crystal.density_meas_lt should not be used to report new experimental work, for which attribute density_meas in category exptl_crystal should be used. These items are intended for use in reporting information in existing databases and archives which would be misleading if reported under attribute density_meas in category exptl_crystal. lower limit for the density (only the range within which the density lies was given in the original paper) 2.5 The value below which the density measured using standard chemical and physical methods lies. The units are megagrams per cubic metre (grams per cubic centimetre). _exptl_crystal.density_meas_gt and _exptl_crystal.density_meas_lt should not be used to report new experimental work, for which attribute density_meas in category exptl_crystal should be used. These items are intended for use in reporting information in existing databases and archives which would be misleading if reported under attribute density_meas in category exptl_crystal. specimen floats in water 1.0 upper limit for the density (only the range within which the density lies was given in the original paper) 5.0 Temperature in kelvins at which attribute density_meas in category exptl_crystal was determined. The estimated standard deviation of attribute density_meas_temp in category exptl_crystal. Temperature in kelvins above which attribute density_meas in category exptl_crystal was determined. attribute density_meas_temp_gt in category exptl_crystal and attribute density_meas_temp_lt in category exptl_crystal should not be used for reporting new work, for which the correct temperature of measurement should be given. These items are intended for use in reporting information stored in databases or archives which would be misleading if reported under attribute density_meas_temp in category exptl_crystal. Temperature in kelvins below which attribute density_meas in category exptl_crystal was determined. attribute density_meas_temp_gt in category exptl_crystal and attribute density_meas_temp_lt in category exptl_crystal should not be used for reporting new work, for which the correct temperature of measurement should be given. These items are intended for use in reporting information stored in databases or archives which would be misleading if reported under attribute density_meas_temp in category exptl_crystal. The density was measured at some unspecified temperature below room temperature. 300 The method used to measure attribute density_meas in category exptl_crystal. Density value P calculated from the crystal cell and contents, expressed as per cent solvent. P = 1 - (1.23 N MMass) / V N = the number of molecules in the unit cell MMass = the molecular mass of each molecule (gm/mole) V = the volume of the unit cell (A^3^) 1.23 = a conversion factor evaluated as: (0.74 cm^3^/g) (10^24^ A^3^/cm^3^) -------------------------------------- (6.02*10^23^) molecules/mole where 0.74 is an assumed value for the partial specific volume of the molecule A description of the quality and habit of the crystal. The crystal dimensions should not normally be reported here; use instead the specific items in the EXPTL_CRYSTAL category relating to size for the gross dimensions of the crystal and data items in the EXPTL_CRYSTAL_FACE category to describe the relationship between individual faces. Details of crystal growth and preparation of the crystal (e.g. mounting) prior to the intensity measurements. mounted in an argon-filled quartz capillary The maximum dimension of the crystal. This item may appear in a list with attribute id in category exptl_crystal if multiple crystals are used in the experiment. The medial dimension of the crystal. This item may appear in a list with attribute id in category exptl_crystal if multiple crystals are used in the experiment. The minimum dimension of the crystal. This item may appear in a list with attribute id in category exptl_crystal if multiple crystals are used in the experiment. The radius of the crystal, if the crystal is a sphere or a cylinder. This item may appear in a list with attribute id in category exptl_crystal if multiple crystals are used in the experiment. The value of attribute id in category exptl_crystal must uniquely identify a record in the EXPTL_CRYSTAL list. Note that this item need not be a number; it can be any unique identifier. Data items in the EXPTL_CRYSTAL_FACE category record details of the crystal faces. Example 1 - based on laboratory records for Yb(S-C5H4N)2(THF)4 for the 100 face of crystal xstl1. <mmCIF:exptl_crystal_faceCategory> <mmCIF:exptl_crystal_face crystal_id="xstl1" index_h="1" index_k="0" index_l="0"> <mmCIF:diffr_chi>42.56</mmCIF:diffr_chi> <mmCIF:diffr_kappa>30.23</mmCIF:diffr_kappa> <mmCIF:diffr_phi>-125.56</mmCIF:diffr_phi> <mmCIF:diffr_psi>-0.34</mmCIF:diffr_psi> <mmCIF:perp_dist>0.025</mmCIF:perp_dist> </mmCIF:exptl_crystal_face> </mmCIF:exptl_crystal_faceCategory> The chi diffractometer setting angle in degrees for a specific crystal face associated with attribute perp_dist in category exptl_crystal_face. The kappa diffractometer setting angle in degrees for a specific crystal face associated with attribute perp_dist in category exptl_crystal_face. The phi diffractometer setting angle in degrees for a specific crystal face associated with attribute perp_dist in category exptl_crystal_face. The psi diffractometer setting angle in degrees for a specific crystal face associated with attribute perp_dist in category exptl_crystal_face. The perpendicular distance in millimetres from the face to the centre of rotation of the crystal. This data item is a pointer to attribute id in category exptl_crystal in the EXPTL_CRYSTAL category. Miller index h of the crystal face associated with the value attribute perp_dist in category exptl_crystal_face. Miller index k of the crystal face associated with the value attribute perp_dist in category exptl_crystal_face. Miller index l of the crystal face associated with the value attribute perp_dist in category exptl_crystal_face. Data items in the EXPTL_CRYSTAL_GROW category record details about the conditions and methods used to grow the crystal. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:exptl_crystal_growCategory> <mmCIF:exptl_crystal_grow crystal_id="1"> <mmCIF:apparatus>Linbro plates</mmCIF:apparatus> <mmCIF:atmosphere>room air</mmCIF:atmosphere> <mmCIF:method>hanging drop</mmCIF:method> <mmCIF:pH>4.7</mmCIF:pH> <mmCIF:temp>18(3)</mmCIF:temp> <mmCIF:time>approximately 2 days</mmCIF:time> </mmCIF:exptl_crystal_grow> </mmCIF:exptl_crystal_growCategory> The physical apparatus in which the crystal was grown. Linbro plate sandwich box ACA plates The nature of the gas or gas mixture in which the crystal was grown. room air nitrogen argon A description of special aspects of the crystal growth. Solution 2 was prepared as a well solution and mixed. A droplet containing 2 \ml of solution 1 was delivered onto a cover slip; 2 \ml of solution 2 was added to the droplet without mixing. Crystal plates were originally stored at room temperature for 1 week but no nucleation occurred. They were then transferred to 4 degrees C, at which temperature well formed single crystals grew in 2 days. The dependence on pH for successful crystal growth is very sharp. At pH 7.4 only showers of tiny crystals grew, at pH 7.5 well formed single crystals grew, at pH 7.6 no crystallization occurred at all. The method used to grow the crystals. batch precipitation batch dialysis hanging drop vapor diffusion sitting drop vapor diffusion A literature reference that describes the method used to grow the crystals. McPherson et al., 1988 The pH at which the crystal was grown. If more than one pH was employed during the crystallization process, the final pH should be noted here and the protocol involving multiple pH values should be described in attribute details in category exptl_crystal_grow. 7.4 7.6 4.3 The ambient pressure in kilopascals at which the crystal was grown. The standard uncertainty (estimated standard deviation) of attribute pressure in category exptl_crystal_grow. A description of the protocol used for seeding the crystal growth. macroseeding Microcrystals were introduced from a previous crystal growth experiment by transfer with a human hair. A literature reference that describes the protocol used to seed the crystal. Stura et al., 1989 The temperature in kelvins at which the crystal was grown. If more than one temperature was employed during the crystallization process, the final temperature should be noted here and the protocol involving multiple temperatures should be described in attribute details in category exptl_crystal_grow. A description of special aspects of temperature control during crystal growth. The standard uncertainty (estimated standard deviation) of attribute temp in category exptl_crystal_grow. The approximate time that the crystal took to grow to the size used for data collection. overnight 2-4 days 6 months This data item is a pointer to attribute id in category exptl_crystal in the EXPTL_CRYSTAL category. Data items in the EXPTL_CRYSTAL_GROW_COMP category record details about the components of the solutions that were 'mixed' (by whatever means) to produce the crystal. In general, solution 1 is the solution that contains the molecule to be crystallized and solution 2 is the solution that contains the precipitant. However, the number of solutions required to describe the crystallization protocol is not limited to 2. Details of the crystallization protocol should be given in attribute details in category exptl_crystal_grow_comp using the solutions described in EXPTL_CRYSTAL_GROW_COMP. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:exptl_crystal_grow_compCategory> <mmCIF:exptl_crystal_grow_comp crystal_id="1" id="1"> <mmCIF:conc>6 mg/ml</mmCIF:conc> <mmCIF:details> The protein solution was in a buffer containing 25 mM NaCl, 100 mM NaMES/ MES buffer, pH 7.5, 3 mM NaAzide</mmCIF:details> <mmCIF:name>HIV-1 protease</mmCIF:name> <mmCIF:sol_id>1</mmCIF:sol_id> <mmCIF:volume>0.002 ml</mmCIF:volume> </mmCIF:exptl_crystal_grow_comp> <mmCIF:exptl_crystal_grow_comp crystal_id="1" id="2"> <mmCIF:conc>4 M</mmCIF:conc> <mmCIF:details>in 3 mM NaAzide</mmCIF:details> <mmCIF:name>NaCl</mmCIF:name> <mmCIF:sol_id>2</mmCIF:sol_id> <mmCIF:volume>0.200 ml</mmCIF:volume> </mmCIF:exptl_crystal_grow_comp> <mmCIF:exptl_crystal_grow_comp crystal_id="1" id="3"> <mmCIF:conc>100 mM</mmCIF:conc> <mmCIF:details>in 3 mM NaAzide</mmCIF:details> <mmCIF:name>Acetic Acid</mmCIF:name> <mmCIF:sol_id>2</mmCIF:sol_id> <mmCIF:volume>0.047 ml</mmCIF:volume> </mmCIF:exptl_crystal_grow_comp> <mmCIF:exptl_crystal_grow_comp crystal_id="1" id="4"> <mmCIF:conc>100 mM</mmCIF:conc> <mmCIF:details> in 3 mM NaAzide. Buffer components were mixed to produce a pH of 4.7 according to a ratio calculated from the pKa. The actual pH of solution 2 was not measured.</mmCIF:details> <mmCIF:name>Na Acetate</mmCIF:name> <mmCIF:sol_id>2</mmCIF:sol_id> <mmCIF:volume>0.053 ml</mmCIF:volume> </mmCIF:exptl_crystal_grow_comp> <mmCIF:exptl_crystal_grow_comp crystal_id="1" id="5"> <mmCIF:conc>neat</mmCIF:conc> <mmCIF:details>in 3 mM NaAzide</mmCIF:details> <mmCIF:name>water</mmCIF:name> <mmCIF:sol_id>2</mmCIF:sol_id> <mmCIF:volume>0.700 ml</mmCIF:volume> </mmCIF:exptl_crystal_grow_comp> </mmCIF:exptl_crystal_grow_compCategory> The concentration of the solution component. 200 \ml 0.1 ml A description of any special aspects of the solution component. When the solution component is the one that contains the macromolecule, this could be the specification of the buffer in which the macromolecule was stored. When the solution component is a buffer component, this could be the methods (or formula) used to achieve a desired pH. in 3 mM NaAzide The protein solution was in a buffer containing 25 mM NaCl, 100 mM NaMES/MES buffer, pH 7.5, 3 mM NaAzide in 3 mM NaAzide. Buffer components were mixed to produce a pH of 4.7 according to a ratio calculated from the pKa. The actual pH of solution 2 was not measured. A common name for the component of the solution. protein in buffer acetic acid An identifier for the solution to which the given solution component belongs. 1 well solution solution A The volume of the solution component. 200 \ml 0.1 ml This data item is a pointer to attribute id in category exptl_crystal in the EXPTL_CRYSTAL category. The value of attribute id in category exptl_crystal_grow_comp must uniquely identify each item in the EXPTL_CRYSTAL_GROW_COMP list. Note that this item need not be a number; it can be any unique identifier. 1 A protein in buffer Data items in the GEOM and related (GEOM_ANGLE, GEOM_BOND, GEOM_CONTACT, GEOM_HBOND and GEOM_TORSION) categories record details about the molecular geometry as calculated from the contents of the ATOM, CELL and SYMMETRY data. Geometry data are therefore redundant, in that they can be calculated from other more fundamental quantities in the data block. However, they provide a check on the correctness of both sets of data and enable the most important geometric data to be identified for publication by setting the appropriate publication flag. A description of geometry not covered by the existing data names in the GEOM categories, such as least-squares planes. This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the GEOM_ANGLE category record details about the bond angles as calculated from the contents of the ATOM, CELL and SYMMETRY data. Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. <mmCIF:geom_angleCategory> <mmCIF:geom_angle atom_site_id_1="C2" atom_site_id_2="O1" atom_site_id_3="C5" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555"> <mmCIF:publ_flag>yes</mmCIF:publ_flag> <mmCIF:value>111.6</mmCIF:value> <mmCIF:value_esd>0.2</mmCIF:value_esd> </mmCIF:geom_angle> <mmCIF:geom_angle atom_site_id_1="O1" atom_site_id_2="C2" atom_site_id_3="C3" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555"> <mmCIF:publ_flag>yes</mmCIF:publ_flag> <mmCIF:value>110.9</mmCIF:value> <mmCIF:value_esd>0.2</mmCIF:value_esd> </mmCIF:geom_angle> <mmCIF:geom_angle atom_site_id_1="O1" atom_site_id_2="C2" atom_site_id_3="O21" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555"> <mmCIF:publ_flag>yes</mmCIF:publ_flag> <mmCIF:value>122.2</mmCIF:value> <mmCIF:value_esd>0.3</mmCIF:value_esd> </mmCIF:geom_angle> <mmCIF:geom_angle atom_site_id_1="C3" atom_site_id_2="C2" atom_site_id_3="O21" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555"> <mmCIF:publ_flag>yes</mmCIF:publ_flag> <mmCIF:value>127.0</mmCIF:value> <mmCIF:value_esd>0.3</mmCIF:value_esd> </mmCIF:geom_angle> <mmCIF:geom_angle atom_site_id_1="C2" atom_site_id_2="C3" atom_site_id_3="N4" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555"> <mmCIF:publ_flag>yes</mmCIF:publ_flag> <mmCIF:value>101.3</mmCIF:value> <mmCIF:value_esd>0.2</mmCIF:value_esd> </mmCIF:geom_angle> <mmCIF:geom_angle atom_site_id_1="C2" atom_site_id_2="C3" atom_site_id_3="C31" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555"> <mmCIF:publ_flag>yes</mmCIF:publ_flag> <mmCIF:value>111.3</mmCIF:value> <mmCIF:value_esd>0.2</mmCIF:value_esd> </mmCIF:geom_angle> <mmCIF:geom_angle atom_site_id_1="C2" atom_site_id_2="C3" atom_site_id_3="H3" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555"> <mmCIF:publ_flag>no</mmCIF:publ_flag> <mmCIF:value>107</mmCIF:value> <mmCIF:value_esd>1</mmCIF:value_esd> </mmCIF:geom_angle> <mmCIF:geom_angle atom_site_id_1="N4" atom_site_id_2="C3" atom_site_id_3="C31" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555"> <mmCIF:publ_flag>yes</mmCIF:publ_flag> <mmCIF:value>116.7</mmCIF:value> <mmCIF:value_esd>0.2</mmCIF:value_esd> </mmCIF:geom_angle> </mmCIF:geom_angleCategory> An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to attribute label_alt_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to attribute label_alt_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to attribute label_alt_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the three atom sites that define the angle. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the three atom sites that define the angle. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the three atom sites that define the angle. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. This code signals whether the angle is referred to in a publication or should be placed in a table of significant angles. Angle in degrees defined by the three sites _geom_angle.atom_site_id_1, _geom_angle.atom_site_id_2 and attribute atom_site_id_3 in category geom_angle. The standard uncertainty (estimated standard deviation) of attribute value in category geom_angle. The identifier of the first of the three atom sites that define the angle. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. The identifier of the second of the three atom sites that define the angle. The second atom is taken to be the apex of the angle. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. The identifier of the third of the three atom sites that define the angle. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. The symmetry code of the first of the three atom sites that define the angle. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 The symmetry code of the second of the three atom sites that define the angle. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 The symmetry code of the third of the three atom sites that define the angle. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 Data items in the GEOM_BOND category record details about the bond lengths as calculated from the contents of the ATOM, CELL and SYMMETRY data. Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. <mmCIF:geom_bondCategory> <mmCIF:geom_bond atom_site_id_1="O1" atom_site_id_2="C2" site_symmetry_1="1_555" site_symmetry_2="1_555"> <mmCIF:dist>1.342</mmCIF:dist> <mmCIF:dist_esd>0.004</mmCIF:dist_esd> <mmCIF:publ_flag>yes</mmCIF:publ_flag> </mmCIF:geom_bond> <mmCIF:geom_bond atom_site_id_1="O1" atom_site_id_2="C5" site_symmetry_1="1_555" site_symmetry_2="1_555"> <mmCIF:dist>1.439</mmCIF:dist> <mmCIF:dist_esd>0.003</mmCIF:dist_esd> <mmCIF:publ_flag>yes</mmCIF:publ_flag> </mmCIF:geom_bond> <mmCIF:geom_bond atom_site_id_1="C2" atom_site_id_2="C3" site_symmetry_1="1_555" site_symmetry_2="1_555"> <mmCIF:dist>1.512</mmCIF:dist> <mmCIF:dist_esd>0.004</mmCIF:dist_esd> <mmCIF:publ_flag>yes</mmCIF:publ_flag> </mmCIF:geom_bond> <mmCIF:geom_bond atom_site_id_1="C2" atom_site_id_2="O21" site_symmetry_1="1_555" site_symmetry_2="1_555"> <mmCIF:dist>1.199</mmCIF:dist> <mmCIF:dist_esd>0.004</mmCIF:dist_esd> <mmCIF:publ_flag>yes</mmCIF:publ_flag> </mmCIF:geom_bond> <mmCIF:geom_bond atom_site_id_1="C3" atom_site_id_2="N4" site_symmetry_1="1_555" site_symmetry_2="1_555"> <mmCIF:dist>1.465</mmCIF:dist> <mmCIF:dist_esd>0.003</mmCIF:dist_esd> <mmCIF:publ_flag>yes</mmCIF:publ_flag> </mmCIF:geom_bond> <mmCIF:geom_bond atom_site_id_1="C3" atom_site_id_2="C31" site_symmetry_1="1_555" site_symmetry_2="1_555"> <mmCIF:dist>1.537</mmCIF:dist> <mmCIF:dist_esd>0.004</mmCIF:dist_esd> <mmCIF:publ_flag>yes</mmCIF:publ_flag> </mmCIF:geom_bond> <mmCIF:geom_bond atom_site_id_1="C3" atom_site_id_2="H3" site_symmetry_1="1_555" site_symmetry_2="1_555"> <mmCIF:dist>1.00</mmCIF:dist> <mmCIF:dist_esd>0.03</mmCIF:dist_esd> <mmCIF:publ_flag>no</mmCIF:publ_flag> </mmCIF:geom_bond> <mmCIF:geom_bond atom_site_id_1="N4" atom_site_id_2="C5" site_symmetry_1="1_555" site_symmetry_2="1_555"> <mmCIF:dist>1.472</mmCIF:dist> <mmCIF:dist_esd>0.003</mmCIF:dist_esd> <mmCIF:publ_flag>yes</mmCIF:publ_flag> </mmCIF:geom_bond> </mmCIF:geom_bondCategory> An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to attribute label_alt_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to attribute label_alt_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the bond. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the bond. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. The intramolecular bond distance in angstroms. The standard uncertainty (estimated standard deviation) of attribute dist in category geom_bond. This code signals whether the bond distance is referred to in a publication or should be placed in a list of significant bond distances. The bond valence calculated from attribute dist in category geom_bond. The identifier of the first of the two atom sites that define the bond. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. The identifier of the second of the two atom sites that define the bond. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. The symmetry code of the first of the two atom sites that define the bond. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 The symmetry code of the second of the two atom sites that define the bond. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 Data items in the GEOM_CONTACT category record details about interatomic contacts as calculated from the contents of the ATOM, CELL and SYMMETRY data. Example 1 - based on data set CLPHO6 of Ferguson, Ruhl, McKervey & Browne [Acta Cryst. (1992), C48, 2262-2264]. An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to attribute label_alt_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to attribute label_alt_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the two atom sites that define the contact. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the two atom sites that define the contact. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. The interatomic contact distance in angstroms. The standard uncertainty (estimated standard deviation) of attribute dist in category geom_contact. This code signals whether the contact distance is referred to in a publication or should be placed in a list of significant contact distances. The identifier of the first of the two atom sites that define the contact. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. The identifier of the second of the two atom sites that define the contact. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. The symmetry code of the first of the two atom sites that define the contact. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 The symmetry code of the second of the two atom sites that define the contact. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 Data items in the GEOM_HBOND category record details about hydrogen bonds as calculated from the contents of the ATOM, CELL and SYMMETRY data. Example 1 - based on C~14~H~13~ClN~2~O.H~2~O, reported by Palmer, Puddle & Lisgarten [Acta Cryst. (1993), C49, 1777-1779]. <mmCIF:geom_hbondCategory> <mmCIF:geom_hbond atom_site_id_A="OW" atom_site_id_D="N6" atom_site_id_H="HN6"> <mmCIF:angle_DHA>169.6</mmCIF:angle_DHA> <mmCIF:dist_DA>2.801</mmCIF:dist_DA> <mmCIF:dist_DH>0.888</mmCIF:dist_DH> <mmCIF:dist_HA>1.921</mmCIF:dist_HA> <mmCIF:publ_flag>yes</mmCIF:publ_flag> </mmCIF:geom_hbond> <mmCIF:geom_hbond atom_site_id_A="O7" atom_site_id_D="OW" atom_site_id_H="HO2"> <mmCIF:angle_DHA>153.5</mmCIF:angle_DHA> <mmCIF:dist_DA>2.793</mmCIF:dist_DA> <mmCIF:dist_DH>0.917</mmCIF:dist_DH> <mmCIF:dist_HA>1.923</mmCIF:dist_HA> <mmCIF:publ_flag>yes</mmCIF:publ_flag> </mmCIF:geom_hbond> <mmCIF:geom_hbond atom_site_id_A="N10" atom_site_id_D="OW" atom_site_id_H="HO1"> <mmCIF:angle_DHA>179.7</mmCIF:angle_DHA> <mmCIF:dist_DA>2.842</mmCIF:dist_DA> <mmCIF:dist_DH>0.894</mmCIF:dist_DH> <mmCIF:dist_HA>1.886</mmCIF:dist_HA> <mmCIF:publ_flag>yes</mmCIF:publ_flag> </mmCIF:geom_hbond> </mmCIF:geom_hbondCategory> The angle in degrees defined by the donor-, hydrogen- and acceptor-atom sites in a hydrogen bond. The standard uncertainty (estimated standard deviation) of attribute angle_DHA in category geom_hbond. An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_alt_id in category atom_site in the ATOM_SITE category. An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_alt_id in category atom_site in the ATOM_SITE category. An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_alt_id in category atom_site in the ATOM_SITE category. An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. The distance in angstroms between the donor- and acceptor-atom sites in a hydrogen bond. The standard uncertainty (estimated standard deviation) in angstroms of attribute dist_DA in category geom_hbond. The distance in angstroms between the donor- and hydrogen-atom sites in a hydrogen bond. The standard uncertainty (estimated standard deviation) in angstroms of attribute dist_DH in category geom_hbond. The distance in angstroms between the hydrogen- and acceptor- atom sites in a hydrogen bond. The standard uncertainty (estimated standard deviation) in angstroms of attribute dist_HA in category geom_hbond. This code signals whether the hydrogen-bond information is referred to in a publication or should be placed in a table of significant hydrogen-bond geometry. The identifier of the acceptor-atom site that defines the hydrogen bond. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. The identifier of the donor-atom site that defines the hydrogen bond. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. The identifier of the hydrogen-atom site that defines the hydrogen bond. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. The symmetry code of the acceptor-atom site that defines the hydrogen bond. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 The symmetry code of the donor-atom site that defines the hydrogen bond. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 The symmetry code of the hydrogen-atom site that defines the hydrogen bond. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 Data items in the GEOM_TORSION category record details about torsion angles as calculated from the contents of the ATOM, CELL and SYMMETRY data. The vector direction attribute atom_site_id_2 in category geom_torsion to attribute atom_site_id_3 in category geom_torsion is the viewing direction, and the torsion angle is the angle of twist required to superimpose the projection of the vector between site 2 and site 1 onto the projection of the vector between site 3 and site 4. Clockwise torsions are positive, anticlockwise torsions are negative. Ref: Klyne, W. & Prelog, V. (1960). Experientia, 16, 521-523. Example 1 - based on data set CLPHO6 of Ferguson, Ruhl, McKervey & Browne [Acta Cryst. (1992), C48, 2262-2264]. An optional identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_alt_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_alt_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_alt_id in category atom_site in the ATOM_SITE category. An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_alt_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. An optional identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. An optional identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. This code signals whether the torsion angle is referred to in a publication or should be placed in a table of significant torsion angles. The value of the torsion angle in degrees. The standard uncertainty (estimated standard deviation) of attribute value in category geom_torsion. The identifier of the first of the four atom sites that define the torsion angle. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. The identifier of the second of the four atom sites that define the torsion angle. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. The identifier of the third of the four atom sites that define the torsion angle. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. The identifier of the fourth of the four atom sites that define the torsion angle. This data item is a pointer to attribute id in category atom_site in the ATOM_SITE category. The symmetry code of the first of the four atom sites that define the torsion angle. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 The symmetry code of the second of the four atom sites that define the torsion angle. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 The symmetry code of the third of the four atom sites that define the torsion angle. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 The symmetry code of the fourth of the four atom sites that define the torsion angle. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 Data items in the JOURNAL category record details about the book-keeping by the journal staff when processing a data block submitted for publication. The creator of a data block will not normally specify these data. The data names are not defined in the dictionary because they are for journal use only. Example 1 - based on Acta Cryst. file for entry HL0007 [Willis, Beckwith & Tozer (1991). Acta Cryst. C47, 2276-2277]. <mmCIF:journalCategory> <mmCIF:journal entry_id="TOZ"> <mmCIF:coden_ASTM>ACSCEE</mmCIF:coden_ASTM> <mmCIF:coeditor_code>HL0007</mmCIF:coeditor_code> <mmCIF:date_accepted>1991-04-18</mmCIF:date_accepted> <mmCIF:date_from_coeditor>1991-04-18</mmCIF:date_from_coeditor> <mmCIF:date_printers_first>1991-08-07</mmCIF:date_printers_first> <mmCIF:date_proofs_out>1991-08-07</mmCIF:date_proofs_out> <mmCIF:date_recd_electronic>1991-04-15</mmCIF:date_recd_electronic> <mmCIF:issue>NOV91</mmCIF:issue> <mmCIF:name_full>Acta Crystallographica Section C</mmCIF:name_full> <mmCIF:page_first>2276</mmCIF:page_first> <mmCIF:page_last>2277</mmCIF:page_last> <mmCIF:techeditor_code>C910963</mmCIF:techeditor_code> <mmCIF:volume>47</mmCIF:volume> <mmCIF:year>1991</mmCIF:year> </mmCIF:journal> </mmCIF:journalCategory> Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. Journal data items are defined by the journal staff. This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the JOURNAL_INDEX category are used to list terms used to generate the journal indexes. The creator of a data block will not normally specify these data items. Example 1 - based on a paper by Zhu, Reynolds, Klein & Trudell [Acta Cryst. (1994), C50, 2067-2069]. <mmCIF:journal_indexCategory> <mmCIF:journal_index term="C16H19NO4" type="O"> <mmCIF:subterm xsi:nil="true" /> </mmCIF:journal_index> <mmCIF:journal_index term="alkaloids" type="S"> <mmCIF:subterm>(-)-norcocaine</mmCIF:subterm> </mmCIF:journal_index> <mmCIF:journal_index term="(-)-norcocaine" type="S"> <mmCIF:subterm xsi:nil="true" /> </mmCIF:journal_index> <mmCIF:journal_index term=" [2R,3S-(2\b,3\b)]-methyl 3-(benzoyloxy)-8-azabicyclo[3.2.1]octane-2-carboxylate" type="S"> <mmCIF:subterm xsi:nil="true" /> </mmCIF:journal_index> </mmCIF:journal_indexCategory> Journal index data items are defined by the journal staff. Journal index data items are defined by the journal staff. Journal index data items are defined by the journal staff. Data items in the PHASING category record details about the phasing of the structure, listing the various methods used in the phasing process. Details about the application of each method are listed in the appropriate subcategories. Example 1 - hypothetical example. <mmCIF:phasingCategory> <mmCIF:phasing method="mir"></mmCIF:phasing> <mmCIF:phasing method="averaging"></mmCIF:phasing> </mmCIF:phasingCategory> A listing of the method or methods used to phase this structure. phasing by ab initio methods abinitio phase improvement by averaging over multiple images of the structure averaging phasing by direct methods dm phasing by iterative single-wavelength anomalous scattering isas phasing by iterative single-wavelength isomorphous replacement isir phasing beginning with phases calculated from an isomorphous structure isomorphous phasing by multiple-wavelength anomalous dispersion mad phasing by multiple isomorphous replacement mir phasing by multiple isomorphous replacement with anomalous scattering miras phasing by molecular replacement mr phasing by single isomorphous replacement sir phasing by single isomorphous replacement with anomalous scattering siras Data items in the PHASING_MAD category record details about the phasing of the structure where methods involving multiple-wavelength anomalous-dispersion techniques are involved. Example 1 - based on a paper by Shapiro et al. [Nature (London) (1995), 374, 327-337]. <mmCIF:phasing_MADCategory> <mmCIF:phasing_MAD entry_id="NCAD"></mmCIF:phasing_MAD> </mmCIF:phasing_MADCategory> A description of special aspects of the MAD phasing. A description of the MAD phasing method used to phase this structure. Note that this is not the computer program used, which is described in the SOFTWARE category, but rather the method itself. This data item should be used to describe significant methodological options used within the MAD phasing program. This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the PHASING_MAD_CLUST category record details about a cluster of experiments that contributed to the generation of a set of phases. Example 1 - based on a paper by Shapiro et al. [Nature (London) (1995), 374, 327-337]. <mmCIF:phasing_MAD_clustCategory> <mmCIF:phasing_MAD_clust expt_id="1" id="4 wavelength"> <mmCIF:number_set>4</mmCIF:number_set> </mmCIF:phasing_MAD_clust> <mmCIF:phasing_MAD_clust expt_id="1" id="5 wavelength"> <mmCIF:number_set>5</mmCIF:number_set> </mmCIF:phasing_MAD_clust> <mmCIF:phasing_MAD_clust expt_id="2" id="5 wavelength"> <mmCIF:number_set>5</mmCIF:number_set> </mmCIF:phasing_MAD_clust> </mmCIF:phasing_MAD_clustCategory> The number of data sets in this cluster of data sets. This data item is a pointer to attribute id in category phasing_MAD_expt in the PHASING_MAD_EXPT category. The value of attribute id in category phasing_MAD_clust must, together with attribute expt_id in category phasing_MAD_clust, uniquely identify a record in the PHASING_MAD_CLUST list. Note that this item need not be a number; it can be any unique identifier. Data items in the PHASING_MAD_EXPT category record details about a MAD phasing experiment, such as the number of experiments that were clustered together to produce a set of phases or the statistics for those phases. Example 1 - based on a paper by Shapiro et al. [Nature (London) (1995), 374, 327-337]. <mmCIF:phasing_MAD_exptCategory> <mmCIF:phasing_MAD_expt id="1"> <mmCIF:R_normal_all>0.063</mmCIF:R_normal_all> <mmCIF:R_normal_anom_scat>0.451</mmCIF:R_normal_anom_scat> <mmCIF:delta_delta_phi>58.5</mmCIF:delta_delta_phi> <mmCIF:delta_phi_sigma>20.3</mmCIF:delta_phi_sigma> <mmCIF:mean_fom>0.88</mmCIF:mean_fom> <mmCIF:number_clust>2</mmCIF:number_clust> </mmCIF:phasing_MAD_expt> <mmCIF:phasing_MAD_expt id="2"> <mmCIF:R_normal_all>0.051</mmCIF:R_normal_all> <mmCIF:R_normal_anom_scat>0.419</mmCIF:R_normal_anom_scat> <mmCIF:delta_delta_phi>36.8</mmCIF:delta_delta_phi> <mmCIF:delta_phi_sigma>18.2</mmCIF:delta_phi_sigma> <mmCIF:mean_fom>0.93</mmCIF:mean_fom> <mmCIF:number_clust>1</mmCIF:number_clust> </mmCIF:phasing_MAD_expt> </mmCIF:phasing_MAD_exptCategory> Definition... Definition... The difference between two independent determinations of attribute delta_phi in category phasing_MAD_expt. The phase difference between F~t~(h), the structure factor due to normal scattering from all atoms, and F~a~(h), the structure factor due to normal scattering from only the anomalous scatterers. The standard uncertainty (estimated standard deviation) of attribute delta_phi in category phasing_MAD_expt. The mean figure of merit. The number of clusters of data sets in this phasing experiment. The value of attribute id in category phasing_MAD_expt must uniquely identify each record in the PHASING_MAD_EXPT list. Data items in the PHASING_MAD_RATIO category record the ratios of phasing statistics between pairs of data sets in a MAD phasing experiment, in given shells of resolution. Example 1 - based on a paper by Shapiro et al. [Nature (London) (1995), 374, 327-337]. <mmCIF:phasing_MAD_ratioCategory> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.4013"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.084</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.076</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.3857"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.067</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.3852"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.051</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.3847"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.044</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3857"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.110</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.049</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3852"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.049</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3847"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.067</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3852"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.149</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.072</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3847"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.039</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.3847"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.102</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.071</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.4013"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.114</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.111</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.3857"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.089</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.3852"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.086</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.3847"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.077</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3857"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.140</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.127</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3852"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.085</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3847"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.089</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3852"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.155</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.119</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3847"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.082</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.3847"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.124</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.120</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3857"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.075</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.027</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3852"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.041</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3847"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.060</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3784"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.057</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.2862"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.072</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3852"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.105</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.032</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3847"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.036</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3784"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.044</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.2862"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.065</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.3847"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.072</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.031</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.3784"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.040</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.2862"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.059</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3784" wavelength_2="1.3784"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.059</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.032</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3784" wavelength_2="1.2862"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.059</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.2862" wavelength_2="1.3847"> <mmCIF:d_res_high>4.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.058</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.028</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3857"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.078</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.075</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3852"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.059</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3847"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.067</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3784"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.084</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.2862"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.073</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3852"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.101</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.088</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3847"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.066</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3784"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.082</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.2862"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.085</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.3847"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.097</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.074</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.3784"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.081</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.2862"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.085</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3784" wavelength_2="1.3784"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.114</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.089</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3784" wavelength_2="1.2862"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.103</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.2862" wavelength_2="1.2862"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>4.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.062</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.060</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7263"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.035</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.026</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7251"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.028</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7284"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.023</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7246"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.025</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7217"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.026</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7251"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.060</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.026</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7284"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.029</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7246"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.031</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7217"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.035</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7284" wavelength_2="0.7284"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.075</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.030</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7284" wavelength_2="0.7246"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.023</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7284" wavelength_2="0.7217"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.027</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7246" wavelength_2="0.7246"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.069</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.026</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7246" wavelength_2="0.7217"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.024</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7217" wavelength_2="0.7284"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.060</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.028</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7263"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.060</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.050</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7251"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.056</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7284"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.055</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7246"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.053</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7217"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.056</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7251"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.089</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.050</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7284"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.054</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7246"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.058</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7217"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.063</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7284" wavelength_2="0.7284"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.104</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.057</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7284" wavelength_2="0.7246"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.052</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7284" wavelength_2="0.7217"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.057</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7246" wavelength_2="0.7246"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.098</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.052</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7246" wavelength_2="0.7217"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl xsi:nil="true" /> <mmCIF:ratio_one_wl_centric xsi:nil="true" /> <mmCIF:ratio_two_wl>0.054</mmCIF:ratio_two_wl> </mmCIF:phasing_MAD_ratio> <mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7217" wavelength_2="0.7284"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>3.00</mmCIF:d_res_low> <mmCIF:ratio_one_wl>0.089</mmCIF:ratio_one_wl> <mmCIF:ratio_one_wl_centric>0.060</mmCIF:ratio_one_wl_centric> <mmCIF:ratio_two_wl xsi:nil="true" /> </mmCIF:phasing_MAD_ratio> </mmCIF:phasing_MAD_ratioCategory> The lowest value for the interplanar spacings for the reflection data used for the comparison of Bijvoet differences. This is called the highest resolution. The highest value for the interplanar spacings for the reflection data used for the comparison of Bijvoet differences. This is called the lowest resolution. The root-mean-square Bijvoet difference at one wavelength for all reflections. The root-mean-square Bijvoet difference at one wavelength for centric reflections. This would be equal to zero for perfect data and thus serves as an estimate of the noise in the anomalous signals. The root-mean-square dispersive Bijvoet difference between two wavelengths for all reflections. This data item is a pointer to attribute id in category phasing_MAD_clust in the PHASING_MAD_CLUST category. This data item is a pointer to attribute id in category phasing_MAD_expt in the PHASING_MAD_EXPT category. This data item is a pointer to attribute wavelength in category phasing_MAD_set in the PHASING_MAD_SET category. This data item is a pointer to attribute wavelength in category phasing_MAD_set in the PHASING_MAD_SET category. Data items in the PHASING_MAD_SET category record details about the individual data sets used in a MAD phasing experiment. Example 1 - based on a paper by Shapiro et al. [Nature (London) (1995), 374, 327-337]. <mmCIF:phasing_MAD_setCategory> <mmCIF:phasing_MAD_set clust_id="4 wavelength" expt_id="1" set_id="aa" wavelength="1.4013"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:f_double_prime>3.80</mmCIF:f_double_prime> <mmCIF:f_prime>-12.48</mmCIF:f_prime> <mmCIF:wavelength_details>pre-edge</mmCIF:wavelength_details> </mmCIF:phasing_MAD_set> <mmCIF:phasing_MAD_set clust_id="4 wavelength" expt_id="1" set_id="bb" wavelength="1.3857"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:f_double_prime>17.20</mmCIF:f_double_prime> <mmCIF:f_prime>-31.22</mmCIF:f_prime> <mmCIF:wavelength_details>peak</mmCIF:wavelength_details> </mmCIF:phasing_MAD_set> <mmCIF:phasing_MAD_set clust_id="4 wavelength" expt_id="1" set_id="cc" wavelength="1.3852"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:f_double_prime>29.17</mmCIF:f_double_prime> <mmCIF:f_prime>-13.97</mmCIF:f_prime> <mmCIF:wavelength_details>edge</mmCIF:wavelength_details> </mmCIF:phasing_MAD_set> <mmCIF:phasing_MAD_set clust_id="4 wavelength" expt_id="1" set_id="dd" wavelength="1.3847"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:f_double_prime>17.34</mmCIF:f_double_prime> <mmCIF:f_prime>-6.67</mmCIF:f_prime> <mmCIF:wavelength_details>remote</mmCIF:wavelength_details> </mmCIF:phasing_MAD_set> <mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="1" set_id="ee" wavelength="1.3857"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:f_double_prime>14.84</mmCIF:f_double_prime> <mmCIF:f_prime>-28.33</mmCIF:f_prime> <mmCIF:wavelength_details>ascending edge</mmCIF:wavelength_details> </mmCIF:phasing_MAD_set> <mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="1" set_id="ff" wavelength="1.3852"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:f_double_prime>30.23</mmCIF:f_double_prime> <mmCIF:f_prime>-21.50</mmCIF:f_prime> <mmCIF:wavelength_details>peak</mmCIF:wavelength_details> </mmCIF:phasing_MAD_set> <mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="1" set_id="gg" wavelength="1.3847"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:f_double_prime>20.35</mmCIF:f_double_prime> <mmCIF:f_prime>-10.71</mmCIF:f_prime> <mmCIF:wavelength_details>descending edge</mmCIF:wavelength_details> </mmCIF:phasing_MAD_set> <mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="1" set_id="hh" wavelength="1.3784"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:f_double_prime>11.84</mmCIF:f_double_prime> <mmCIF:f_prime>-14.45</mmCIF:f_prime> <mmCIF:wavelength_details>remote 1</mmCIF:wavelength_details> </mmCIF:phasing_MAD_set> <mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="1" set_id="ii" wavelength="1.2862"> <mmCIF:d_res_high>3.00</mmCIF:d_res_high> <mmCIF:d_res_low>20.00</mmCIF:d_res_low> <mmCIF:f_double_prime>9.01</mmCIF:f_double_prime> <mmCIF:f_prime>-9.03</mmCIF:f_prime> <mmCIF:wavelength_details>remote 2</mmCIF:wavelength_details> </mmCIF:phasing_MAD_set> <mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="2" set_id="jj" wavelength="0.7263"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:f_double_prime>4.08</mmCIF:f_double_prime> <mmCIF:f_prime>-21.10</mmCIF:f_prime> <mmCIF:wavelength_details>pre-edge</mmCIF:wavelength_details> </mmCIF:phasing_MAD_set> <mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="2" set_id="kk" wavelength="0.7251"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:f_double_prime>7.92</mmCIF:f_double_prime> <mmCIF:f_prime>-34.72</mmCIF:f_prime> <mmCIF:wavelength_details>edge</mmCIF:wavelength_details> </mmCIF:phasing_MAD_set> <mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="2" set_id="ll" wavelength="0.7248"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:f_double_prime>10.30</mmCIF:f_double_prime> <mmCIF:f_prime>-24.87</mmCIF:f_prime> <mmCIF:wavelength_details>peak</mmCIF:wavelength_details> </mmCIF:phasing_MAD_set> <mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="2" set_id="mm" wavelength="0.7246"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:f_double_prime>9.62</mmCIF:f_double_prime> <mmCIF:f_prime>-17.43</mmCIF:f_prime> <mmCIF:wavelength_details>descending edge</mmCIF:wavelength_details> </mmCIF:phasing_MAD_set> <mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="2" set_id="nn" wavelength="0.7217"> <mmCIF:d_res_high>1.90</mmCIF:d_res_high> <mmCIF:d_res_low>15.00</mmCIF:d_res_low> <mmCIF:f_double_prime>8.40</mmCIF:f_double_prime> <mmCIF:f_prime>-13.26</mmCIF:f_prime> <mmCIF:wavelength_details>remote</mmCIF:wavelength_details> </mmCIF:phasing_MAD_set> </mmCIF:phasing_MAD_setCategory> The lowest value for the interplanar spacings for the reflection data used for this set of data. This is called the highest resolution. The highest value for the interplanar spacings for the reflection data used for this set of data. This is called the lowest resolution. The f'' component of the anomalous scattering factor for this wavelength. The f' component of the anomalous scattering factor for this wavelength. A descriptor for this wavelength in this cluster of data sets. peak remote ascending edge This data item is a pointer to attribute id in category phasing_MAD_clust in the PHASING_MAD_CLUST category. This data item is a pointer to attribute id in category phasing_MAD_expt in the PHASING_MAD_EXPT category. This data item is a pointer to attribute id in category phasing_set in the PHASING_SET category. The wavelength at which this data set was measured. Data items in the PHASING_MIR category record details about the phasing of the structure where methods involving isomorphous replacement are involved. All isomorphous-replacement-based techniques are covered by this category, including single isomorphous replacement (SIR), multiple isomorphous replacement (MIR) and single or multiple isomorphous replacement plus anomalous scattering (SIRAS, MIRAS). Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem. (1993), 268, 10728-10738]. The mean value of the figure of merit m for all reflections phased in the native data set. int P~alpha~ exp(i*alpha) dalpha m = -------------------------------- int P~alpha~ dalpha P~a~ = the probability that the phase angle a is correct the integral is taken over the range alpha = 0 to 2 pi. The mean value of the figure of merit m for the acentric reflections phased in the native data set. int P~alpha~ exp(i*alpha) dalpha m = -------------------------------- int P~alpha~ dalpha P~a~ = the probability that the phase angle a is correct the integral is taken over the range alpha = 0 to 2 pi. The mean value of the figure of merit m for the centric reflections phased in the native data set. int P~alpha~ exp(i*alpha) dalpha m = -------------------------------- int P~alpha~ dalpha P~a~ = the probability that the phase angle a is correct the integral is taken over the range alpha = 0 to 2 pi. The lowest value in angstroms for the interplanar spacings for the reflection data used for the native data set. This is called the highest resolution. The highest value in angstroms for the interplanar spacings for the reflection data used for the native data set. This is called the lowest resolution. A description of special aspects of the isomorphous-replacement phasing. A description of the MIR phasing method applied to phase this structure. Note that this is not the computer program used, which is described in the SOFTWARE category, but rather the method itself. This data item should be used to describe significant methodological options used within the MIR phasing program. The total number of reflections phased in the native data set. The number of acentric reflections phased in the native data set. The number of centric reflections phased in the native data set. Criterion used to limit the reflections used in the phasing calculations. > 4 \s(I) This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the PHASING_MIR_DER category record details about individual derivatives used in the phasing of the structure when methods involving isomorphous replacement are involved. A derivative in this context does not necessarily equate with a data set; for instance, the same data set could be used to one resolution limit as an isomorphous scatterer and to a different resolution (and with a different sigma cutoff) as an anomalous scatterer. These would be treated as two distinct derivatives, although both derivatives would point to the same data sets via attribute der_set_id in category phasing_MIR_der and attribute native_set_id in category phasing_MIR_der. Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem. (1993), 268, 10728-10738]. <mmCIF:phasing_MIR_derCategory> <mmCIF:phasing_MIR_der id="KAu(CN)2"> <mmCIF:details>major site interpreted in difference Patterson</mmCIF:details> <mmCIF:number_of_sites>3</mmCIF:number_of_sites> </mmCIF:phasing_MIR_der> <mmCIF:phasing_MIR_der id="K2HgI4"> <mmCIF:details>sites found in cross-difference Fourier</mmCIF:details> <mmCIF:number_of_sites>6</mmCIF:number_of_sites> </mmCIF:phasing_MIR_der> <mmCIF:phasing_MIR_der id="K3IrCl6"> <mmCIF:details>sites found in cross-difference Fourier</mmCIF:details> <mmCIF:number_of_sites>2</mmCIF:number_of_sites> </mmCIF:phasing_MIR_der> <mmCIF:phasing_MIR_der id="All"> <mmCIF:details>data for all three derivatives combined</mmCIF:details> <mmCIF:number_of_sites>11</mmCIF:number_of_sites> </mmCIF:phasing_MIR_der> </mmCIF:phasing_MIR_derCategory> Residual factor R~cullis,acen~ for acentric reflections for this derivative. The Cullis R factor was originally defined only for centric reflections. It is, however, also a useful statistical measure for acentric reflections, which is how it is used in this data item. sum| |Fph~obs~ +/- Fp~obs~| - Fh~calc~ | R~cullis,acen~ = ---------------------------------------- sum|Fph~obs~ - Fp~obs~| Fp~obs~ = the observed structure-factor amplitude of the native Fph~obs~ = the observed structure-factor amplitude of the derivative Fh~calc~ = the calculated structure-factor amplitude from the heavy-atom model sum is taken over the specified reflections Ref: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G. & North, A. C. T. (1961). Proc. R. Soc. London Ser. A, 265, 15-38. Residual factor R~cullis,ano~ for anomalous reflections for this derivative. The Cullis R factor was originally defined only for centric reflections. It is, however, also a useful statistical measure for anomalous reflections, which is how it is used in this data item. This is tabulated for acentric terms. A value less than 1.0 means there is some contribution to the phasing from the anomalous data. sum |Fph+~obs~Fph-~obs~ - Fh+~calc~ - Fh-~calc~| R~cullis,ano~ = ------------------------------------------------ sum|Fph+~obs~ - Fph-~obs~| Fph+~obs~ = the observed positive Friedel structure-factor amplitude for the derivative Fph-~obs~ = the observed negative Friedel structure-factor amplitude for the derivative Fh+~calc~ = the calculated positive Friedel structure-factor amplitude from the heavy-atom model Fh-~calc~ = the calculated negative Friedel structure-factor amplitude from the heavy-atom model sum is taken over the specified reflections Ref: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G. & North, A. C. T. (1961). Proc. R. Soc. London Ser. A, 265, 15-38. Residual factor R~cullis~ for centric reflections for this derivative. sum| |Fph~obs~ +/- Fp~obs~| - Fh~calc~ | R~cullis~ = ---------------------------------------- sum|Fph~obs~ - Fp~obs~| Fp~obs~ = the observed structure-factor amplitude of the native Fph~obs~ = the observed structure-factor amplitude of the derivative Fh~calc~ = the calculated structure-factor amplitude from the heavy-atom model sum is taken over the specified reflections Ref: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G. & North, A. C. T. (1961). Proc. R. Soc. London Ser. A, 265, 15-38. The lowest value for the interplanar spacings for the reflection data used for this derivative. This is called the highest resolution. The highest value for the interplanar spacings for the reflection data used for this derivative. This is called the lowest resolution. The data set that was treated as the derivative in this experiment. This data item is a pointer to attribute id in category phasing_set in the PHASING_SET category. A description of special aspects of this derivative, its data, its solution or its use in phasing. The data set that was treated as the native in this experiment. This data item is a pointer to attribute id in category phasing_set in the PHASING_SET category. The number of heavy-atom sites in this derivative. The mean phasing power P for acentric reflections for this derivative. sum|Fh~calc~^2^| P = (----------------------------)^1/2^ sum|Fph~obs~ - Fph~calc~|^2^ Fph~obs~ = the observed structure-factor amplitude of this derivative Fph~calc~ = the calculated structure-factor amplitude of this derivative Fh~calc~ = the calculated structure-factor amplitude from the heavy-atom model sum is taken over the specified reflections The mean phasing power P for centric reflections for this derivative. sum|Fh~calc~^2^| P = (----------------------------)^1/2^ sum|Fph~obs~ - Fph~calc~|^2^ Fph~obs~ = the observed structure-factor amplitude of the derivative Fph~calc~ = the calculated structure-factor amplitude of the derivative Fh~calc~ = the calculated structure-factor amplitude from the heavy-atom model sum is taken over the specified reflections The number of acentric reflections used in phasing for this derivative. The number of anomalous reflections used in phasing for this derivative. The number of centric reflections used in phasing for this derivative. Criteria used to limit the reflections used in the phasing calculations. > 4 \s(I) The value of attribute id in category phasing_MIR_der must uniquely identify a record in the PHASING_MIR_DER list. Note that this item need not be a number; it can be any unique identifier. KAu(CN)2 K2HgI4_anom K2HgI4_iso Data items in the PHASING_MIR_DER_REFLN category record details about the calculated structure factors obtained in an MIR phasing experiment. This list may contain information from a number of different derivatives; attribute der_id in category phasing_MIR_der_refln indicates to which derivative a given record corresponds. (A derivative in this context does not necessarily equate with a data set; see the definition of the PHASING_MIR_DER category for a discussion of the meaning of derivative.) It is not necessary for the data items describing the measured value of F to appear in this list, as they will be given in the PHASING_SET_REFLN category. However, these items can also be listed here for completeness. Example 1 - based on laboratory records for the 6,1,25 reflection of an Hg/Pt derivative of protein NS1. <mmCIF:phasing_MIR_der_reflnCategory> <mmCIF:phasing_MIR_der_refln der_id="HGPT1" index_h="6" index_k="1" index_l="25" set_id="NS1-96"> <mmCIF:F_calc_au>106.66</mmCIF:F_calc_au> <mmCIF:F_meas_au>204.67</mmCIF:F_meas_au> <mmCIF:F_meas_sigma>6.21</mmCIF:F_meas_sigma> <mmCIF:HL_A_iso>-3.15</mmCIF:HL_A_iso> <mmCIF:HL_B_iso>-0.76</mmCIF:HL_B_iso> <mmCIF:HL_C_iso>0.65</mmCIF:HL_C_iso> <mmCIF:HL_D_iso>0.23</mmCIF:HL_D_iso> <mmCIF:phase_calc>194.48</mmCIF:phase_calc> </mmCIF:phasing_MIR_der_refln> </mmCIF:phasing_MIR_der_reflnCategory> The calculated value of the structure factor for this derivative, in electrons. The calculated value of the structure factor for this derivative, in arbitrary units. The measured value of the structure factor for this derivative, in electrons. The measured value of the structure factor for this derivative, in arbitrary units. The standard uncertainty (estimated standard deviation) of attribute F_meas in category phasing_MIR_der_refln, in electrons. The standard uncertainty (estimated standard deviation) of attribute F_meas_au in category phasing_MIR_der_refln, in arbitrary units. The isomorphous Hendrickson-Lattman coefficient A~iso~ for this reflection for this derivative. -2.0 * (Fp~obs~^2^ + Fh~calc~^2^ - Fph~obs~^2^) * Fp~obs~ * cos(alphah~calc~) A~iso~ = ----------------------------------------------- E^2^ E = (Fph~obs~ - Fp~obs~ - Fh~calc~)^2^ for centric reflections = [(Fph~obs~ - Fp~obs~) * 2^1/2^ - Fh~calc~]^2^ for acentric reflections Fp~obs~ = the observed structure-factor amplitude of the native Fph~obs~ = the observed structure-factor amplitude of the derivative Fh~calc~ = the calculated structure-factor amplitude from the heavy-atom model alphah~calc~ = the calculated phase from the heavy-atom model This coefficient appears in the expression for the phase probability of each isomorphous derivative: P~i~(alpha) = exp[k + A * cos(alpha) + B * sin(alpha) + C * cos(2 * alpha) + D * sin(2 * alpha)] Ref: Hendrickson, W. A. & Lattman, E. E. (1970). Acta Cryst. B26, 136-143. The isomorphous Hendrickson-Lattman coefficient B~iso~ for this reflection for this derivative. -2.0 * (Fp~obs~^2^ + Fh~calc~^2^ - Fph~obs~^2^) * Fp~obs~ * sin(alphah~calc~) B~iso~ = ----------------------------------------------- E^2^ E = (Fph~obs~ - Fp~obs~ - Fh~calc~)^2^ for centric reflections = [(Fph~obs~ - Fp~obs~) * 2^1/2^ - Fh~calc~]^2^ for acentric reflections Fp~obs~ = the observed structure-factor amplitude of the native Fph~obs~ = the observed structure-factor amplitude of the derivative Fh~calc~ = the calculated structure-factor amplitude from the heavy-atom model alphah~calc~ = the phase calculated from the heavy-atom model This coefficient appears in the expression for the phase probability of each isomorphous derivative: P~i~(alpha) = exp[k + A * cos(alpha) + B * sin(alpha) + C * cos(2 * alpha) + D * sin(2 * alpha)] Ref: Hendrickson, W. A. & Lattman, E. E. (1970). Acta Cryst. B26, 136-143. The isomorphous Hendrickson-Lattman coefficient C~iso~ for this reflection for this derivative. -Fp~obs~^2^ * [sin(alphah~calc~)^2^ - cos(alphah~calc~)^2^] C~iso~ = ------------------------------------ E^2^ E = (Fph~obs~ - Fp~obs~ - Fh~calc~)^2^ for centric reflections = [(Fph~obs~ - Fp~obs~) * 2^1/2^ - Fh~calc~]^2^ for acentric reflections Fp~obs~ = the observed structure-factor amplitude of the native Fph~obs~ = the observed structure-factor amplitude of the derivative Fh~calc~ = the calculated structure-factor amplitude from the heavy-atom model alphah~calc~ = the phase calculated from the heavy-atom model This coefficient appears in the expression for the phase probability of each isomorphous derivative: P~i~(alpha) = exp[k + A * cos(alpha) + B * sin(alpha) + C * cos(2 * alpha) + D * sin(2 * alpha)] Ref: Hendrickson, W. A. & Lattman, E. E. (1970). Acta Cryst. B26, 136-143. The isomorphous Hendrickson-Lattman coefficient D~iso~ for this reflection for this derivative. -2.0 * Fp~obs~^2^ * sin(alphah~calc~)^2^ * cos(alphah~calc~)^2^ D~iso~ = ---------------------------------------- E^2^ E = (Fph~obs~ - Fp~obs~ - Fh~calc~)^2^ for centric reflections = [(Fph~obs~ - Fp~obs~) * 2^1/2^ - Fh~calc~]^2^ for acentric reflections Fp~obs~ = the observed structure-factor amplitude of the native Fph~obs~ = the observed structure-factor amplitude of the derivative Fh~calc~ = the calculated structure-factor amplitude from the heavy-atom model alphah~calc~ = the phase calculated from the heavy-atom model This coefficient appears in the expression for the phase probability of each isomorphous derivative: P~i~(alpha) = exp[k + A * cos(alpha) + B * sin(alpha) + C * cos(2 * alpha) + D * sin(2 * alpha)] Ref: Hendrickson, W. A. & Lattman, E. E. (1970). Acta Cryst. B26, 136-143. The calculated value of the structure-factor phase based on the heavy-atom model for this derivative in degrees. This data item is a pointer to attribute id in category phasing_MIR_der in the PHASING_MIR_DER category. Miller index h for this reflection for this derivative. Miller index k for this reflection for this derivative. Miller index l for this reflection for this derivative. This data item is a pointer to attribute id in category phasing_set in the PHASING_SET category. Data items in the PHASING_MIR_DER_SHELL category record statistics, broken down into shells of resolution, for an MIR phasing experiment. This list may contain information from a number of different derivatives; attribute der_id in category phasing_MIR_der_shell indicates to which derivative a given record corresponds. (A derivative in this context does not necessarily equate with a data set; see the definition of the PHASING_MIR_DER category for a discussion of the meaning of derivative.) Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem. (1993), 268, 10728-10738] with addition of an arbitrary low-resolution limit. <mmCIF:phasing_MIR_der_shellCategory> <mmCIF:phasing_MIR_der_shell d_res_high="8.3" d_res_low="15.0" der_id="KAu(CN)2"> <mmCIF:ha_ampl>54</mmCIF:ha_ampl> <mmCIF:loc>26</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="6.4" d_res_low="8.3" der_id="KAu(CN)2"> <mmCIF:ha_ampl>54</mmCIF:ha_ampl> <mmCIF:loc>20</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="5.2" d_res_low="6.4" der_id="KAu(CN)2"> <mmCIF:ha_ampl>50</mmCIF:ha_ampl> <mmCIF:loc>20</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="4.4" d_res_low="5.2" der_id="KAu(CN)2"> <mmCIF:ha_ampl>44</mmCIF:ha_ampl> <mmCIF:loc>23</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="3.8" d_res_low="4.4" der_id="KAu(CN)2"> <mmCIF:ha_ampl>39</mmCIF:ha_ampl> <mmCIF:loc>23</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="3.4" d_res_low="3.8" der_id="KAu(CN)2"> <mmCIF:ha_ampl>33</mmCIF:ha_ampl> <mmCIF:loc>21</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="3.0" d_res_low="3.4" der_id="KAu(CN)2"> <mmCIF:ha_ampl>28</mmCIF:ha_ampl> <mmCIF:loc>17</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="3.0" d_res_low="15.0" der_id="KAu(CN)2"> <mmCIF:ha_ampl>38</mmCIF:ha_ampl> <mmCIF:loc>21</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="8.3" d_res_low="15.0" der_id="K2HgI4"> <mmCIF:ha_ampl>149</mmCIF:ha_ampl> <mmCIF:loc>87</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="6.4" d_res_low="8.3" der_id="K2HgI4"> <mmCIF:ha_ampl>121</mmCIF:ha_ampl> <mmCIF:loc>73</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="5.2" d_res_low="6.4" der_id="K2HgI4"> <mmCIF:ha_ampl>95</mmCIF:ha_ampl> <mmCIF:loc>61</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="4.4" d_res_low="5.2" der_id="K2HgI4"> <mmCIF:ha_ampl>80</mmCIF:ha_ampl> <mmCIF:loc>60</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="3.8" d_res_low="4.4" der_id="K2HgI4"> <mmCIF:ha_ampl>73</mmCIF:ha_ampl> <mmCIF:loc>63</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="3.4" d_res_low="3.8" der_id="K2HgI4"> <mmCIF:ha_ampl>68</mmCIF:ha_ampl> <mmCIF:loc>57</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="3.0" d_res_low="3.4" der_id="K2HgI4"> <mmCIF:ha_ampl>63</mmCIF:ha_ampl> <mmCIF:loc>46</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="3.0" d_res_low="15.0" der_id="K2HgI4"> <mmCIF:ha_ampl>79</mmCIF:ha_ampl> <mmCIF:loc>58</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="8.3" d_res_low="15.0" der_id="K3IrCl6"> <mmCIF:ha_ampl>33</mmCIF:ha_ampl> <mmCIF:loc>27</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="6.4" d_res_low="8.3" der_id="K3IrCl6"> <mmCIF:ha_ampl>40</mmCIF:ha_ampl> <mmCIF:loc>23</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="5.2" d_res_low="6.4" der_id="K3IrCl6"> <mmCIF:ha_ampl>31</mmCIF:ha_ampl> <mmCIF:loc>22</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="4.4" d_res_low="5.2" der_id="K3IrCl6"> <mmCIF:ha_ampl>27</mmCIF:ha_ampl> <mmCIF:loc>23</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="3.8" d_res_low="4.4" der_id="K3IrCl6"> <mmCIF:ha_ampl>22</mmCIF:ha_ampl> <mmCIF:loc>23</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="3.4" d_res_low="3.8" der_id="K3IrCl6"> <mmCIF:ha_ampl>19</mmCIF:ha_ampl> <mmCIF:loc>20</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="3.0" d_res_low="3.4" der_id="K3IrCl6"> <mmCIF:ha_ampl>16</mmCIF:ha_ampl> <mmCIF:loc>20</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> <mmCIF:phasing_MIR_der_shell d_res_high="3.0" d_res_low="15.0" der_id="K3IrCl6"> <mmCIF:ha_ampl>23</mmCIF:ha_ampl> <mmCIF:loc>21</mmCIF:loc> </mmCIF:phasing_MIR_der_shell> </mmCIF:phasing_MIR_der_shellCategory> Residual factor R~cullis~ for centric reflections for this derivative in this shell. sum| |Fph~obs~ +/- Fp~obs~| - Fh~calc~ | R~cullis~ = ---------------------------------------- sum|Fph~obs~ - Fp~obs~| Fp~obs~ = the observed structure-factor amplitude of the native Fph~obs~ = the observed structure-factor amplitude of the derivative Fh~calc~ = the calculated structure-factor amplitude from the heavy-atom model sum is taken over the specified reflections Ref: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G. & North, A. C. T. (1961). Proc. R. Soc. London Ser. A, 265, 15-38. Residual factor R~kraut~ for general reflections for this derivative in this shell. sum|Fph~obs~ - Fph~calc~| R~kraut~ = ------------------------- sum|Fph~obs~| Fph~obs~ = the observed structure-factor amplitude of the derivative Fph~calc~ = the calculated structure-factor amplitude of the derivative sum is taken over the specified reflections Ref: Kraut, J., Sieker, L. C., High, D. F. & Freer, S. T. (1962). Proc. Natl Acad. Sci. USA, 48, 1417-1424. The mean value of the figure of merit m for reflections for this derivative in this shell. int P~alpha~ exp(i*alpha) dalpha m = -------------------------------- int P~alpha~ dalpha P~alpha~ = the probability that the phase angle alpha is correct int is taken over the range alpha = 0 to 2 pi. The mean heavy-atom amplitude for reflections for this derivative in this shell. The mean lack-of-closure error loc for reflections for this derivative in this shell. loc = sum|Fph~obs~ - Fph~calc~| Fph~obs~ = the observed structure-factor amplitude of the derivative Fph~calc~ = the calculated structure-factor amplitude of the derivative sum is taken over the specified reflections The mean of the phase values for reflections for this derivative in this shell. The mean phasing power P for reflections for this derivative in this shell. sum|Fh~calc~^2^| P = (----------------------------)^1/2^ sum|Fph~obs~ - Fph~calc~|^2^ Fph~obs~ = the observed structure-factor amplitude of the derivative Fph~calc~ = the calculated structure-factor amplitude of the derivative Fh~calc~ = the calculated structure-factor amplitude from the heavy-atom model sum is taken over the specified reflections The number of reflections in this shell. The lowest value for the interplanar spacings for the reflection data for this derivative in this shell. This is called the highest resolution. The highest value for the interplanar spacings for the reflection data for this derivative in this shell. This is called the lowest resolution. This data item is a pointer to attribute id in category phasing_MIR_der in the PHASING_MIR_DER category. Data items in the PHASING_MIR_DER_SITE category record details about the heavy-atom sites in an MIR phasing experiment. This list may contain information from a number of different derivatives; attribute der_id in category phasing_MIR_der_site indicates to which derivative a given record corresponds. (A derivative in this context does not necessarily equate with a data set; see the definition of the PHASING_MIR_DER category for a discussion of the meaning of derivative.) Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem. (1993), 268, 10728-10738] with occupancies converted from electrons to fractional. <mmCIF:phasing_MIR_der_siteCategory> <mmCIF:phasing_MIR_der_site der_id="KAu(CN)2" id="1"> <mmCIF:B_iso>33.0</mmCIF:B_iso> <mmCIF:atom_type_symbol>Au</mmCIF:atom_type_symbol> <mmCIF:fract_x>0.082</mmCIF:fract_x> <mmCIF:fract_y>0.266</mmCIF:fract_y> <mmCIF:fract_z>0.615</mmCIF:fract_z> <mmCIF:occupancy>0.40</mmCIF:occupancy> </mmCIF:phasing_MIR_der_site> <mmCIF:phasing_MIR_der_site der_id="KAu(CN)2" id="2"> <mmCIF:B_iso>25.9</mmCIF:B_iso> <mmCIF:atom_type_symbol>Au</mmCIF:atom_type_symbol> <mmCIF:fract_x>0.607</mmCIF:fract_x> <mmCIF:fract_y>0.217</mmCIF:fract_y> <mmCIF:fract_z>0.816</mmCIF:fract_z> <mmCIF:occupancy>0.03</mmCIF:occupancy> </mmCIF:phasing_MIR_der_site> <mmCIF:phasing_MIR_der_site der_id="KAu(CN)2" id="3"> <mmCIF:B_iso>15.7</mmCIF:B_iso> <mmCIF:atom_type_symbol>Au</mmCIF:atom_type_symbol> <mmCIF:fract_x>0.263</mmCIF:fract_x> <mmCIF:fract_y>0.782</mmCIF:fract_y> <mmCIF:fract_z>0.906</mmCIF:fract_z> <mmCIF:occupancy>0.02</mmCIF:occupancy> </mmCIF:phasing_MIR_der_site> <mmCIF:phasing_MIR_der_site der_id="K2HgI4" id="1"> <mmCIF:B_iso>33.7</mmCIF:B_iso> <mmCIF:atom_type_symbol>Hg</mmCIF:atom_type_symbol> <mmCIF:fract_x>0.048</mmCIF:fract_x> <mmCIF:fract_y>0.286</mmCIF:fract_y> <mmCIF:fract_z>0.636</mmCIF:fract_z> <mmCIF:occupancy>0.63</mmCIF:occupancy> </mmCIF:phasing_MIR_der_site> <mmCIF:phasing_MIR_der_site der_id="K2HgI4" id="2"> <mmCIF:B_iso>36.7</mmCIF:B_iso> <mmCIF:atom_type_symbol>Hg</mmCIF:atom_type_symbol> <mmCIF:fract_x>0.913</mmCIF:fract_x> <mmCIF:fract_y>0.768</mmCIF:fract_y> <mmCIF:fract_z>0.889</mmCIF:fract_z> <mmCIF:occupancy>0.34</mmCIF:occupancy> </mmCIF:phasing_MIR_der_site> <mmCIF:phasing_MIR_der_site der_id="K2HgI4" id="3"> <mmCIF:B_iso>24.2</mmCIF:B_iso> <mmCIF:atom_type_symbol>Hg</mmCIF:atom_type_symbol> <mmCIF:fract_x>0.974</mmCIF:fract_x> <mmCIF:fract_y>0.455</mmCIF:fract_y> <mmCIF:fract_z>0.974</mmCIF:fract_z> <mmCIF:occupancy>0.23</mmCIF:occupancy> </mmCIF:phasing_MIR_der_site> <mmCIF:phasing_MIR_der_site der_id="K2HgI4" id="4"> <mmCIF:B_iso>14.7</mmCIF:B_iso> <mmCIF:atom_type_symbol>Hg</mmCIF:atom_type_symbol> <mmCIF:fract_x>0.903</mmCIF:fract_x> <mmCIF:fract_y>0.836</mmCIF:fract_y> <mmCIF:fract_z>0.859</mmCIF:fract_z> <mmCIF:occupancy>0.28</mmCIF:occupancy> </mmCIF:phasing_MIR_der_site> <mmCIF:phasing_MIR_der_site der_id="K2HgI4" id="5"> <mmCIF:B_iso>6.4</mmCIF:B_iso> <mmCIF:atom_type_symbol>Hg</mmCIF:atom_type_symbol> <mmCIF:fract_x>0.489</mmCIF:fract_x> <mmCIF:fract_y>0.200</mmCIF:fract_y> <mmCIF:fract_z>0.885</mmCIF:fract_z> <mmCIF:occupancy>0.07</mmCIF:occupancy> </mmCIF:phasing_MIR_der_site> <mmCIF:phasing_MIR_der_site der_id="K2HgI4" id="6"> <mmCIF:B_iso>32.9</mmCIF:B_iso> <mmCIF:atom_type_symbol>Hg</mmCIF:atom_type_symbol> <mmCIF:fract_x>0.162</mmCIF:fract_x> <mmCIF:fract_y>0.799</mmCIF:fract_y> <mmCIF:fract_z>0.889</mmCIF:fract_z> <mmCIF:occupancy>0.07</mmCIF:occupancy> </mmCIF:phasing_MIR_der_site> <mmCIF:phasing_MIR_der_site der_id="K3IrCl6" id="1"> <mmCIF:B_iso>40.8</mmCIF:B_iso> <mmCIF:atom_type_symbol>Ir</mmCIF:atom_type_symbol> <mmCIF:fract_x>0.209</mmCIF:fract_x> <mmCIF:fract_y>0.739</mmCIF:fract_y> <mmCIF:fract_z>0.758</mmCIF:fract_z> <mmCIF:occupancy>0.26</mmCIF:occupancy> </mmCIF:phasing_MIR_der_site> <mmCIF:phasing_MIR_der_site der_id="K3IrCl6" id="2"> <mmCIF:B_iso>24.9</mmCIF:B_iso> <mmCIF:atom_type_symbol>Ir</mmCIF:atom_type_symbol> <mmCIF:fract_x>0.279</mmCIF:fract_x> <mmCIF:fract_y>0.613</mmCIF:fract_y> <mmCIF:fract_z>0.752</mmCIF:fract_z> <mmCIF:occupancy>0.05</mmCIF:occupancy> </mmCIF:phasing_MIR_der_site> </mmCIF:phasing_MIR_der_siteCategory> Isotropic displacement parameter for this heavy-atom site in this derivative. The standard uncertainty (estimated standard deviation) of attribute B_iso in category phasing_MIR_der_site. The x coordinate of this heavy-atom position in this derivative specified as orthogonal angstroms. The orthogonal Cartesian axes are related to the cell axes as specified by the description given in attribute Cartn_transform_axes in category atom_sites. The standard uncertainty (estimated standard deviation) of attribute Cartn_x in category phasing_MIR_der_site. The y coordinate of this heavy-atom position in this derivative specified as orthogonal angstroms. The orthogonal Cartesian axes are related to the cell axes as specified by the description given in attribute Cartn_transform_axes in category atom_sites. The standard uncertainty (estimated standard deviation) of attribute Cartn_y in category phasing_MIR_der_site. The z coordinate of this heavy-atom position in this derivative specified as orthogonal angstroms. The orthogonal Cartesian axes are related to the cell axes as specified by the description given in attribute Cartn_transform_axes in category atom_sites. The standard uncertainty (estimated standard deviation) of attribute Cartn_z in category phasing_MIR_der_site. This data item is a pointer to attribute symbol in category atom_type in the ATOM_TYPE category. The scattering factors referenced via this data item should be those used in the refinement of the heavy-atom data; in some cases this is the scattering factor for the single heavy atom, in other cases these are the scattering factors for an atomic cluster. A description of special aspects of the derivative site. binds to His 117 minor site obtained from difference Fourier same as site 2 in the K2HgI4 derivative The x coordinate of this heavy-atom position in this derivative specified as a fraction of attribute length_a in category cell. The standard uncertainty (estimated standard deviation) of attribute fract_x in category phasing_MIR_der_site. The y coordinate of this heavy-atom position in this derivative specified as a fraction of attribute length_b in category cell. The standard uncertainty (estimated standard deviation) of attribute fract_y in category phasing_MIR_der_site. The z coordinate of this heavy-atom position in this derivative specified as a fraction of attribute length_c in category cell. The standard uncertainty (estimated standard deviation) of attribute fract_z in category phasing_MIR_der_site. The fraction of the atom type present at this heavy-atom site in a given derivative. The sum of the occupancies of all the atom types at this site may not significantly exceed 1.0 unless it is a dummy site. The relative anomalous occupancy of the atom type present at this heavy-atom site in a given derivative. This atom occupancy will probably be on an arbitrary scale. The standard uncertainty (estimated standard deviation) of attribute occupancy_anom in category phasing_MIR_der_site. The relative real isotropic occupancy of the atom type present at this heavy-atom site in a given derivative. This atom occupancy will probably be on an arbitrary scale. The standard uncertainty (estimated standard deviation) of attribute occupancy_iso in category phasing_MIR_der_site. This data item is a pointer to attribute id in category phasing_MIR_der in the PHASING_MIR_DER category. The value of attribute id in category phasing_MIR_der_site must uniquely identify each site in each derivative in the PHASING_MIR_DER_SITE list. The atom identifiers need not be unique over all sites in all derivatives; they need only be unique for each site in each derivative. Note that this item need not be a number; it can be any unique identifier. Data items in the PHASING_MIR_SHELL category record statistics for an isomorphous replacement phasing experiment.broken down into shells of resolution. Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem. (1993), 268, 10728-10738] with addition of an arbitrary low-resolution limit. <mmCIF:phasing_MIR_shellCategory> <mmCIF:phasing_MIR_shell d_res_high="8.3" d_res_low="15.0"> <mmCIF:FOM>0.69</mmCIF:FOM> <mmCIF:reflns>80</mmCIF:reflns> </mmCIF:phasing_MIR_shell> <mmCIF:phasing_MIR_shell d_res_high="6.4" d_res_low="8.3"> <mmCIF:FOM>0.73</mmCIF:FOM> <mmCIF:reflns>184</mmCIF:reflns> </mmCIF:phasing_MIR_shell> <mmCIF:phasing_MIR_shell d_res_high="5.2" d_res_low="6.4"> <mmCIF:FOM>0.72</mmCIF:FOM> <mmCIF:reflns>288</mmCIF:reflns> </mmCIF:phasing_MIR_shell> <mmCIF:phasing_MIR_shell d_res_high="4.4" d_res_low="5.2"> <mmCIF:FOM>0.65</mmCIF:FOM> <mmCIF:reflns>406</mmCIF:reflns> </mmCIF:phasing_MIR_shell> <mmCIF:phasing_MIR_shell d_res_high="3.8" d_res_low="4.4"> <mmCIF:FOM>0.54</mmCIF:FOM> <mmCIF:reflns>554</mmCIF:reflns> </mmCIF:phasing_MIR_shell> <mmCIF:phasing_MIR_shell d_res_high="3.4" d_res_low="3.8"> <mmCIF:FOM>0.53</mmCIF:FOM> <mmCIF:reflns>730</mmCIF:reflns> </mmCIF:phasing_MIR_shell> <mmCIF:phasing_MIR_shell d_res_high="3.0" d_res_low="3.4"> <mmCIF:FOM>0.50</mmCIF:FOM> <mmCIF:reflns>939</mmCIF:reflns> </mmCIF:phasing_MIR_shell> </mmCIF:phasing_MIR_shellCategory> The mean value of the figure of merit m for reflections in this shell. int P~alpha~ exp(i*alpha) dalpha m = -------------------------------- int P~alpha~ dalpha P~alpha~ = the probability that the phase angle alpha is correct the integral is taken over the range alpha = 0 to 2 pi. The mean value of the figure of merit m for acentric reflections in this shell. int P~alpha~ exp(i*alpha) dalpha m = -------------------------------- int P~alpha~ dalpha P~a~ = the probability that the phase angle a is correct the integral is taken over the range alpha = 0 to 2 pi. The mean value of the figure of merit m for centric reflections in this shell. int P~alpha~ exp(i*alpha) dalpha m = -------------------------------- int P~alpha~ dalpha P~a~ = the probability that the phase angle a is correct the integral is taken over the range alpha = 0 to 2 pi. Residual factor R~cullis~ for centric reflections in this shell. sum| |Fph~obs~ +/- Fp~obs~| - Fh~calc~ | R~cullis~ = ---------------------------------------- sum|Fph~obs~ - Fp~obs~| Fp~obs~ = the observed structure-factor amplitude of the native Fph~obs~ = the observed structure-factor amplitude of the derivative Fh~calc~ = the calculated structure-factor amplitude from the heavy-atom model sum is taken over the specified reflections Ref: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G. & North, A. C. T. (1961). Proc. R. Soc. London Ser. A, 265, 15-38. Residual factor R~kraut~ for general reflections in this shell. sum|Fph~obs~ - Fph~calc~| R~kraut~ = ------------------------- sum|Fph~obs~| Fph~obs~ = the observed structure-factor amplitude of the derivative Fph~calc~ = the calculated structure-factor amplitude of the derivative sum is taken over the specified reflections Ref: Kraut, J., Sieker, L. C., High, D. F. & Freer, S. T. (1962). Proc. Natl Acad. Sci. USA, 48, 1417-1424. The mean lack-of-closure error loc for reflections in this shell. loc = sum|Fph~obs~ - Fph~calc~| Fph~obs~ = the observed structure-factor amplitude of the derivative Fph~calc~ = the calculated structure-factor amplitude of the derivative sum is taken over the specified reflections The mean of the phase values for all reflections in this shell. The mean phasing power P for reflections in this shell. sum|Fh~calc~^2^| P = (----------------------------)^1/2^ sum|Fph~obs~ - Fph~calc~|^2^ Fph~obs~ = the observed structure-factor amplitude of the derivative Fph~calc~ = the calculated structure-factor amplitude of the derivative Fh~calc~ = the calculated structure-factor amplitude from the heavy-atom model sum is taken over the specified reflections The number of reflections in this shell. The number of acentric reflections in this shell. The number of anomalous reflections in this shell. The number of centric reflections in this shell. The lowest value for the interplanar spacings for the reflection data in this shell. This is called the highest resolution. Note that the resolution limits of shells in the items attribute d_res_high in category phasing_MIR_shell and attribute d_res_low in category phasing_MIR_shell are independent of the resolution limits of shells in the items attribute d_res_high in category reflns_shell and attribute d_res_low in category reflns_shell. The highest value for the interplanar spacings for the reflection data in this shell. This is called the lowest resolution. Note that the resolution limits of shells in the items attribute d_res_high in category phasing_MIR_shell and attribute d_res_low in category phasing_MIR_shell are independent of the resolution limits of shells in the items attribute d_res_high in category reflns_shell and attribute d_res_low in category reflns_shell. Data items in the PHASING_AVERAGING category record details about the phasing of the structure where methods involving averaging of multiple observations of the molecule in the asymmetric unit are involved. Example 1 - hypothetical example. <mmCIF:phasing_averagingCategory> <mmCIF:phasing_averaging entry_id="EXAMHYPO"> <mmCIF:details> The position of the threefold axis was redetermined every five cycles.</mmCIF:details> <mmCIF:method> Iterative threefold averaging alternating with phase extensions by 0.5 reciprocal lattice units per cycle.</mmCIF:method> </mmCIF:phasing_averaging> </mmCIF:phasing_averagingCategory> A description of special aspects of the averaging process. A description of the phase-averaging phasing method used to phase this structure. Note that this is not the computer program used, which is described in the SOFTWARE category, but rather the method itself. This data item should be used to describe significant methodological options used within the phase-averaging program. This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the PHASING_ISOMORPHOUS category record details about the phasing of the structure where a model isomorphous to the structure being phased was used to generate the initial phases. Example 1 - based on PDB entry 4PHV and laboratory records for the structure corresponding to PDB entry 4PHV. A description of special aspects of the isomorphous phasing. Residues 13-18 were eliminated from the starting model as it was anticipated that binding of the inhibitor would cause a structural rearrangement in this part of the structure. A description of the isomorphous-phasing method used to phase this structure. Note that this is not the computer program used, which is described in the SOFTWARE category, but rather the method itself. This data item should be used to describe significant methodological options used within the isomorphous phasing program. Iterative threefold averaging alternating with phase extension by 0.5 reciprocal lattice units per cycle. Reference to the structure used to generate starting phases if the structure referenced in this data block was phased by virtue of being isomorphous to a known structure (e.g. a mutant that crystallizes in the same space group as the wild-type protein.) This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the PHASING_SET category record details about the data sets used in a phasing experiment. A given data set may be used in a number of different ways; for instance, a single data set could be used both as an isomorphous derivative and as a component of a multiple-wavelength calculation. This category establishes identifiers for each data set and permits the archiving of a subset of experimental information for each data set (cell constants, wavelength, temperature etc.). This and related categories of data items are provided so that derivative intensity and phase information can be stored in the same data block as the information for the refined structure. If all the possible experimental information for each data set (raw data sets, crystal growth conditions etc.) is to be archived, these data items should be recorded in a separate data block. Example 1 - based on laboratory records for an Hg/Pt derivative of protein NS1. <mmCIF:phasing_setCategory> <mmCIF:phasing_set id="NS1-96"> <mmCIF:cell_angle_alpha>90.0</mmCIF:cell_angle_alpha> <mmCIF:cell_angle_beta>90.0</mmCIF:cell_angle_beta> <mmCIF:cell_angle_gamma>90.0</mmCIF:cell_angle_gamma> <mmCIF:cell_length_a>38.63</mmCIF:cell_length_a> <mmCIF:cell_length_b>38.63</mmCIF:cell_length_b> <mmCIF:cell_length_c>82.88</mmCIF:cell_length_c> <mmCIF:detector_specific>RXII</mmCIF:detector_specific> <mmCIF:detector_type>image plate</mmCIF:detector_type> <mmCIF:radiation_wavelength>1.5145</mmCIF:radiation_wavelength> </mmCIF:phasing_set> </mmCIF:phasing_setCategory> Unit-cell angle alpha for this data set in degrees. Unit-cell angle beta for this data set in degrees. Unit-cell angle gamma for this data set in degrees. Unit-cell length a for this data set in angstroms. Unit-cell length b for this data set in angstroms. Unit-cell length c for this data set in angstroms. The particular radiation detector. In general, this will be a manufacturer, description, model number or some combination of these. Siemens model x Kodak XG MAR Research model y The general class of the radiation detector. multiwire imaging plate CCD film The particular source of radiation. In general, this will be a manufacturer, description, or model number (or some combination of these) for laboratory sources and an institution name and beamline name for synchrotron sources. Rigaku RU200 Philips fine focus Mo NSLS beamline X8C The mean wavelength of the radiation used to measure this data set. The temperature in kelvins at which the data set was measured. The value of attribute id in category phasing_set must uniquely identify a record in the PHASING_SET list. Note that this item need not be a number; it can be any unique identifier. KAu(CN)2 K2HgI4 Data items in the PHASING_SET_REFLN category record the values of the measured structure factors used in a phasing experiment. This list may contain information from a number of different data sets; attribute set_id in category phasing_set_refln indicates the data set to which a given record corresponds. Example 1 - based on laboratory records for the 15,15,32 reflection of an Hg/Pt derivative of protein NS1. <mmCIF:phasing_set_reflnCategory> <mmCIF:phasing_set_refln index_h="15" index_k="15" index_l="32" set_id="NS1-96"> <mmCIF:F_meas_au>181.79</mmCIF:F_meas_au> <mmCIF:F_meas_sigma_au>3.72</mmCIF:F_meas_sigma_au> </mmCIF:phasing_set_refln> </mmCIF:phasing_set_reflnCategory> The measured value of the structure factor for this reflection in this data set in electrons. The measured value of the structure factor for this reflection in this data set in arbitrary units. The standard uncertainty (estimated standard deviation) of attribute F_meas in category phasing_set_refln in electrons. The standard uncertainty (estimated standard deviation) of attribute F_meas_au in category phasing_set_refln in arbitrary units. Miller index h of this reflection in this data set. Miller index k of this reflection in this data set. Miller index l of this reflection in this data set. This data item is a pointer to attribute id in category phasing_set in the PHASING_SET category. Data items in the PUBL category are used when submitting a manuscript for publication. Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. Example 2 - based on C~31~H~48~N~4~O~4~, reported by Coleman, Patrick, Andersen & Rettig [Acta Cryst. (1996), C52, 1525-1527]. The name and address of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff. It is preferable to use the separate data items _publ.contact_author_name and _publ.contact_author_address. Professor George Ferguson Department of Chemistry and Biochemistry University of Guelph Ontario Canada N1G 2W1 The address of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff. Department of Chemistry and Biochemistry University of Guelph Ontario Canada N1G 2W1 E-mail address in a form recognizable to international networks. The format of e-mail addresses is given in Section 3.4, Address Specification, of Internet Message Format, RFC 2822, P. Resnick (Editor), Network Standards Group, April 2001. name@host.domain.country uur5@banjo.bitnet Facsimile telephone number of the author submitting the manuscript and data block. The recommended style starts with the international dialing prefix, followed by the area code in parentheses, followed by the local number with no spaces. The earlier convention of including the international dialing prefix in parentheses is no longer recommended. 12(34)9477330 12()349477330 The name of the author submitting the manuscript and data block. This is the person contacted by the journal editorial staff. Professor George Ferguson Telephone number of the author submitting the manuscript and data block. The recommended style starts with the international dialing prefix, followed by the area code in parentheses, followed by the local number and any extension number prefixed by 'x', with no spaces. The earlier convention of including the international dialing prefix in parentheses is no longer recommended. 12(34)9477330 12()349477330 12(34)9477330x5543 A letter submitted to the journal editor by the contact author. A description of the word-processor package and computer used to create the word-processed manuscript stored as attribute manuscript_processed in category publ. Tex file created by FrameMaker on a Sun 3/280 The full manuscript of a paper (excluding possibly the figures and the tables) output in ASCII characters from a word processor. Information about the generation of this data item must be specified in the data item attribute manuscript_creation in category publ. The full manuscript of a paper (excluding figures and possibly the tables) output as standard ASCII text. The category of paper submitted. For submission to Acta Crystallographica Section C or Acta Crystallographica Section E, ONLY the codes indicated for use with these journals should be used. The name of the co-editor whom the authors would like to handle the submitted manuscript. The name of the journal to which the manuscript is being submitted. The abstract section of a manuscript if the manuscript is submitted in parts. As an alternative see attribute manuscript_text in category publ and attribute manuscript_processed in category publ. The acknowledgements section of a manuscript if the manuscript is submitted in parts. As an alternative see attribute manuscript_text in category publ and attribute manuscript_processed in category publ. The comment section of a manuscript if the manuscript is submitted in parts. As an alternative see attribute manuscript_text in category publ and attribute manuscript_processed in category publ. The discussion section of a manuscript if the manuscript is submitted in parts. As an alternative see attribute manuscript_text in category publ and attribute manuscript_processed in category publ. The experimental section of a manuscript if the manuscript is submitted in parts. As an alternative see attribute manuscript_text in category publ and attribute manuscript_processed. in category publ The _publ.section_exptl_prep, _publ.section_exptl_solution and attribute section_exptl_refinement in category publ items are preferred for separating the chemical preparation, structure solution and refinement aspects of the description of the experiment. The experimental preparation section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed. The experimental refinement section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed. The experimental solution section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed. The figure captions section of a manuscript if the manuscript is submitted in parts. As an alternative see attribute manuscript_text in category publ and attribute manuscript_processed in category publ. The introduction section of a manuscript if the manuscript is submitted in parts. As an alternative see attribute manuscript_text in category publ and attribute manuscript_processed in category publ. The references section of a manuscript if the manuscript is submitted in parts. As an alternative see attribute manuscript_text in category publ and attribute manuscript_processed in category publ. The synopsis section of a manuscript if the manuscript is submitted in parts. As an alternative see attribute manuscript_text in category publ and attribute manuscript_processed in category publ. The table legends section of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed. The title of a manuscript if the manuscript is submitted in parts. As an alternative see attribute manuscript_text in category publ and attribute manuscript_processed in category publ. The footnote to the title of a manuscript if the manuscript is submitted in parts. As an alternative see _publ.manuscript_text and _publ.manuscript_processed. This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the PUBL_AUTHOR category record details of the authors of a manuscript submitted for publication. Example 1 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. <mmCIF:publ_authorCategory> <mmCIF:publ_author name="Willis, Anthony C."> <mmCIF:address> Research School of Chemistry Australian National University GPO Box 4 Canberra, A.C.T. Australia 2601</mmCIF:address> </mmCIF:publ_author> </mmCIF:publ_authorCategory> The address of a publication author. If there is more than one author this is looped with attribute name in category publ_author. Department Institute Street City and postcode COUNTRY The e-mail address of a publication author. If there is more than one author, this will be looped with attribute name. in category publ_author The format of e-mail addresses is given in Section 3.4, Address Specification, of Internet Message Format, RFC 2822, P. Resnick (Editor), Network Standards Group, April 2001. name@host.domain.country bm@iucr.org A footnote accompanying an author's name in the list of authors of a paper. Typically indicates sabbatical address, additional affiliations or date of decease. On leave from U. Western Australia Also at Department of Biophysics Identifier in the IUCr contact database of a publication author. This identifier may be available from the World Directory of Crystallographers (http://wdc.iucr.org). 2985 The name of a publication author. If there are multiple authors this will be looped with attribute address in category publ_author. The family name(s), followed by a comma and including any dynastic components, precedes the first names or initials. Bleary, Percival R. O'Neil, F.K. Van den Bossche, G. Yang, D.-L. Simonov, Yu.A Data items in the PUBL_BODY category permit the labelling of different text sections within the body of a paper. Note that these should not be used in a paper which has a standard format with sections tagged by specific data names (such as in Acta Crystallographica Section C). Typically, each journal will supply a list of the specific items it requires in its Notes for Authors. Example 1 - based on a paper by R. Restori & D. Schwarzenbach [Acta Cryst. (1996), A52, 369-378]. <mmCIF:publ_bodyCategory> <mmCIF:publ_body element="section" label="1"> <mmCIF:contents> X-ray diffraction from a crystalline material provides information on the thermally and spatially averaged electron density in the crystal...</mmCIF:contents> <mmCIF:format>cif</mmCIF:format> <mmCIF:title>Introduction</mmCIF:title> </mmCIF:publ_body> <mmCIF:publ_body element="section" label="2"> <mmCIF:contents> In the rigid-atom approximation, the dynamic electron density of an atom is described by the convolution product of the static atomic density and a probability density function, $\rho_{dyn}(\bf r) = \rho_{stat}(\bf r) * P(\bf r). \eqno(1)$</mmCIF:contents> <mmCIF:format>tex</mmCIF:format> <mmCIF:title>Theory</mmCIF:title> </mmCIF:publ_body> </mmCIF:publ_bodyCategory> Example 2 - based on a paper by R. J. Papoular, Y. Vekhter & P. Coppens [Acta Cryst. (1996), A52, 397-407]. <mmCIF:publ_bodyCategory> <mmCIF:publ_body element="section" label="3"> <mmCIF:contents xsi:nil="true" /> <mmCIF:title> The two-channel method for retrieval of the deformation electron density</mmCIF:title> </mmCIF:publ_body> <mmCIF:publ_body element="subsection" label="3.1"> <mmCIF:contents> As the wide dynamic range involved in the total electron density...</mmCIF:contents> <mmCIF:title>The two-channel entropy S[\D\r(r)]</mmCIF:title> </mmCIF:publ_body> <mmCIF:publ_body element="subsection" label="3.2"> <mmCIF:contents xsi:nil="true" /> <mmCIF:title>Uniform vs informative prior model densities</mmCIF:title> </mmCIF:publ_body> <mmCIF:publ_body element="subsubsection" label="3.2.1"> <mmCIF:contents> Straightforward algebra leads to expressions analogous to...</mmCIF:contents> <mmCIF:title>Use of uniform models</mmCIF:title> </mmCIF:publ_body> </mmCIF:publ_bodyCategory> A text section of a paper. Code indicating the appropriate typesetting conventions for accented characters and special symbols in the text section. Title of the associated section of text. The functional role of the associated text section. Code identifying the section of text. 1 1.1 2.1.3 Data items in the PUBL_MANUSCRIPT_INCL category allow the authors of a manuscript submitted for publication to list data names that should be added to the standard request list used by the journal printing software. Example 1 - hypothetical example. <mmCIF:publ_manuscript_inclCategory> <mmCIF:publ_manuscript_incl entry_id="EXAMHYPO"> <mmCIF:extra_defn>yes</mmCIF:extra_defn> <mmCIF:extra_info>to emphasise special sites</mmCIF:extra_info> <mmCIF:extra_item>_atom_site.symmetry_multiplicity</mmCIF:extra_item> </mmCIF:publ_manuscript_incl> </mmCIF:publ_manuscript_inclCategory> Flags whether the corresponding data item marked for inclusion in a journal request list is a standard CIF definition or not. A short note indicating the reason why the author wishes the corresponding data item marked for inclusion in the journal request list to be published. to emphasise very special sites rare material from unusual source the limited data is a problem here a new data quantity needed here Specifies the inclusion of specific data into a manuscript which are not normally requested by the journal. The values of this item are the extra data names (which MUST be enclosed in single quotes) that will be added to the journal request list. _atom_site.symmetry_multiplicity _chemical.compound_source _reflns.d_resolution_high _crystal.magnetic_permeability This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the REFINE category record details about the structure-refinement parameters. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:refineCategory> <mmCIF:refine entry_id="5HVP"> <mmCIF:ls_R_factor_obs>0.176</mmCIF:ls_R_factor_obs> <mmCIF:ls_number_parameters>7032</mmCIF:ls_number_parameters> <mmCIF:ls_number_reflns_obs>12901</mmCIF:ls_number_reflns_obs> <mmCIF:ls_number_restraints>6609</mmCIF:ls_number_restraints> <mmCIF:ls_weighting_details> Sigdel model of Konnert-Hendrickson: Sigdel: Afsig + Bfsig*(sin(theta)/lambda-1/6) Afsig = 22.0, Bfsig = -150.0 at beginning of refinement Afsig = 15.5, Bfsig = -50.0 at end of refinement</mmCIF:ls_weighting_details> <mmCIF:ls_weighting_scheme>calc</mmCIF:ls_weighting_scheme> </mmCIF:refine> </mmCIF:refineCategory> Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. The maximum isotropic displacement parameter (B value) found in the coordinate set. The mean isotropic displacement parameter (B value) for the coordinate set. The minimum isotropic displacement parameter (B value) found in the coordinate set. The [1][1] element of the matrix that defines the overall anisotropic displacement model if one was refined for this structure. The [1][2] element of the matrix that defines the overall anisotropic displacement model if one was refined for this structure. The [1][3] element of the matrix that defines the overall anisotropic displacement model if one was refined for this structure. The [2][2] element of the matrix that defines the overall anisotropic displacement model if one was refined for this structure. The [2][3] element of the matrix that defines the overall anisotropic displacement model if one was refined for this structure. The [3][3] element of the matrix that defines the overall anisotropic displacement model if one was refined for this structure. The correlation coefficient between the observed and calculated structure factors for reflections included in the refinement. The correlation coefficient is scale-independent and gives an idea of the quality of the refined model. sum~i~(Fo~i~ Fc~i~ - <Fo><Fc>) R~corr~ = ------------------------------------------------------------ SQRT{sum~i~(Fo~i~)^2^-<Fo>^2^} SQRT{sum~i~(Fc~i~)^2^-<Fc>^2^} Fo = observed structure factors Fc = calculated structure factors <> denotes average value summation is over reflections included in the refinement The correlation coefficient between the observed and calculated structure factors for reflections not included in the refinement (free reflections). The correlation coefficient is scale-independent and gives an idea of the quality of the refined model. sum~i~(Fo~i~ Fc~i~ - <Fo><Fc>) R~corr~ = ------------------------------------------------------------ SQRT{sum~i~(Fo~i~)^2^-<Fo>^2^} SQRT{sum~i~(Fc~i~)^2^-<Fc>^2^} Fo = observed structure factors Fc = calculated structure factors <> denotes average value summation is over reflections not included in the refinement (free reflections) Description of special aspects of the refinement process. The maximum value of the electron density in the final difference Fourier map. The standard uncertainty (estimated standard deviation) of attribute diff_density_max in category refine. The minimum value of the electron density in the final difference Fourier map. The standard uncertainty (estimated standard deviation) of attribute diff_density_min in category refine. The root-mean-square-deviation of the electron density in the final difference Fourier map. This value is measured with respect to the arithmetic mean density and is derived from summations over each grid point in the asymmetric unit of the cell. This quantity is useful for assessing the significance of the values of _refine.diff_density_min and _refine.diff_density_max, and also for defining suitable contour levels. The standard uncertainty (estimated standard deviation) of attribute diff_density_rms in category refine. Residual factor R(Fsqd) for reflections that satisfy the resolution limits established by attribute ls_d_res_high in category refine and attribute ls_d_res_low in category refine and the observation limit established by attribute observed_criterion in category reflns, calculated on the squares of the observed and calculated structure-factor amplitudes. sum|F~obs~^2^ - F~calc~^2^| R(Fsqd) = --------------------------- sum|F~obs~^2^| F~obs~^2^ = squares of the observed structure-factor amplitudes F~calc~^2^ = squares of the calculated structure-factor amplitudes sum is taken over the specified reflections Residual factor R(I) for reflections that satisfy the resolution limits established by attribute ls_d_res_high in category refine and attribute ls_d_res_low in category refine and the observation limit established by attribute observed_criterion in category reflns, calculated on the estimated reflection intensities. This is most often calculated in Rietveld refinements against powder data, where it is referred to as R~B~ or R~Bragg~. sum|I~obs~ - I~calc~| R(I) = --------------------- sum|I~obs~| I~obs~ = the net observed intensities I~calc~ = the net calculated intensities sum is taken over the specified reflections Residual factor R for reflections that satisfy the resolution limits established by attribute ls_d_res_high in category refine and attribute ls_d_res_low in category refine and the observation limit established by attribute observed_criterion in category reflns, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details. in category reflns sum|F~obs~ - F~calc~| R = --------------------- sum|F~obs~| F~obs~ = the observed structure-factor amplitudes F~calc~ = the calculated structure-factor amplitudes sum is taken over the specified reflections The estimated error in attribute ls_R_factor_R_free. in category refine The method used to estimate the error is described in the item attribute ls_R_factor_R_free_error_details in category refine. Special aspects of the method used to estimated the error in attribute ls_R_factor_R_free in category refine. Residual factor R for reflections that satisfy the resolution limits established by attribute ls_d_res_high in category refine and attribute ls_d_res_low in category refine and the observation limit established by attribute observed_criterion in category reflns, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details. in category reflns attribute ls_R_factor_obs in category refine should not be confused with attribute ls_R_factor_R_work in category refine; the former reports the results of a refinement in which all observed reflections were used, the latter a refinement in which a subset of the observed reflections were excluded from refinement for the calculation of a 'free' R factor. However, it would be meaningful to quote both values if a 'free' R factor were calculated for most of the refinement, but all of the observed reflections were used in the final rounds of refinement; such a protocol should be explained in attribute details. in category refine sum|F~obs~ - F~calc~| R = --------------------- sum|F~obs~| F~obs~ = the observed structure-factor amplitudes F~calc~ = the calculated structure-factor amplitudes sum is taken over the specified reflections Residual factor R for all reflections that satisfy the resolution limits established by attribute ls_d_res_high in category refine and attribute ls_d_res_low. in category refine sum|F~obs~ - F~calc~| R = --------------------- sum|F~obs~| F~obs~ = the observed structure-factor amplitudes F~calc~ = the calculated structure-factor amplitudes sum is taken over the specified reflections Residual factor for the reflections (with number given by attribute number_gt) in category reflns judged significantly intense (i.e. satisfying the threshold specified by attribute threshold_expression) in category reflns and included in the refinement. The reflections also satisfy the resolution limits established by attribute ls_d_res_high in category refine and attribute ls_d_res_low in category refine. This is the conventional R factor. See also attribute ls_wR_factor_ in category refine definitions. sum | F(obs) - F(calc) | R = ------------------------ sum | F(obs) | F(obs) = the observed structure-factor amplitudes F(calc) = the calculated structure-factor amplitudes and the sum is taken over the specified reflections Residual factor R for reflections that satisfy the resolution limits established by attribute ls_d_res_high in category refine and attribute ls_d_res_low in category refine and the observation limit established by attribute observed_criterion. in category reflns attribute ls_R_factor_obs in category refine should not be confused with attribute ls_R_factor_R_work in category refine; the former reports the results of a refinement in which all observed reflections were used, the latter a refinement in which a subset of the observed reflections were excluded from refinement for the calculation of a 'free' R factor. However, it would be meaningful to quote both values if a 'free' R factor were calculated for most of the refinement, but all of the observed reflections were used in the final rounds of refinement; such a protocol should be explained in attribute details. in category refine sum|F~obs~ - F~calc~| R = --------------------- sum|F~obs~| F~obs~ = the observed structure-factor amplitudes F~calc~ = the calculated structure-factor amplitudes sum is taken over the specified reflections The measure of absolute structure (enantiomorph or polarity) as defined by Flack (1983). For centrosymmetric structures, the only permitted value, if the data name is present, is 'inapplicable', represented by '.' . For noncentrosymmetric structures the value must lie in the 99.97% Gaussian confidence interval -3u =< x =< 1 + 3u and a standard uncertainty (estimated standard deviation) u must be supplied. The item range of [0.0:1.0] is correctly interpreted as meaning (0.0 - 3u) =< x =< (1.0 + 3u). Ref: Flack, H. D. (1983). Acta Cryst. A39, 876-881. The standard uncertainty (estimated standard deviation) of attribute ls_abs_structure_Flack in category refine. The measure of absolute structure (enantiomorph or polarity) as defined by Rogers. The value must lie in the 99.97% Gaussian confidence interval -1 -3u =< \h =< 1 + 3u and a standard uncertainty (estimated standard deviation) u must be supplied. The item range of [-1.0, 1.0] is correctly interpreted as meaning (-1.0 - 3u) =< \h =< (1.0 + 3u). Ref: Rogers, D. (1981). Acta Cryst. A37, 734-741. The standard uncertainty (estimated standard deviation) of attribute ls_abs_structure_Rogers in category refine. The nature of the absolute structure and how it was determined. For example, this may describe the Friedel pairs used. The smallest value for the interplanar spacings for the reflection data used in the refinement in angstroms. This is called the highest resolution. The largest value for the interplanar spacings for the reflection data used in the refinement in angstroms. This is called the lowest resolution. The extinction coefficient used to calculate the correction factor applied to the structure-factor data. The nature of the extinction coefficient is given in the definitions of attribute ls_extinction_expression in category refine and attribute ls_extinction_method. in category refine For the 'Zachariasen' method it is the r* value; for the 'Becker-Coppens type 1 isotropic' method it is the 'g' value, and for 'Becker-Coppens type 2 isotropic' corrections it is the 'rho' value. Note that the magnitude of these values is usually of the order of 10000. Ref: Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-47, 148-153. Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564. Larson, A. C. (1967). Acta Cryst. 23, 664-665. Zachariasen coefficient r* = 0.347 E04 3472 The standard uncertainty (estimated standard deviation) of attribute ls_extinction_coef in category refine. A description of or reference to the extinction-correction equation used to apply the data item attribute ls_extinction_coef in category refine. This information must be sufficient to reproduce the extinction-correction factors applied to the structure factors. Larson, A. C. (1970). "Crystallographic Computing", edited by F. R. Ahmed. Eq. (22), p.292. Copenhagen: Munksgaard. A description of the extinction-correction method applied. This description should include information about the correction method, either 'Becker-Coppens' or 'Zachariasen'. The latter is sometimes referred to as the 'Larson' method even though it employs Zachariasen's formula. The Becker-Coppens procedure is referred to as 'type 1' when correcting secondary extinction dominated by the mosaic spread; as 'type 2' when secondary extinction is dominated by particle size and includes a primary extinction component; and as 'mixed' when there is a mixture of types 1 and 2. For the Becker-Coppens method, it is also necessary to set the mosaic distribution as either 'Gaussian' or 'Lorentzian' and the nature of the extinction as 'isotropic' or 'anisotropic'. Note that if either the 'mixed' or 'anisotropic' corrections are applied, the multiple coefficients cannot be contained in *_extinction_coef and must be listed in attribute details. in category refine Ref: Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147, 148-153. Zachariasen, W. H. (1967). Acta Cryst. 23, 558- 564. Larson, A. C. (1967). Acta Cryst. 23, 664-665. B-C type 2 Gaussian isotropic The least-squares goodness-of-fit parameter S for all data after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least-squares refinement. See also the definition of attribute ls_restrained_S_all. in category refine ( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^ S = ( ---------------------------- ) ( N~ref~ - N~param~ ) Y~obs~ = the observed coefficients (see attribute ls_structure_factor_coef) in category refine Y~calc~ = the calculated coefficients (see attribute ls_structure_factor_coef) in category refine w = the least-squares reflection weight [1/(e.s.d. squared)] N~ref~ = the number of reflections used in the refinement N~param~ = the number of refined parameters sum is taken over the specified reflections The standard uncertainty (estimated standard deviation) of attribute ls_goodness_of_fit_all in category refine. The least-squares goodness-of-fit parameter S for significantly intense reflections (see attribute threshold_expression) in category reflns after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least-squares refinement. See also attribute ls_restrained_S_ in category refine definitions. { sum { w [ Y(obs) - Y(calc) ]^2^ } }^1/2^ S = { ----------------------------------- } { Nref - Nparam } Y(obs) = the observed coefficients (see _refine_ls_structure_factor_coef) Y(calc) = the calculated coefficients (see _refine_ls_structure_factor_coef) w = the least-squares reflection weight [1/(u^2^)] u = standard uncertainty Nref = the number of reflections used in the refinement Nparam = the number of refined parameters and the sum is taken over the specified reflections The least-squares goodness-of-fit parameter S for reflection data classified as 'observed' (see attribute observed_criterion) in category reflns after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least-squares refinement. See also the definition of attribute ls_restrained_S_obs. in category refine ( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^ S = ( ---------------------------- ) ( N~ref~ - N~param~ ) Y~obs~ = the observed coefficients (see attribute ls_structure_factor_coef) in category refine Y~calc~ = the calculated coefficients (see attribute ls_structure_factor_coef) in category refine w = the least-squares reflection weight [1/(e.s.d. squared)] N~ref~ = the number of reflections used in the refinement N~param~ = the number of refined parameters sum is taken over the specified reflections The standard uncertainty (estimated standard deviation) of attribute ls_goodness_of_fit_obs in category refine. The least-squares goodness-of-fit parameter S for all reflections included in the refinement after the final cycle of refinement. Ideally, account should be taken of parameters restrained in the least-squares refinement. See also _refine_ls_restrained_S_ definitions. { sum | w | Y(obs) - Y(calc) |^2^ | }^1/2^ S = { ----------------------------------- } { Nref - Nparam } Y(obs) = the observed coefficients (see _refine_ls_structure_factor_coef) Y(calc) = the calculated coefficients (see _refine_ls_structure_factor_coef) w = the least-squares reflection weight [1/(u^2^)] u = standard uncertainty Nref = the number of reflections used in the refinement Nparam = the number of refined parameters and the sum is taken over the specified reflections Treatment of hydrogen atoms in the least-squares refinement. Type of matrix used to accumulate the least-squares derivatives. The number of constrained (non-refined or dependent) parameters in the least-squares process. These may be due to symmetry or any other constraint process (e.g. rigid-body refinement). See also _atom_site.constraints and _atom_site.refinement_flags. A general description of constraints may appear in attribute details in category refine. The number of parameters refined in the least-squares process. If possible, this number should include some contribution from the restrained parameters. The restrained parameters are distinct from the constrained parameters (where one or more parameters are linearly dependent on the refined value of another). Least-squares restraints often depend on geometry or energy considerations and this makes their direct contribution to this number, and to the goodness-of-fit calculation, difficult to assess. The number of reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the observation limit established by attribute observed_criterion in category reflns, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details in category reflns. The number of reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the observation limit established by attribute observed_criterion in category reflns, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details in category reflns. The number of reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low. The number of reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the observation limit established by attribute observed_criterion in category reflns. The number of restrained parameters. These are parameters which are not directly dependent on another refined parameter. Restrained parameters often involve geometry or energy dependencies. See also _atom_site.constraints and _atom_site.refinement_flags. A general description of refinement constraints may appear in attribute details in category refine. The number of reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the observation limit established by attribute observed_criterion in category reflns, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' R factor, expressed as a percentage of the number of geometrically observable reflections that satisfy the resolution limits. The number of reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the observation limit established by attribute observed_criterion in category reflns, expressed as a percentage of the number of geometrically observable reflections that satisfy the resolution limits. The ratio of the total number of observations of the reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low to the number of crystallographically unique reflections that satisfy the same limits. The ratio of the total number of observations of the reflections that satisfy the resolution limits established by _refine.ls_d_res_high and _refine.ls_d_res_low and the observation limit established by attribute observed_criterion in category reflns to the number of crystallographically unique reflections that satisfy the same limits. The least-squares goodness-of-fit parameter S' for all reflections after the final cycle of least-squares refinement. This parameter explicitly includes the restraints applied in the least-squares process. See also the definition of attribute ls_goodness_of_fit_all. in category refine ( sum |w |Y~obs~ - Y~calc~|^2^| )^1/2^ ( + sum~r~|w~r~ |P~calc~ - P~targ~|^2^| ) S' = ( ------------------------------------- ) ( N~ref~ + N~restr~ - N~param~ ) Y~obs~ = the observed coefficients (see attribute ls_structure_factor_coef) in category refine Y~calc~ = the calculated coefficients (see attribute ls_structure_factor_coef) in category refine w = the least-squares reflection weight [1/(e.s.d. squared)] P~calc~ = the calculated restraint values P~targ~ = the target restraint values w~r~ = the restraint weight N~ref~ = the number of reflections used in the refinement (see attribute ls_number_reflns_obs) in category refine N~restr~ = the number of restraints (see attribute ls_number_restraints) in category refine N~param~ = the number of refined parameters (see attribute ls_number_parameters) in category refine sum is taken over the specified reflections sumr is taken over the restraints The least-squares goodness-of-fit parameter S' for reflection data classified as observed (see attribute observed_criterion) in category reflns after the final cycle of least-squares refinement. This parameter explicitly includes the restraints applied in the least-squares process. See also the definition of attribute ls_goodness_of_fit_obs. in category refine ( sum |w |Y~obs~ - Y~calc~|^2^| )^1/2^ ( + sum~r~|w~r~ |P~calc~ - P~targ~|^2^| ) S' = ( ------------------------------------- ) ( N~ref~ + N~restr~ - N~param~ ) Y~obs~ = the observed coefficients (see attribute ls_structure_factor_coef) in category refine Y~calc~ = the calculated coefficients (see attribute ls_structure_factor_coef) in category refine w = the least-squares reflection weight [1/(e.s.d. squared)] P~calc~ = the calculated restraint values P~targ~ = the target restraint values w~r~ = the restraint weight N~ref~ = the number of reflections used in the refinement (see attribute ls_number_reflns_obs) in category refine N~restr~ = the number of restraints (see attribute ls_number_restraints) in category refine N~param~ = the number of refined parameters (see attribute ls_number_parameters) in category refine sum is taken over the specified reflections sumr is taken over the restraints The largest ratio of the final least-squares parameter shift to the final standard uncertainty (estimated standard deviation). The average ratio of the final least-squares parameter shift to the final standard uncertainty (estimated standard deviation). The largest ratio of the final least-squares parameter shift to the final standard uncertainty. An upper limit for the largest ratio of the final least-squares parameter shift to the final standard uncertainty. This item is used when the largest value of the shift divided by the final standard uncertainty is too small to measure. The average ratio of the final least-squares parameter shift to the final standard uncertainty. An upper limit for the average ratio of the final least-squares parameter shift to the final standard uncertainty. This item is used when the average value of the shift divided by the final standard uncertainty is too small to measure. Structure-factor coefficient |F|, F^2^ or I used in the least- squares refinement process. Weighted residual factor wR for reflections that satisfy the resolution limits established by attribute ls_d_res_high in category refine and attribute ls_d_res_low in category refine and the observation limit established by attribute observed_criterion in category reflns, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details. in category reflns ( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^ wR = ( ---------------------------- ) ( sum|w Y~obs~^2^| ) Y~obs~ = the observed amplitude specified by attribute ls_structure_factor_coef in category refine Y~calc~ = the calculated amplitude specified by attribute ls_structure_factor_coef in category refine w = the least-squares weight sum is taken over the specified reflections Weighted residual factor wR for reflections that satisfy the resolution limits established by attribute ls_d_res_high in category refine and attribute ls_d_res_low in category refine and the observation limit established by attribute observed_criterion in category reflns, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details. in category reflns ( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^ wR = ( ---------------------------- ) ( sum|w Y~obs~^2^| ) Y~obs~ = the observed amplitude specified by attribute ls_structure_factor_coef in category refine Y~calc~ = the calculated amplitude specified by attribute ls_structure_factor_coef in category refine w = the least-squares weight sum is taken over the specified reflections Weighted residual factor wR for all reflections that satisfy the resolution limits established by attribute ls_d_res_high in category refine and attribute ls_d_res_low. in category refine ( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^ wR = ( ---------------------------- ) ( sum|w Y~obs~^2^| ) Y~obs~ = the observed amplitude specified by attribute ls_structure_factor_coef in category refine Y~calc~ = the calculated amplitude specified by attribute ls_structure_factor_coef in category refine w = the least-squares weight sum is taken over the specified reflections Weighted residual factor wR for reflections that satisfy the resolution limits established by attribute ls_d_res_high in category refine and attribute ls_d_res_low in category refine and the observation limit established by attribute observed_criterion. in category reflns ( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^ wR = ( ---------------------------- ) ( sum|w Y~obs~^2^| ) Y~obs~ = the observed amplitude specified by attribute ls_structure_factor_coef in category refine Y~calc~ = the calculated amplitude specified by attribute ls_structure_factor_coef in category refine w = the least-squares weight sum is taken over the specified reflections A description of special aspects of the weighting scheme used in least-squares refinement. Used to describe the weighting when the value of attribute ls_weighting_scheme in category refine is specified as 'calc'. Sigdel model of Konnert-Hendrickson: Sigdel = Afsig + Bfsig*(sin(theta)/lambda-1/6) Afsig = 22.0, Bfsig = 150.0 at the beginning of refinement. Afsig = 16.0, Bfsig = 60.0 at the end of refinement. The weighting scheme applied in the least-squares process. The standard code may be followed by a description of the weight (but see attribute ls_weighting_details in category refine for a preferred approach). The maximum value for occupancy found in the coordinate set. The minimum value for occupancy found in the coordinate set. Average figure of merit of phases of reflections not included in the refinement. This value is derived from the likelihood function. FOM = I_1(X)/I_0(X) I_0, I_1 = zero- and first-order modified Bessel functions of the first kind X = sigma_A |E_o| |E_c|/SIGMA E_o, E_c = normalized observed and calculated structure factors sigma_A = <cos 2 pi s delta_x> SQRT(Sigma_P/Sigma_N) estimated using maximum likelihood Sigma_P = sum_{atoms in model} f^2 Sigma_N = sum_{atoms in crystal} f^2 f = form factor of atoms delta_x = expected error SIGMA = (sigma_{E;exp})^2 + epsilon [1-(sigma_A)^2] sigma_{E;exp} = uncertainties of normalized observed structure factors epsilon = multiplicity of the diffracting plane Ref: Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst. D53, 240-255. Average figure of merit of phases of reflections included in the refinement. This value is derived from the likelihood function FOM = I_1(X)/I_0(X) I_0, I_1 = zero- and first-order modified Bessel functions of the first kind X = sigma_A |E_o| |E_c|/SIGMA E_o, E_c = normalized observed and calculated structure factors sigma_A = <cos 2 pi s delta_x> SQRT(Sigma_P/Sigma_N) estimated using maximum likelihood Sigma_P = sum_{atoms in model} f^2 Sigma_N = sum_{atoms in crystal} f^2 f = form factor of atoms delta_x = expected error SIGMA = (sigma_{E;exp})^2 + epsilon [1-(sigma_A)^2] sigma_{E;exp} = uncertainties of normalized observed structure factors epsilon = multiplicity of diffracting plane Ref: Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst. D53, 240-255. The overall standard uncertainty (estimated standard deviation) of the displacement parameters based on a maximum-likelihood residual. The overall standard uncertainty (sigma~B~)^2 gives an idea of the uncertainty in the B values of averagely defined atoms (atoms with B values equal to the average B value). N_a (sigma~B~)^2 = 8 ---------------------------------------------- sum~i~ {[1/Sigma - (E_o)^2 (1-m^2)](SUM_AS)s^4} SUM_AS = (sigma_A)^2/Sigma^2 N_a = number of atoms Sigma = (sigma_{E;exp})^2 + epsilon [1-(sigma_A)^2] E_o = normalized structure factors sigma_{E;exp} = experimental uncertainties of normalized structure factors sigma_A = <cos 2 pi s delta_x> SQRT(Sigma_P/Sigma_N) estimated using maximum likelihood Sigma_P = sum_{atoms in model} f^2 Sigma_N = sum_{atoms in crystal} f^2 f = form factor of atoms delta_x = expected error m = figure of merit of phases of reflections included in the summation s = reciprocal-space vector epsilon = multiplicity of diffracting plane summation is over all reflections included in refinement Ref: (sigma_A estimation) "Refinement of macromolecular structures by the maximum-likelihood method", Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst. D53, 240-255. (SU ML estimation) Murshudov, G. N. & Dodson, E. J. (1997). Simplified error estimation a la Cruickshank in macromolecular crystallography. CCP4 Newsletter on Protein Crystallography, No. 33, January 1997, pp. 31-39. http://www.ccp4.ac.uk/newsletters/newsletter33/murshudov.html The overall standard uncertainty (estimated standard deviation) of the positional parameters based on a maximum likelihood residual. The overall standard uncertainty (sigma~X~)^2 gives an idea of the uncertainty in the position of averagely defined atoms (atoms with B values equal to average B value) 3 N_a (sigma~X~)^2 = ----------------------------------------------------- 8 pi^2 sum~i~ {[1/Sigma - (E_o)^2 (1-m^2)](SUM_AS)s^2} SUM_AS = (sigma_A)^2/Sigma^2) N_a = number of atoms Sigma = (sigma_{E;exp})^2 + epsilon [1-{sigma_A)^2] E_o = normalized structure factors sigma_{E;exp} = experimental uncertainties of normalized structure factors sigma_A = <cos 2 pi s delta_x> SQRT(Sigma_P/Sigma_N) estimated using maximum likelihood Sigma_P = sum_{atoms in model} f^2 Sigma_N = sum_{atoms in crystal} f^2 f = form factor of atoms delta_x = expected error m = figure of merit of phases of reflections included in the summation s = reciprocal-space vector epsilon = multiplicity of the diffracting plane summation is over all reflections included in refinement Ref: (sigma_A estimation) "Refinement of macromolecular structures by the maximum-likelihood method", Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Acta Cryst. D53, 240-255. (SU ML estimation) Murshudov, G. N. & Dodson, E. J. (1997). Simplified error estimation a la Cruickshank in macromolecular crystallography. CCP4 Newsletter on Protein Crystallography, No. 33, January 1997, pp. 31-39. http://www.ccp4.ac.uk/newsletters/newsletter33/murshudov.html The overall standard uncertainty (estimated standard deviation) of the displacement parameters based on the crystallographic R value, expressed in a formalism known as the dispersion precision indicator (DPI). The overall standard uncertainty (sigma~B~) gives an idea of the uncertainty in the B values of averagely defined atoms (atoms with B values equal to the average B value). N_a (sigma_B)^2 = 0.65 --------- (R_value)^2 (D_min)^2 C^(-2/3) (N_o-N_p) N_a = number of atoms N_o = number of reflections included in refinement N_p = number of refined parameters R_value = conventional crystallographic R value D_min = maximum resolution C = completeness of data Ref: Cruickshank, D. W. J. (1999). Acta Cryst. D55, 583-601. Murshudov, G. N. & Dodson, E. J. (1997). Simplified error estimation a la Cruickshank in macromolecular crystallography. CCP4 Newsletter on Protein Crystallography, No. 33, January 1997, pp. 31-39. http://www.ccp4.ac.uk/newsletters/newsletter33/murshudov.html The overall standard uncertainty (estimated standard deviation) of the displacement parameters based on the free R value. The overall standard uncertainty gives an idea of the uncertainty in the B values of averagely defined atoms (atoms with B values equal to the average B value). N_a (sigma_B)^2 = 0.65 ----- (R_free)^2 (D_min)^2 C^(-2/3) N_o N_a = number of atoms N_o = number of reflections included in refinement R_free = conventional free crystallographic R value calculated using reflections not included in refinement D_min = maximum resolution C = completeness of data Ref: Cruickshank, D. W. J. (1999). Acta Cryst. D55, 583-601. Murshudov, G. N. & Dodson, E. J. (1997). Simplified error estimation a la Cruickshank in macromolecular crystallography. CCP4 Newsletter on Protein Crystallography, No. 33, January 1997, pp. 31-39. http://www.ccp4.ac.uk/newsletters/newsletter33/murshudov.html Special aspects of the solvent model used during refinement. The value of the BSOL solvent-model parameter describing the average isotropic displacement parameter of disordered solvent atoms. This is one of the two parameters (the other is attribute solvent_model_param_ksol) in category refine in Tronrud's method of modelling the contribution of bulk solvent to the scattering. The standard scale factor is modified according to the expression k0 exp(-B0 * s^2^)[1-KSOL * exp(-BSOL * s^2^)] where k0 and B0 are the scale factors for the protein. Ref: Tronrud, D. E. (1997). Methods Enzymol. 277, 243-268. The value of the KSOL solvent-model parameter describing the ratio of the electron density in the bulk solvent to the electron density in the molecular solute. This is one of the two parameters (the other is attribute solvent_model_param_bsol) in category refine in Tronrud's method of modelling the contribution of bulk solvent to the scattering. The standard scale factor is modified according to the expression k0 exp(-B0 * s^2^)[1-KSOL * exp(-BSOL * s^2^)] where k0 and B0 are the scale factors for the protein. Ref: Tronrud, D. E. (1997). Methods Enzymol. 277, 243-268. This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the REFINE_B_ISO category record details about the treatment of isotropic B factors (displacement parameters) during refinement. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:refine_B_isoCategory> <mmCIF:refine_B_iso class="protein"> <mmCIF:treatment>isotropic</mmCIF:treatment> </mmCIF:refine_B_iso> <mmCIF:refine_B_iso class="solvent"> <mmCIF:treatment>isotropic</mmCIF:treatment> </mmCIF:refine_B_iso> <mmCIF:refine_B_iso class="inhibitor"> <mmCIF:treatment>isotropic</mmCIF:treatment> </mmCIF:refine_B_iso> </mmCIF:refine_B_isoCategory> A description of special aspects of the isotropic B-factor (displacement-parameter) refinement for the class of atoms described in attribute class in category refine_B_iso. The temperature factors of atoms in the side chain of Arg 92 were held fixed due to unstable behavior in refinement. The treatment of isotropic B-factor (displacement-parameter) refinement for a class of atoms defined in attribute class in category refine_B_iso. The value of the isotropic B factor (displacement parameter) assigned to a class of atoms defined in attribute class. in category refine_B_iso Meaningful only for atoms with fixed isotropic B factors. A class of atoms treated similarly for isotropic B-factor (displacement-parameter) refinement. all protein solvent sugar-phosphate backbone Data items in the REFINE_ANALYZE category record details about the refined structure that are often used to analyze the refinement and assess its quality. A given computer program may or may not produce values corresponding to these data names. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:refine_analyzeCategory> <mmCIF:refine_analyze entry_id="5HVP"> <mmCIF:Luzzati_coordinate_error_obs>0.056</mmCIF:Luzzati_coordinate_error_obs> <mmCIF:Luzzati_d_res_low_obs>2.51</mmCIF:Luzzati_d_res_low_obs> </mmCIF:refine_analyze> </mmCIF:refine_analyzeCategory> The estimated coordinate error obtained from the plot of the R value versus sin(theta)/lambda for the reflections treated as a test set during refinement. Ref: Luzzati, V. (1952). Traitement statistique des erreurs dans la determination des structures cristallines. Acta Cryst. 5, 802-810. The estimated coordinate error obtained from the plot of the R value versus sin(theta)/lambda for reflections classified as observed. Ref: Luzzati, V. (1952). Traitement statistique des erreurs dans la determination des structures cristallines. Acta Cryst. 5, 802-810. The value of the low-resolution cutoff used in constructing the Luzzati plot for reflections treated as a test set during refinement. Ref: Luzzati, V. (1952). Traitement statistique des erreurs dans la determination des structures cristallines. Acta Cryst. 5, 802-810. The value of the low-resolution cutoff used in constructing the Luzzati plot for reflections classified as observed. Ref: Luzzati, V. (1952). Traitement statistique des erreurs dans la determination des structures cristallines. Acta Cryst. 5, 802-810. The value of sigma~a~ used in constructing the Luzzati plot for the reflections treated as a test set during refinement. Details of the estimation of sigma~a~ can be specified in attribute Luzzati_sigma_a_free_details. in category refine_analyze Ref: Luzzati, V. (1952). Traitement statistique des erreurs dans la determination des structures cristallines. Acta Cryst. 5, 802-810. Details of the estimation of sigma~a~ for the reflections treated as a test set during refinement. Ref: Luzzati, V. (1952). Traitement statistique des erreurs dans la determination des structures cristallines. Acta Cryst. 5, 802-810. The value of sigma~a~ used in constructing the Luzzati plot for reflections classified as observed. Details of the estimation of sigma~a~ can be specified in attribute Luzzati_sigma_a_obs_details. in category refine_analyze Ref: Luzzati, V. (1952). Traitement statistique des erreurs dans la determination des structures cristallines. Acta Cryst. 5, 802-810. Special aspects of the estimation of sigma~a~ for the reflections classified as observed. Ref: Luzzati, V. (1952). Traitement statistique des erreurs dans la determination des structures cristallines. Acta Cryst. 5, 802-810. The value of the high-resolution cutoff in angstroms used in the calculation of the Hamilton generalized R factor (RG) stored in attribute RG_work in category refine_analyze and attribute RG_free. in category refine_analyze Ref: Hamilton, W. C. (1965). Acta Cryst. 18, 502-510. The value of the low-resolution cutoff in angstroms used in the calculation of the Hamilton generalized R factor (RG) stored in attribute RG_work in category refine_analyze and attribute RG_free. in category refine_analyze Ref: Hamilton, W. C. (1965). Acta Cryst. 18, 502-510. The Hamilton generalized R factor for all reflections that satisfy the resolution limits established by attribute RG_d_res_high in category refine_analyze and attribute RG_d_res_low in category refine_analyze for the free R set of reflections that were excluded from the refinement. sum_i sum_j w_{i,j}(|Fobs|_i - G|Fcalc|_i)(|Fobs|_j - G|Fcalc|_j) RG = Sqrt( ----------------------------------------------------------------- ) sum_i sum_j w_{i,j} |Fobs|_i |Fobs|_j where |Fobs| = the observed structure-factor amplitudes |Fcalc| = the calculated structure-factor amplitudes G = the scale factor which puts |Fcalc| on the same scale as |Fobs| w_{i,j} = the weight for the combination of the reflections i and j. sum_i and sum_j are taken over the specified reflections When the covariance of the amplitudes of reflection i and reflection j is zero (i.e. the reflections are independent) w{i,i} can be redefined as w_i and the nested sums collapsed into one sum. sum_i w_i(|Fobs|_i - G|Fcalc|_i)^2 RG = Sqrt( ----------------------------------- ) sum_i w_i |Fobs|_i^2 Ref: Hamilton, W. C. (1965). Acta Cryst. 18, 502-510. The observed ratio of RGfree to RGwork. The expected RG ratio is the value that should be achievable at the end of a structure refinement when only random uncorrelated errors exist in the data and the model provided that the observations are properly weighted. When compared with the observed RG ratio it may indicate that a structure has not reached convergence or a model has been over-refined with no corresponding improvement in the model. In an unrestrained refinement, the ratio of RGfree to RGwork with only random uncorrelated errors at convergence depends only on the number of reflections and the number of parameters according to sqrt[(f + m) / (f - m) ] where f = the number of included structure amplitudes and target distances, and m = the number of parameters being refined. In the restrained case, RGfree is calculated from a random selection of residuals including both structure amplitudes and restraints. When restraints are included in the refinement, the RG ratio requires a term for the contribution to the minimized residual at convergence, D~restr~, due to those restraints: D~restr~ = r - sum [w_i . (a_i)^t . (H)^-1 a_i] where r is the number of geometrical, displacement-parameter and other restraints H is the (m,m) normal matrix given by A^t.W.A W is the (n,n) symmetric weight matrix of the included observations A is the least-squares design matrix of derivatives of order (n,m) a_i is the ith row of A Then the expected RGratio becomes sqrt [ (f + (m - r + D~restr~))/ (f - (m - r + D~restr~)) ] There is no data name for the expected value of RGfree/RGwork yet. Ref: Tickle, I. J., Laskowski, R. A. & Moss, D. S. (1998). Acta Cryst. D54, 547-557. The Hamilton generalized R factor for all reflections that satisfy the resolution limits established by attribute RG_d_res_high in category refine_analyze and attribute RG_d_res_low in category refine_analyze and for those reflections included in the working set when a free R set of reflections is omitted from the refinement. sum_i sum_j w_{i,j}(|Fobs|_i - G|Fcalc|_i)(|Fobs|_j - G|Fcalc|_j) RG = Sqrt( ----------------------------------------------------------------- ) sum_i sum_j w_{i,j} |Fobs|_i |Fobs|_j where |Fobs| = the observed structure-factor amplitudes |Fcalc| = the calculated structure-factor amplitudes G = the scale factor which puts |Fcalc| on the same scale as |Fobs| w_{i,j} = the weight for the combination of the reflections i and j. sum_i and sum_j are taken over the specified reflections When the covariance of the amplitudes of reflection i and reflection j is zero (i.e. the reflections are independent) w{i,i} can be redefined as w_i and the nested sums collapsed into one sum. sum_i w_i(|Fobs|_i - G|Fcalc|_i)^2 RG = Sqrt( ----------------------------------- ) sum_i w_i |Fobs|_i^2 Ref: Hamilton, W. C. (1965). Acta Cryst. 18, 502-510. The number of discretely disordered residues in the refined model. The sum of the occupancies of the hydrogen atoms in the refined model. The sum of the occupancies of the non-hydrogen atoms in the refined model. This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the REFINE_FUNCT_MINIMIZED category record details about the individual terms of the function minimized during refinement. Example 1 - based on RESTRAIN refinement for the CCP4 test data set toxd. <mmCIF:refine_funct_minimizedCategory> <mmCIF:refine_funct_minimized type="sum(W*Delta(Amplitude)^2"> <mmCIF:number_terms>3009</mmCIF:number_terms> <mmCIF:residual>1621.3</mmCIF:residual> </mmCIF:refine_funct_minimized> <mmCIF:refine_funct_minimized type="sum(W*Delta(Plane+Rigid)^2"> <mmCIF:number_terms>85</mmCIF:number_terms> <mmCIF:residual>56.68</mmCIF:residual> </mmCIF:refine_funct_minimized> <mmCIF:refine_funct_minimized type="sum(W*Delta(Distance)^2"> <mmCIF:number_terms>1219</mmCIF:number_terms> <mmCIF:residual>163.59</mmCIF:residual> </mmCIF:refine_funct_minimized> <mmCIF:refine_funct_minimized type="sum(W*Delta(U-tempfactors)^2"> <mmCIF:number_terms>1192</mmCIF:number_terms> <mmCIF:residual>69.338</mmCIF:residual> </mmCIF:refine_funct_minimized> </mmCIF:refine_funct_minimizedCategory> The number of observations in this term. For example, if the term is a residual of the X-ray intensities, this item would contain the number of reflections used in the refinement. The residual for this term of the function that was minimized during the refinement. The weight applied to this term of the function that was minimized during the refinement. The type of the function being minimized. Data items in the REFINE_HIST category record details about the steps during the refinement of the structure. These data items are not meant to be as thorough a description of the refinement as is provided for the final model in other categories; rather, these data items provide a mechanism for sketching out the progress of the refinement, supported by a small set of representative statistics. Example 1 - based on laboratory records for the collagen-like peptide [(POG)4 EKG (POG)5]3. <mmCIF:refine_histCategory> <mmCIF:refine_hist cycle_id="C134"> <mmCIF:R_factor_R_free>.274</mmCIF:R_factor_R_free> <mmCIF:R_factor_R_work>.160</mmCIF:R_factor_R_work> <mmCIF:R_factor_all>.265</mmCIF:R_factor_all> <mmCIF:R_factor_obs>.195</mmCIF:R_factor_obs> <mmCIF:d_res_high>1.85</mmCIF:d_res_high> <mmCIF:d_res_low>20.0</mmCIF:d_res_low> <mmCIF:details> Add majority of solvent molecules. B factors refined by group. Continued to remove misplaced water molecules.</mmCIF:details> <mmCIF:number_atoms_solvent>217</mmCIF:number_atoms_solvent> <mmCIF:number_atoms_total>808</mmCIF:number_atoms_total> <mmCIF:number_reflns_R_free>476</mmCIF:number_reflns_R_free> <mmCIF:number_reflns_R_work>4410</mmCIF:number_reflns_R_work> <mmCIF:number_reflns_all>6174</mmCIF:number_reflns_all> <mmCIF:number_reflns_obs>4886</mmCIF:number_reflns_obs> </mmCIF:refine_hist> </mmCIF:refine_histCategory> Residual factor R for reflections that satisfy the resolution limits established by attribute d_res_high in category refine_hist and attribute d_res_low in category refine_hist and the observation limit established by attribute observed_criterion in category reflns, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details. in category reflns sum|F~obs~ - F~calc~| R = --------------------- sum|F~obs~| F~obs~ = the observed structure-factor amplitudes F~calc~ = the calculated structure-factor amplitudes sum is taken over the specified reflections Residual factor R for reflections that satisfy the resolution limits established by attribute d_res_high in category refine_hist and attribute d_res_low in category refine_hist and the observation limit established by attribute observed_criterion in category reflns, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details. in category reflns sum|F~obs~ - F~calc~| R = --------------------- sum|F~obs~| F~obs~ = the observed structure-factor amplitudes F~calc~ = the calculated structure-factor amplitudes sum is taken over the specified reflections Residual factor R for reflections that satisfy the resolution limits established by attribute d_res_high in category refine_hist and attribute d_res_low. in category refine_hist sum|F~obs~ - F~calc~| R = --------------------- sum|F~obs~| F~obs~ = the observed structure-factor amplitudes F~calc~ = the calculated structure-factor amplitudes sum is taken over the specified reflections Residual factor R for reflections that satisfy the resolution limits established by attribute d_res_high in category refine_hist and attribute d_res_low in category refine_hist and the observation criterion established by attribute observed_criterion. in category reflns sum|F~obs~ - F~calc~| R = --------------------- sum|F~obs~| F~obs~ = the observed structure-factor amplitudes F~calc~ = the calculated structure-factor amplitudes sum is taken over the specified reflections The lowest value for the interplanar spacings for the reflection data for this cycle of refinement. This is called the highest resolution. The highest value for the interplanar spacings for the reflection data for this cycle of refinement. This is called the lowest resolution. A description of special aspects of this cycle of the refinement process. Residues 13-17 fit and added to model; substantial rebuilding of loop containing residues 43-48; addition of first atoms to solvent model; ten cycles of Prolsq refinement. The number of solvent atoms that were included in the model at this cycle of the refinement. The total number of atoms that were included in the model at this cycle of the refinement. The number of reflections that satisfy the resolution limits established by attribute d_res_high in category refine_hist and attribute d_res_low in category refine_hist and the observation limit established by attribute observed_criterion in category reflns, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details in category reflns. The number of reflections that satisfy the resolution limits established by attribute d_res_high in category refine_hist and attribute d_res_low in category refine_hist and the observation limit established by attribute observed_criterion in category reflns, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details in category reflns. The number of reflections that satisfy the resolution limits established by attribute d_res_high in category refine_hist and attribute d_res_low in category refine_hist. The number of reflections that satisfy the resolution limits established by attribute d_res_high in category refine_hist and attribute d_res_low in category refine_hist and the observation criterion established by attribute observed_criterion in category reflns. The value of attribute cycle_id in category refine_hist must uniquely identify a record in the REFINE_HIST list. Note that this item need not be a number; it can be any unique identifier. Data items in the REFINE_LS_CLASS category record details about the reflections used for the structure refinement for each reflection class separately. Example 1 - data for a modulated structure from van Smaalen [J. Phys. Condens. Matter (1991), 3, 1247-1263]. <mmCIF:refine_ls_classCategory> <mmCIF:refine_ls_class code="Main"> <mmCIF:R_factor_gt>0.057</mmCIF:R_factor_gt> </mmCIF:refine_ls_class> <mmCIF:refine_ls_class code="Com"> <mmCIF:R_factor_gt>0.074</mmCIF:R_factor_gt> </mmCIF:refine_ls_class> <mmCIF:refine_ls_class code="NbRefls"> <mmCIF:R_factor_gt>0.064</mmCIF:R_factor_gt> </mmCIF:refine_ls_class> <mmCIF:refine_ls_class code="LaRefls"> <mmCIF:R_factor_gt>0.046</mmCIF:R_factor_gt> </mmCIF:refine_ls_class> <mmCIF:refine_ls_class code="Sat1"> <mmCIF:R_factor_gt>0.112</mmCIF:R_factor_gt> </mmCIF:refine_ls_class> <mmCIF:refine_ls_class code="Sat2"> <mmCIF:R_factor_gt>0.177</mmCIF:R_factor_gt> </mmCIF:refine_ls_class> </mmCIF:refine_ls_classCategory> For each reflection class, the residual factor R(F^2^) calculated on the squared amplitudes of the observed and calculated structure factors, for the reflections judged significantly intense (i.e. satisfying the threshold specified by attribute threshold_expression) in category reflns and included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_class.d_res_high and _refine_ls_class.d_res_low. sum | F(obs)^2^ - F(calc)^2^ | R(Fsqd) = ------------------------------- sum F(obs)^2^ F(obs)^2^ = squares of the observed structure-factor amplitudes F(calc)^2^ = squares of the calculated structure-factor amplitudes and the sum is taken over the reflections of this class. For each reflection class, the residual factor R(I) for the reflections judged significantly intense (i.e. satisfying the threshold specified by attribute threshold_expression) in category reflns and included in the refinement. This is most often calculated in Rietveld refinements against powder data, where it is referred to as R~B~ or R~Bragg~ sum | I(obs) - I(calc) | R(I) = ------------------------ sum | I(obs) | I(obs) = the net observed intensities I(calc) = the net calculated intensities and the sum is taken over the reflections of this class. For each reflection class, the residual factor for all reflections satisfying the resolution limits established by _refine_ls_class.d_res_high and _refine_ls_class.d_res_low. This is the conventional R factor. See also the definition of attribute wR_factor_all. in category refine_ls_class sum | F(obs) - F(calc) | R = ------------------------ sum | F(obs) | F(obs) = the observed structure-factor amplitudes F(calc) = the calculated structure-factor amplitudes and the sum is taken over the reflections of this class. For each reflection class, the residual factor for significantly intense reflections (see attribute threshold_expression) in category reflns included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_class.d_res_high and _refine_ls_class.d_res_low. This is the conventional R factor. See also the definition of attribute wR_factor_all. in category refine_ls_class sum | F(obs) - F(calc) | R = ------------------------ sum | F(obs) | F(obs) = the observed structure-factor amplitudes F(calc) = the calculated structure-factor amplitudes and the sum is taken over the reflections of this class. For each reflection class, the lowest value in angstroms for the interplanar spacings for the reflections used in the refinement. This is called the highest resolution. For each reflection class, the highest value in angstroms for the interplanar spacings for the reflections used in the refinement. This is called the lowest resolution. For each reflection class, the weighted residual factor for all reflections included in the refinement. The reflections also satisfy the resolution limits established by _refine_ls_class.d_res_high and _refine_ls_class.d_res_low. See also the attribute R_factor_ in category refine_ls_class definitions. ( sum w [ Y(obs) - Y(calc) ]^2^ )^1/2^ wR = ( ------------------------------ ) ( sum w Y(obs)^2^ ) Y(obs) = the observed amplitude specified by attribute ls_structure_factor_coef in category refine Y(calc) = the calculated amplitude specified by attribute ls_structure_factor_coef in category refine w = the least-squares weight and the sum is taken over the reflections of this class. The code identifying a certain reflection class. This code must match a attribute code in category reflns_class. 1 m1 s2 Data items in the REFINE_LS_RESTR category record details about the restraints applied to various classes of parameters during the least-squares refinement. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:refine_ls_restrCategory> <mmCIF:refine_ls_restr type="bond_d"> <mmCIF:criterion>&gt; 2\s</mmCIF:criterion> <mmCIF:dev_ideal>0.018</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>0.020</mmCIF:dev_ideal_target> <mmCIF:number>1654</mmCIF:number> <mmCIF:rejects>22</mmCIF:rejects> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="angle_d"> <mmCIF:criterion>&gt; 2\s</mmCIF:criterion> <mmCIF:dev_ideal>0.038</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>0.030</mmCIF:dev_ideal_target> <mmCIF:number>2246</mmCIF:number> <mmCIF:rejects>139</mmCIF:rejects> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="planar_d"> <mmCIF:criterion>&gt; 2\s</mmCIF:criterion> <mmCIF:dev_ideal>0.043</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>0.040</mmCIF:dev_ideal_target> <mmCIF:number>498</mmCIF:number> <mmCIF:rejects>21</mmCIF:rejects> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="planar"> <mmCIF:criterion>&gt; 2\s</mmCIF:criterion> <mmCIF:dev_ideal>0.015</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>0.020</mmCIF:dev_ideal_target> <mmCIF:number>270</mmCIF:number> <mmCIF:rejects>1</mmCIF:rejects> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="chiral"> <mmCIF:criterion>&gt; 2\s</mmCIF:criterion> <mmCIF:dev_ideal>0.177</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>0.150</mmCIF:dev_ideal_target> <mmCIF:number>278</mmCIF:number> <mmCIF:rejects>2</mmCIF:rejects> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="singtor_nbd"> <mmCIF:criterion>&gt; 2\s</mmCIF:criterion> <mmCIF:dev_ideal>0.216</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>0.500</mmCIF:dev_ideal_target> <mmCIF:number>582</mmCIF:number> <mmCIF:rejects>0</mmCIF:rejects> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="multtor_nbd"> <mmCIF:criterion>&gt; 2\s</mmCIF:criterion> <mmCIF:dev_ideal>0.207</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>0.500</mmCIF:dev_ideal_target> <mmCIF:number>419</mmCIF:number> <mmCIF:rejects>0</mmCIF:rejects> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="xyhbond_nbd"> <mmCIF:criterion>&gt; 2\s</mmCIF:criterion> <mmCIF:dev_ideal>0.245</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>0.500</mmCIF:dev_ideal_target> <mmCIF:number>149</mmCIF:number> <mmCIF:rejects>0</mmCIF:rejects> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="planar_tor"> <mmCIF:criterion>&gt; 2\s</mmCIF:criterion> <mmCIF:dev_ideal>2.6</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>3.0</mmCIF:dev_ideal_target> <mmCIF:number>203</mmCIF:number> <mmCIF:rejects>9</mmCIF:rejects> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="staggered_tor"> <mmCIF:criterion>&gt; 2\s</mmCIF:criterion> <mmCIF:dev_ideal>17.4</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>15.0</mmCIF:dev_ideal_target> <mmCIF:number>298</mmCIF:number> <mmCIF:rejects>31</mmCIF:rejects> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="orthonormal_tor"> <mmCIF:criterion>&gt; 2\s</mmCIF:criterion> <mmCIF:dev_ideal>18.1</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>20.0</mmCIF:dev_ideal_target> <mmCIF:number>12</mmCIF:number> <mmCIF:rejects>1</mmCIF:rejects> </mmCIF:refine_ls_restr> </mmCIF:refine_ls_restrCategory> A criterion used to define a parameter value that deviates significantly from its ideal value in the model obtained by restrained least-squares refinement. > 3\s For the given parameter type, the root-mean-square deviation between the ideal values used as restraints in the least-squares refinement and the values obtained by refinement. For instance, bond distances may deviate by 0.018 \%A (r.m.s.) from ideal values in the current model. For the given parameter type, the target root-mean-square deviation between the ideal values used as restraints in the least-squares refinement and the values obtained by refinement. The number of parameters of this type subjected to restraint in least-squares refinement. The number of parameters of this type that deviate from ideal values by more than the amount defined in attribute criterion in category refine_ls_restr in the model obtained by restrained least-squares refinement. The weighting value applied to this type of restraint in the least-squares refinement. The type of the parameter being restrained. Explicit sets of data values are provided for the programs PROTIN/PROLSQ (beginning with p_) and RESTRAIN (beginning with RESTRAIN_). As computer programs change, these data values are given as examples, not as an enumeration list. Computer programs that convert a data block to a refinement table will expect the exact form of the data values given here to be used. bond distance p_bond_d bond angle expressed as a distance p_angle_d planar 1,4 distance p_planar_d X-H bond distance p_xhbond_d X-H bond angle expressed as a distance p_xhangle_d hydrogen distance p_hydrog_d special distance p_special_d planes p_planar chiral centres p_chiral single-torsion non-bonded contact p_singtor_nbd multiple-torsion non-bonded contact p_multtor_nbd possible (X...Y) hydrogen bond p_xyhbond_nbd possible (X-H...Y) hydrogen bond p_xhyhbond_nbd special torsion angle p_special_tor planar torsion angle p_planar_tor staggered torsion angle p_staggered_tor orthonormal torsion angle p_orthonormal_tor main-chain bond isotropic displacement parameter p_mcbond_it main-chain angle isotropic displacement parameter p_mcangle_it side-chain bond isotropic displacement parameter p_scbond_it side-chain angle isotropic displacement parameter p_scangle_it X-H bond isotropic displacement parameter p_xhbond_it X-H angle isotropic displacement parameter p_xhangle_it special isotropic displacement parameter p_special_it The root-mean-square deviation of the difference between the values calculated from the structures used to compile the restraints dictionary parameters and the dictionary values themselves in the distance range less than 2.12 Angstroms. RESTRAIN_Distances < 2.12 The root-mean-square deviation of the difference between the values calculated from the structures used to compile the restraints dictionary parameters and the dictionary values themselves in the distance range 2.12 - 2.625 Angstroms. RESTRAIN_Distances 2.12 < D < 2.625 The root-mean-square deviation of the difference between the values calculated from the structures used to compile the restraints dictionary parameters and the dictionary values themselves in the distance range greater than 2.625 Angstroms. RESTRAIN_Distances > 2.625 The root-mean-square deviation of the difference between the values calculated from the structures used to compile the restraints dictionary parameters and the dictionary values themselves for peptide planes. RESTRAIN_Peptide Planes The root-mean-square deviation of the difference between the values calculated from the structures used to compile the restraints dictionary parameters and the dictionary values themselves for rings and planes other than peptide planes. RESTRAIN_Ring and other planes RESTRAIN_rms diffs for Uiso atoms at dist 1.2-1.4 RESTRAIN_rms diffs for Uiso atoms at dist 1.4-1.6 RESTRAIN_rms diffs for Uiso atoms at dist 1.8-2.0 RESTRAIN_rms diffs for Uiso atoms at dist 2.0-2.2 RESTRAIN_rms diffs for Uiso atoms at dist 2.2-2.4 RESTRAIN_rms diffs for Uiso atoms at dist >2.4 Data items in the REFINE_LS_RESTR_NCS category record details about the restraints applied to atom positions in domains related by noncrystallographic symmetry during least-squares refinement, and also about the deviation of the restrained atomic parameters at the end of the refinement. It is expected that these values will only be reported once for each set of restrained domains. Example 1 - based on laboratory records for the collagen-like peptide, HYP-. <mmCIF:refine_ls_restr_ncsCategory> <mmCIF:refine_ls_restr_ncs dom_id="d2"> <mmCIF:ncs_model_details> NCS restraint for pseudo-twofold symmetry between domains d1 and d2. Position weight coefficient given in Kcal/(mol \&#37;A^2^) and isotropic B weight coefficient given in \&#37;A^2^.</mmCIF:ncs_model_details> <mmCIF:rms_dev_B_iso>0.16</mmCIF:rms_dev_B_iso> <mmCIF:rms_dev_position>0.09</mmCIF:rms_dev_position> <mmCIF:weight_B_iso>2.0</mmCIF:weight_B_iso> <mmCIF:weight_position>300.0</mmCIF:weight_position> </mmCIF:refine_ls_restr_ncs> </mmCIF:refine_ls_restr_ncsCategory> Special aspects of the manner in which noncrystallographic restraints were applied to atomic parameters in the domain specified by attribute dom_id in category refine_ls_restr_ncs and equivalent atomic parameters in the domains against which it was restrained. The root-mean-square deviation in equivalent isotropic displacement parameters in the domain specified by attribute dom_id in category refine_ls_restr_ncs and in the domains against which it was restrained. The root-mean-square deviation in equivalent atom positions in the domain specified by attribute dom_id in category refine_ls_restr_ncs and in the domains against which it was restrained. The value of the weighting coefficient used in noncrystallographic symmetry restraint of isotropic displacement parameters in the domain specified by attribute dom_id in category refine_ls_restr_ncs to equivalent isotropic displacement parameters in the domains against which it was restrained. The value of the weighting coefficient used in noncrystallographic symmetry restraint of atom positions in the domain specified by attribute dom_id in category refine_ls_restr_ncs to equivalent atom positions in the domains against which it was restrained. This data item is a pointer to attribute id in category struct_ncs_dom in the STRUCT_NCS_DOM category. Data items in the REFINE_LS_RESTR_TYPE category record details about the restraint types used in the least-squares refinement. Example 1 - based on RESTRAIN refinement for the CCP4 test data set toxd. <mmCIF:refine_ls_restrCategory> <mmCIF:refine_ls_restr type="RESTRAIN_Distances &lt; 2.12"> <mmCIF:dev_ideal>0.005</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>0.022</mmCIF:dev_ideal_target> <mmCIF:number>509</mmCIF:number> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="RESTRAIN_Distances 2.12 &lt; D &lt; 2.625"> <mmCIF:dev_ideal>0.016</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>0.037</mmCIF:dev_ideal_target> <mmCIF:number>671</mmCIF:number> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="RESTRAIN_Distances &gt; 2.625"> <mmCIF:dev_ideal>0.034</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>0.043</mmCIF:dev_ideal_target> <mmCIF:number>39</mmCIF:number> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="RESTRAIN_Peptide Planes"> <mmCIF:dev_ideal>0.002</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>0.010</mmCIF:dev_ideal_target> <mmCIF:number>59</mmCIF:number> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="RESTRAIN_Ring and other planes"> <mmCIF:dev_ideal>0.014</mmCIF:dev_ideal> <mmCIF:dev_ideal_target>0.010</mmCIF:dev_ideal_target> <mmCIF:number>26</mmCIF:number> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="RESTRAIN_rms diffs for Uiso atoms at dist 1.2-1.4"> <mmCIF:dev_ideal>0.106</mmCIF:dev_ideal> <mmCIF:dev_ideal_target xsi:nil="true" /> <mmCIF:number>212</mmCIF:number> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="RESTRAIN_rms diffs for Uiso atoms at dist 1.4-1.6"> <mmCIF:dev_ideal>0.101</mmCIF:dev_ideal> <mmCIF:dev_ideal_target xsi:nil="true" /> <mmCIF:number>288</mmCIF:number> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="RESTRAIN_rms diffs for Uiso atoms at dist 1.8-2.0"> <mmCIF:dev_ideal>0.077</mmCIF:dev_ideal> <mmCIF:dev_ideal_target xsi:nil="true" /> <mmCIF:number>6</mmCIF:number> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="RESTRAIN_rms diffs for Uiso atoms at dist 2.0-2.2"> <mmCIF:dev_ideal>0.114</mmCIF:dev_ideal> <mmCIF:dev_ideal_target xsi:nil="true" /> <mmCIF:number>10</mmCIF:number> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="RESTRAIN_rms diffs for Uiso atoms at dist 2.2-2.4"> <mmCIF:dev_ideal>0.119</mmCIF:dev_ideal> <mmCIF:dev_ideal_target xsi:nil="true" /> <mmCIF:number>215</mmCIF:number> </mmCIF:refine_ls_restr> <mmCIF:refine_ls_restr type="RESTRAIN_rms diffs for Uiso atoms at dist &gt;2.4"> <mmCIF:dev_ideal>0.106</mmCIF:dev_ideal> <mmCIF:dev_ideal_target xsi:nil="true" /> <mmCIF:number>461</mmCIF:number> </mmCIF:refine_ls_restr> </mmCIF:refine_ls_restrCategory> <mmCIF:refine_ls_restr_typeCategory> <mmCIF:refine_ls_restr_type type="RESTRAIN_Distances &lt; 2.12"> <mmCIF:distance_cutoff_high>2.12</mmCIF:distance_cutoff_high> <mmCIF:distance_cutoff_low xsi:nil="true" /> </mmCIF:refine_ls_restr_type> <mmCIF:refine_ls_restr_type type="RESTRAIN_Distances 2.12 &lt; D &lt; 2.625"> <mmCIF:distance_cutoff_high>2.625</mmCIF:distance_cutoff_high> <mmCIF:distance_cutoff_low>2.12</mmCIF:distance_cutoff_low> </mmCIF:refine_ls_restr_type> <mmCIF:refine_ls_restr_type type="RESTRAIN_Distances &gt; 2.625"> <mmCIF:distance_cutoff_high xsi:nil="true" /> <mmCIF:distance_cutoff_low>2.625</mmCIF:distance_cutoff_low> </mmCIF:refine_ls_restr_type> <mmCIF:refine_ls_restr_type type="RESTRAIN_Peptide Planes"> <mmCIF:distance_cutoff_high xsi:nil="true" /> <mmCIF:distance_cutoff_low xsi:nil="true" /> </mmCIF:refine_ls_restr_type> <mmCIF:refine_ls_restr_type type="RESTRAIN_Ring and other planes"> <mmCIF:distance_cutoff_high xsi:nil="true" /> <mmCIF:distance_cutoff_low xsi:nil="true" /> </mmCIF:refine_ls_restr_type> <mmCIF:refine_ls_restr_type type="RESTRAIN_rms diffs for Uiso atoms at dist 1.2-1.4"> <mmCIF:distance_cutoff_high>1.4</mmCIF:distance_cutoff_high> <mmCIF:distance_cutoff_low>1.2</mmCIF:distance_cutoff_low> </mmCIF:refine_ls_restr_type> <mmCIF:refine_ls_restr_type type="RESTRAIN_rms diffs for Uiso atoms at dist 1.4-1.6"> <mmCIF:distance_cutoff_high>1.6</mmCIF:distance_cutoff_high> <mmCIF:distance_cutoff_low>1.4</mmCIF:distance_cutoff_low> </mmCIF:refine_ls_restr_type> <mmCIF:refine_ls_restr_type type="RESTRAIN_rms diffs for Uiso atoms at dist 1.8-2.0"> <mmCIF:distance_cutoff_high>2.0</mmCIF:distance_cutoff_high> <mmCIF:distance_cutoff_low>1.8</mmCIF:distance_cutoff_low> </mmCIF:refine_ls_restr_type> <mmCIF:refine_ls_restr_type type="RESTRAIN_rms diffs for Uiso atoms at dist 2.0-2.2"> <mmCIF:distance_cutoff_high>2.2</mmCIF:distance_cutoff_high> <mmCIF:distance_cutoff_low>2.0</mmCIF:distance_cutoff_low> </mmCIF:refine_ls_restr_type> <mmCIF:refine_ls_restr_type type="RESTRAIN_rms diffs for Uiso atoms at dist 2.2-2.4"> <mmCIF:distance_cutoff_high>2.4</mmCIF:distance_cutoff_high> <mmCIF:distance_cutoff_low>2.2</mmCIF:distance_cutoff_low> </mmCIF:refine_ls_restr_type> <mmCIF:refine_ls_restr_type type="RESTRAIN_rms diffs for Uiso atoms at dist &gt;2.4"> <mmCIF:distance_cutoff_high xsi:nil="true" /> <mmCIF:distance_cutoff_low>2.4</mmCIF:distance_cutoff_low> </mmCIF:refine_ls_restr_type> </mmCIF:refine_ls_restr_typeCategory> The upper limit in angstroms of the distance range applied to the current restraint type. The lower limit in angstroms of the distance range applied to the current restraint type. This data item is a pointer to attribute type in category refine_ls_restr in the REFINE_LS_RESTR category. Data items in the REFINE_LS_SHELL category record details about the results of the least-squares refinement broken down into shells of resolution. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:refine_ls_shellCategory> <mmCIF:refine_ls_shell d_res_high="4.51" d_res_low="8.00"> <mmCIF:R_factor_obs>0.196</mmCIF:R_factor_obs> <mmCIF:number_reflns_obs>1226</mmCIF:number_reflns_obs> </mmCIF:refine_ls_shell> <mmCIF:refine_ls_shell d_res_high="3.48" d_res_low="4.51"> <mmCIF:R_factor_obs>0.146</mmCIF:R_factor_obs> <mmCIF:number_reflns_obs>1679</mmCIF:number_reflns_obs> </mmCIF:refine_ls_shell> <mmCIF:refine_ls_shell d_res_high="2.94" d_res_low="3.48"> <mmCIF:R_factor_obs>0.160</mmCIF:R_factor_obs> <mmCIF:number_reflns_obs>2014</mmCIF:number_reflns_obs> </mmCIF:refine_ls_shell> <mmCIF:refine_ls_shell d_res_high="2.59" d_res_low="2.94"> <mmCIF:R_factor_obs>0.182</mmCIF:R_factor_obs> <mmCIF:number_reflns_obs>2147</mmCIF:number_reflns_obs> </mmCIF:refine_ls_shell> <mmCIF:refine_ls_shell d_res_high="2.34" d_res_low="2.59"> <mmCIF:R_factor_obs>0.193</mmCIF:R_factor_obs> <mmCIF:number_reflns_obs>2127</mmCIF:number_reflns_obs> </mmCIF:refine_ls_shell> <mmCIF:refine_ls_shell d_res_high="2.15" d_res_low="2.34"> <mmCIF:R_factor_obs>0.203</mmCIF:R_factor_obs> <mmCIF:number_reflns_obs>2061</mmCIF:number_reflns_obs> </mmCIF:refine_ls_shell> <mmCIF:refine_ls_shell d_res_high="2.00" d_res_low="2.15"> <mmCIF:R_factor_obs>0.188</mmCIF:R_factor_obs> <mmCIF:number_reflns_obs>1647</mmCIF:number_reflns_obs> </mmCIF:refine_ls_shell> </mmCIF:refine_ls_shellCategory> Residual factor R for reflections that satisfy the resolution limits established by attribute d_res_high in category refine_ls_shell and attribute d_res_low in category refine_ls_shell and the observation limit established by attribute observed_criterion in category reflns, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details. in category reflns sum|F~obs~ - F~calc~| R = --------------------- sum|F~obs~| F~obs~ = the observed structure-factor amplitudes F~calc~ = the calculated structure-factor amplitudes sum is taken over the specified reflections The estimated error in attribute R_factor_R_free. in category refine_ls_shell The method used to estimate the error is described in the item attribute ls_R_factor_R_free_error_details in category refine. Residual factor R for reflections that satisfy the resolution limits established by attribute d_res_high in category refine_ls_shell and attribute d_res_low in category refine_ls_shell and the observation limit established by attribute observed_criterion in category reflns, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details. in category reflns sum|F~obs~ - F~calc~| R = --------------------- sum|F~obs~| F~obs~ = the observed structure-factor amplitudes F~calc~ = the calculated structure-factor amplitudes sum is taken over the specified reflections Residual factor R for reflections that satisfy the resolution limits established by attribute d_res_high in category refine_ls_shell and attribute d_res_low. in category refine_ls_shell sum|F~obs~ - F~calc~| R = --------------------- sum|F~obs~| F~obs~ = the observed structure-factor amplitudes F~calc~ = the calculated structure-factor amplitudes sum is taken over the specified reflections Residual factor R for reflections that satisfy the resolution limits established by attribute d_res_high in category refine_ls_shell and attribute d_res_low in category refine_ls_shell and the observation criterion established by attribute observed_criterion. in category reflns sum|F~obs~ - F~calc~| R = --------------------- sum|F~obs~| F~obs~ = the observed structure-factor amplitudes F~calc~ = the calculated structure-factor amplitudes sum is taken over the specified reflections The number of reflections that satisfy the resolution limits established by attribute d_res_high in category refine_ls_shell and attribute d_res_low in category refine_ls_shell and the observation limit established by attribute observed_criterion in category reflns, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details in category reflns. The number of reflections that satisfy the resolution limits established by attribute d_res_high in category refine_ls_shell and attribute d_res_low in category refine_ls_shell and the observation limit established by attribute observed_criterion in category reflns, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details in category reflns. The number of reflections that satisfy the resolution limits established by attribute d_res_high in category refine_ls_shell and attribute d_res_low in category refine_ls_shell. The number of reflections that satisfy the resolution limits established by attribute d_res_high in category refine_ls_shell and attribute d_res_low in category refine_ls_shell and the observation criterion established by attribute observed_criterion in category reflns. The number of reflections that satisfy the resolution limits established by attribute d_res_high in category refine_ls_shell and attribute d_res_low in category refine_ls_shell and the observation limit established by attribute observed_criterion in category reflns, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' R factor, expressed as a percentage of the number of geometrically observable reflections that satisfy the reflection limits. The number of reflections that satisfy the resolution limits established by attribute d_res_high in category refine_ls_shell and attribute d_res_low in category refine_ls_shell and the observation criterion established by attribute observed_criterion in category reflns, expressed as a percentage of the number of geometrically observable reflections that satisfy the resolution limits. The ratio of the total number of observations of the reflections that satisfy the resolution limits established by _refine_ls_shell.d_res_high and _refine_ls_shell.d_res_low to the number of crystallographically unique reflections that satisfy the same limits. The ratio of the total number of observations of the reflections that satisfy the resolution limits established by _refine_ls_shell.d_res_high and _refine_ls_shell.d_res_low and the observation criterion established by attribute observed_criterion in category reflns to the number of crystallographically unique reflections that satisfy the same limits. Weighted residual factor wR for reflections that satisfy the resolution limits established by attribute d_res_high in category refine_ls_shell and attribute d_res_low in category refine_ls_shell and the observation limit established by attribute observed_criterion in category reflns, and that were used as the test reflections (i.e. were excluded from the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details. in category reflns ( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^ wR = ( ---------------------------- ) ( sum|w Y~obs~^2^| ) Y~obs~ = the observed amplitude specified by attribute ls_structure_factor_coef in category refine Y~calc~ = the calculated amplitude specified by attribute ls_structure_factor_coef in category refine w = the least-squares weight sum is taken over the specified reflections Weighted residual factor wR for reflections that satisfy the resolution limits established by attribute d_res_high in category refine_ls_shell and attribute d_res_low in category refine_ls_shell and the observation limit established by attribute observed_criterion in category reflns, and that were used as the working reflections (i.e. were included in the refinement) when the refinement included the calculation of a 'free' R factor. Details of how reflections were assigned to the working and test sets are given in attribute R_free_details. in category reflns ( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^ wR = ( ---------------------------- ) ( sum|w Y~obs~^2^| ) Y~obs~ = the observed amplitude specified by attribute ls_structure_factor_coef in category refine Y~calc~ = the calculated amplitude specified by attribute ls_structure_factor_coef in category refine w = the least-squares weight sum is taken over the specified reflections Weighted residual factor wR for reflections that satisfy the resolution limits established by attribute d_res_high in category refine_ls_shell and attribute d_res_low. in category refine_ls_shell ( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^ wR = ( ---------------------------- ) ( sum|w Y~obs~^2^| ) Y~obs~ = the observed amplitude specified by attribute ls_structure_factor_coef in category refine Y~calc~ = the calculated amplitude specified by attribute ls_structure_factor_coef in category refine w = the least-squares weight sum is taken over the specified reflections Weighted residual factor wR for reflections that satisfy the resolution limits established by attribute d_res_high in category refine_ls_shell and attribute d_res_low in category refine_ls_shell and the observation criterion established by attribute observed_criterion. in category reflns ( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^ wR = ( ---------------------------- ) ( sum|w Y~obs~^2^| ) Y~obs~ = the observed amplitude specified by attribute ls_structure_factor_coef in category refine Y~calc~ = the calculated amplitude specified by attribute ls_structure_factor_coef in category refine w = the least-squares weight sum is taken over the specified reflections The lowest value for the interplanar spacings for the reflection data in this shell. This is called the highest resolution. The highest value for the interplanar spacings for the reflection data in this shell. This is called the lowest resolution. Data items in the REFINE_OCCUPANCY category record details about the treatment of atom occupancies during refinement. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:refine_occupancyCategory> <mmCIF:refine_occupancy class="protein"> <mmCIF:details xsi:nil="true" /> <mmCIF:treatment>fix</mmCIF:treatment> <mmCIF:value>1.00</mmCIF:value> </mmCIF:refine_occupancy> <mmCIF:refine_occupancy class="solvent"> <mmCIF:details xsi:nil="true" /> <mmCIF:treatment>fix</mmCIF:treatment> <mmCIF:value>1.00</mmCIF:value> </mmCIF:refine_occupancy> <mmCIF:refine_occupancy class="inhibitor orientation 1"> <mmCIF:details xsi:nil="true" /> <mmCIF:treatment>fix</mmCIF:treatment> <mmCIF:value>0.65</mmCIF:value> </mmCIF:refine_occupancy> <mmCIF:refine_occupancy class="inhibitor orientation 2"> <mmCIF:details> The inhibitor binds to the enzyme in two alternative conformations. The occupancy of each conformation was adjusted so as to result in approximately equal mean thermal factors for the atoms in each conformation.</mmCIF:details> <mmCIF:treatment>fix</mmCIF:treatment> <mmCIF:value>0.35</mmCIF:value> </mmCIF:refine_occupancy> </mmCIF:refine_occupancyCategory> A description of special aspects of the occupancy refinement for a class of atoms described in attribute class in category refine_occupancy. The inhibitor binds to the enzyme in two alternative conformations. The occupancy of each conformation was adjusted so as to result in approximately equal mean thermal factors for the atoms in each conformation. The treatment of occupancies for a class of atoms described in attribute class in category refine_occupancy. The value of occupancy assigned to a class of atoms defined in attribute class in category refine_occupancy. Meaningful only for atoms with fixed occupancy. 1.0 0.41 The class of atoms treated similarly for occupancy refinement. all protein solvent sugar-phosphate backbone Data items in the REFLN category record details about the reflection data used to determine the ATOM_SITE data items. The REFLN data items refer to individual reflections and must be included in looped lists. The REFLNS data items specify the parameters that apply to all reflections. The REFLNS data items are not looped. Example 1 - based on data set fetod of Todres, Yanovsky, Ermekov & Struchkov [Acta Cryst. (1993), C49, 1352-1354]. <mmCIF:reflnCategory> <mmCIF:refln index_h="2" index_k="0" index_l="0"> <mmCIF:F_squared_calc>85.57</mmCIF:F_squared_calc> <mmCIF:F_squared_meas>58.90</mmCIF:F_squared_meas> <mmCIF:F_squared_sigma>1.45</mmCIF:F_squared_sigma> <mmCIF:status>o</mmCIF:status> </mmCIF:refln> <mmCIF:refln index_h="3" index_k="0" index_l="0"> <mmCIF:F_squared_calc>15718.18</mmCIF:F_squared_calc> <mmCIF:F_squared_meas>15631.06</mmCIF:F_squared_meas> <mmCIF:F_squared_sigma>30.40</mmCIF:F_squared_sigma> <mmCIF:status>o</mmCIF:status> </mmCIF:refln> <mmCIF:refln index_h="4" index_k="0" index_l="0"> <mmCIF:F_squared_calc>55613.11</mmCIF:F_squared_calc> <mmCIF:F_squared_meas>49840.09</mmCIF:F_squared_meas> <mmCIF:F_squared_sigma>61.86</mmCIF:F_squared_sigma> <mmCIF:status>o</mmCIF:status> </mmCIF:refln> <mmCIF:refln index_h="5" index_k="0" index_l="0"> <mmCIF:F_squared_calc>246.85</mmCIF:F_squared_calc> <mmCIF:F_squared_meas>241.86</mmCIF:F_squared_meas> <mmCIF:F_squared_sigma>10.02</mmCIF:F_squared_sigma> <mmCIF:status>o</mmCIF:status> </mmCIF:refln> <mmCIF:refln index_h="6" index_k="0" index_l="0"> <mmCIF:F_squared_calc>82.16</mmCIF:F_squared_calc> <mmCIF:F_squared_meas>69.97</mmCIF:F_squared_meas> <mmCIF:F_squared_sigma>1.93</mmCIF:F_squared_sigma> <mmCIF:status>o</mmCIF:status> </mmCIF:refln> <mmCIF:refln index_h="7" index_k="0" index_l="0"> <mmCIF:F_squared_calc>1133.62</mmCIF:F_squared_calc> <mmCIF:F_squared_meas>947.79</mmCIF:F_squared_meas> <mmCIF:F_squared_sigma>11.78</mmCIF:F_squared_sigma> <mmCIF:status>o</mmCIF:status> </mmCIF:refln> <mmCIF:refln index_h="8" index_k="0" index_l="0"> <mmCIF:F_squared_calc>2558.04</mmCIF:F_squared_calc> <mmCIF:F_squared_meas>2453.33</mmCIF:F_squared_meas> <mmCIF:F_squared_sigma>20.44</mmCIF:F_squared_sigma> <mmCIF:status>o</mmCIF:status> </mmCIF:refln> <mmCIF:refln index_h="9" index_k="0" index_l="0"> <mmCIF:F_squared_calc>283.88</mmCIF:F_squared_calc> <mmCIF:F_squared_meas>393.66</mmCIF:F_squared_meas> <mmCIF:F_squared_sigma>7.79</mmCIF:F_squared_sigma> <mmCIF:status>o</mmCIF:status> </mmCIF:refln> <mmCIF:refln index_h="10" index_k="0" index_l="0"> <mmCIF:F_squared_calc>283.70</mmCIF:F_squared_calc> <mmCIF:F_squared_meas>171.98</mmCIF:F_squared_meas> <mmCIF:F_squared_sigma>4.26</mmCIF:F_squared_sigma> <mmCIF:status>o</mmCIF:status> </mmCIF:refln> </mmCIF:reflnCategory> The calculated value of structure-factor component A in electrons. A = |F|cos(phase) The calculated value of structure-factor component A in arbitrary units. A = |F|cos(phase) The measured value of structure-factor component A in electrons. A = |F|cos(phase) The measured value of structure-factor component A in arbitrary units. A = |F|cos(phase) The calculated value of structure-factor component B in electrons. B = |F|sin(phase) The calculated value of structure-factor component B in arbitrary units. B = |F|sin(phase) The measured value of structure-factor component B in electrons. B = |F|sin(phase) The measured value of structure-factor component B in arbitrary units. B = |F|sin(phase) The calculated value of the structure factor in electrons. The calculated value of the structure factor in arbitrary units. The measured value of the structure factor in electrons. The measured value of the structure factor in arbitrary units. The standard uncertainty (estimated standard deviation) of attribute F_meas in category refln in electrons. The standard uncertainty (estimated standard deviation) of attribute F_meas_au in category refln in arbitrary units. The calculated value of the squared structure factor in electrons squared. The measured value of the squared structure factor in electrons squared. The standard uncertainty (derived from measurement) of the squared structure factor in electrons squared. The code identifying the class to which this reflection has been assigned. This code must match a value of attribute code. in category reflns_class Reflections may be grouped into classes for a variety of purposes. For example, for modulated structures each reflection class may be defined by the number m=sum|m~i~|, where the m~i~ are the integer coefficients that, in addition to h,k,l, index the corresponding diffraction vector in the basis defined for the reciprocal lattice. This data item is a pointer to attribute id in category exptl_crystal in the EXPTL_CRYSTAL category. The d spacing in angstroms for this reflection. This is related to the (sin theta)/lambda value by the expression attribute d_spacing in category refln = 2/(_refln.sint/lambda). The figure of merit m for this reflection. int P~alpha~ exp(i*alpha) dalpha m = -------------------------------- int P~alpha~ dalpha P~a~ = the probability that the phase angle a is correct int is taken over the range alpha = 0 to 2 pi. Classification of a reflection so as to indicate its status with respect to inclusion in the refinement and the calculation of R factors. The calculated value of the intensity in the same units as attribute intensity_meas in category refln. The measured value of the intensity. The standard uncertainty (derived from measurement) of the intensity in the same units as attribute intensity_meas in category refln. Mean path length in millimetres through the crystal for this reflection. The calculated structure-factor phase in degrees. The measured structure-factor phase in degrees. Status of a reflection in the structure-refinement process. This data item is a pointer to attribute group_code in category reflns_scale in the REFLNS_SCALE category. The (sin theta)/lambda value in reciprocal angstroms for this reflection. Classification of a reflection so as to indicate its status with respect to inclusion in the refinement and the calculation of R factors. The symmetry reinforcement factor corresponding to the number of times the reflection indices are generated identically from the space-group symmetry operations. The number of symmetry-equivalent reflections. The equivalent reflections have the same structure-factor magnitudes because of the space-group symmetry and the Friedel relationship. The mean wavelength in angstroms of radiation used to measure this reflection. This is an important parameter for data collected using energy-dispersive detectors or the Laue method. This data item is a pointer to attribute wavelength_id in category diffrn_radiation in the DIFFRN_RADIATION category. Miller index h of the reflection. The values of the Miller indices in the REFLN category must correspond to the cell defined by cell lengths and cell angles in the CELL category. Miller index k of the reflection. The values of the Miller indices in the REFLN category must correspond to the cell defined by cell lengths and cell angles in the CELL category. Miller index l of the reflection. The values of the Miller indices in the REFLN category must correspond to the cell defined by cell lengths and cell angles in the CELL category. Data items in the REFLN_SYS_ABS category record details about the reflection data that should be systematically absent, given the designated space group. Example 1 - hypothetical example. <mmCIF:refln_sys_absCategory> <mmCIF:refln_sys_abs index_h="0" index_k="3" index_l="0"> <mmCIF:I>28.32</mmCIF:I> <mmCIF:I_over_sigmaI>1.23</mmCIF:I_over_sigmaI> <mmCIF:sigmaI>22.95</mmCIF:sigmaI> </mmCIF:refln_sys_abs> <mmCIF:refln_sys_abs index_h="0" index_k="5" index_l="0"> <mmCIF:I>14.11</mmCIF:I> <mmCIF:I_over_sigmaI>0.86</mmCIF:I_over_sigmaI> <mmCIF:sigmaI>16.38</mmCIF:sigmaI> </mmCIF:refln_sys_abs> <mmCIF:refln_sys_abs index_h="0" index_k="7" index_l="0"> <mmCIF:I>114.81</mmCIF:I> <mmCIF:I_over_sigmaI>5.67</mmCIF:I_over_sigmaI> <mmCIF:sigmaI>20.22</mmCIF:sigmaI> </mmCIF:refln_sys_abs> <mmCIF:refln_sys_abs index_h="0" index_k="9" index_l="0"> <mmCIF:I>32.99</mmCIF:I> <mmCIF:I_over_sigmaI>1.35</mmCIF:I_over_sigmaI> <mmCIF:sigmaI>24.51</mmCIF:sigmaI> </mmCIF:refln_sys_abs> </mmCIF:refln_sys_absCategory> The measured value of the intensity in arbitrary units. The ratio of _refln_sys_abs.I to _refln_sys_abs.sigmaI. Used to evaluate whether a reflection that should be systematically absent according to the designated space group is in fact absent. The standard uncertainty (estimated standard deviation) of attribute I in category refln_sys_abs in arbitrary units. Miller index h of the reflection. The values of the Miller indices in the REFLN_SYS_ABS category must correspond to the cell defined by cell lengths and cell angles in the CELL category. Miller index k of the reflection. The values of the Miller indices in the REFLN_SYS_ABS category must correspond to the cell defined by cell lengths and cell angles in the CELL category. Miller index l of the reflection. The values of the Miller indices in the REFLN_SYS_ABS category must correspond to the cell defined by cell lengths and cell angles in the CELL category. Data items in the REFLNS category record details about the reflection data used to determine the ATOM_SITE data items. The REFLN data items refer to individual reflections and must be included in looped lists. The REFLNS data items specify the parameters that apply to all reflections. The REFLNS data items are not looped. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:reflnsCategory> <mmCIF:reflns entry_id="5HVP"> <mmCIF:d_resolution_high>2.00</mmCIF:d_resolution_high> <mmCIF:d_resolution_low>8.00</mmCIF:d_resolution_low> <mmCIF:data_reduction_details> Merging and scaling based on only those reflections with I &gt; \s(I).</mmCIF:data_reduction_details> <mmCIF:data_reduction_method> Xengen program scalei. Anomalous pairs were merged. Scaling proceeded in several passes, beginning with 1-parameter fit and ending with 3-parameter fit.</mmCIF:data_reduction_method> <mmCIF:details>none</mmCIF:details> <mmCIF:limit_h_max>22</mmCIF:limit_h_max> <mmCIF:limit_h_min>0</mmCIF:limit_h_min> <mmCIF:limit_k_max>46</mmCIF:limit_k_max> <mmCIF:limit_k_min>0</mmCIF:limit_k_min> <mmCIF:limit_l_max>57</mmCIF:limit_l_max> <mmCIF:limit_l_min>0</mmCIF:limit_l_min> <mmCIF:number_obs>7228</mmCIF:number_obs> <mmCIF:observed_criterion>&gt; 1 \s(I)</mmCIF:observed_criterion> </mmCIF:reflns> </mmCIF:reflnsCategory> Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [Acta Cryst. (1991), C47, 2276-2277]. The value of the overall isotropic displacement parameter estimated from the slope of the Wilson plot. The proportion of Friedel-related reflections present in the number of 'independent' reflections specified by the item attribute number_all. in category reflns This proportion is calculated as the ratio: [N(Crystal class) - N(Laue symmetry)] / N(Laue symmetry) where, working from the DIFFRN_REFLN list, N(Crystal class) is the number of reflections obtained on averaging under the symmetry of the crystal class N(Laue symmetry) is the number of reflections obtained on averaging under the Laue symmetry. Examples: (a) For centrosymmetric structures, the value of attribute Friedel_coverage in category reflns is necessarily equal to 0.0, as the crystal class is identical to the Laue symmetry. (b) For whole-sphere data for a crystal in the space group P1, attribute Friedel_coverage in category reflns is equal to 1.0, as no reflection h k l is equivalent to -h -k -l in the crystal class and all Friedel pairs {h k l; -h -k -l} have been measured. (c) For whole-sphere data in space group Pmm2, attribute Friedel_coverage in category reflns will be < 1.0 because although reflections h k l and -h -k -l are not equivalent when h k l indices are nonzero, they are when l=0. (d) For a crystal in space group Pmm2, measurements of the two inequivalent octants h >= 0, k >=0, l lead to the same value as in (c), whereas measurements of the two equivalent octants h >= 0, k, l >= 0 will lead to a zero value for attribute Friedel_coverage in category reflns. A description of the method by which a subset of reflections was selected for exclusion from refinement so as to be used in the calculation of a 'free' R factor. The data set was sorted with l varying most rapidly and h varying least rapidly. Every 10th reflection in this sorted list was excluded from refinement and included in the calculation of a 'free' R factor. Residual factor Rmerge for all reflections that satisfy the resolution limits established by attribute d_resolution_high in category reflns and attribute d_resolution_low. in category reflns sum~i~(sum~j~|F~j~ - <F>|) Rmerge(F) = -------------------------- sum~i~(sum~j~<F>) F~j~ = the amplitude of the jth observation of reflection i <F> = the mean of the amplitudes of all observations of reflection i sum~i~ is taken over all reflections sum~j~ is taken over all observations of each reflection Residual factor Rmerge for reflections that satisfy the resolution limits established by attribute d_resolution_high in category reflns and attribute d_resolution_low in category reflns and the observation limit established by attribute observed_criterion. in category reflns sum~i~(sum~j~|F~j~ - <F>|) Rmerge(F) = -------------------------- sum~i~(sum~j~<F>) F~j~ = the amplitude of the jth observation of reflection i <F> = the mean of the amplitudes of all observations of reflection i sum~i~ is taken over all reflections sum~j~ is taken over all observations of each reflection The smallest value for the interplanar spacings for the reflection data. This is called the highest resolution. The largest value for the interplanar spacings for the reflection data. This is called the lowest resolution. A description of special aspects of the data-reduction procedures. Merging and scaling based on only those reflections with I > sig(I). The method used for data reduction. Note that this is not the computer program used, which is described in the SOFTWARE category, but the method itself. This data item should be used to describe significant methodological options used within the data-reduction programs. Profile fitting by method of Kabsch (1987). Scaling used spherical harmonic coefficients. A description of reflection data not covered by other data names. This should include details of the Friedel pairs. Maximum value of the Miller index h for the reflection data. This need not have the same value as attribute limit_h_max in category diffrn_reflns. Minimum value of the Miller index h for the reflection data. This need not have the same value as attribute limit_h_min in category diffrn_reflns. Maximum value of the Miller index k for the reflection data. This need not have the same value as attribute limit_k_max in category diffrn_reflns. Minimum value of the Miller index k for the reflection data. This need not have the same value as attribute limit_k_min in category diffrn_reflns. Maximum value of the Miller index l for the reflection data. This need not have the same value as attribute limit_l_max in category diffrn_reflns. Minimum value of the Miller index l for the reflection data. This need not have the same value as attribute limit_l_min in category diffrn_reflns. The total number of reflections in the REFLN list (not the DIFFRN_REFLN list). This number may contain Friedel-equivalent reflections according to the nature of the structure and the procedures used. The item attribute details in category reflns describes the reflection data. The number of reflections in the REFLN list (not the DIFFRN_REFLN list) that are significantly intense, satisfying the criterion specified by attribute threshold_expression in category reflns. This may include Friedel-equivalent reflections (i.e. those which are symmetry-equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. Any special characteristics of the reflections included in the REFLN list should be described using the item attribute details in category reflns. The number of reflections in the REFLN list (not the DIFFRN_REFLN list) classified as observed (see attribute observed_criterion). in category reflns This number may contain Friedel-equivalent reflections according to the nature of the structure and the procedures used. The criterion used to classify a reflection as 'observed'. This criterion is usually expressed in terms of a sigma(I) or sigma(F) threshold. >2sigma(I) The criterion used to classify a reflection as 'observed' expressed as an upper limit for the value of F. The criterion used to classify a reflection as 'observed' expressed as a lower limit for the value of F. The criterion used to classify a reflection as 'observed' expressed as an upper limit for the value of I. The criterion used to classify a reflection as 'observed' expressed as a lower limit for the value of I. The criterion used to classify a reflection as 'observed' expressed as a multiple of the value of sigma(F). The criterion used to classify a reflection as 'observed' expressed as a multiple of the value of sigma(I). The percentage of geometrically possible reflections represented by reflections that satisfy the resolution limits established by _reflns.d_resolution_high and _reflns.d_resolution_low and the observation limit established by attribute observed_criterion in category reflns. The threshold, usually based on multiples of u(I), u(F^2^) or u(F), that serves to identify significantly intense reflections, the number of which is given by attribute number_gt. in category reflns These reflections are used in the calculation of attribute ls_R_factor_gt in category refine. I>2u(I) This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the REFLNS_CLASS category record details of the reflections used to determine the structural parameters for each reflection class. Example 1 - example corresponding to the one-dimensional incommensurately modulated structure of K~2~SeO~4~. <mmCIF:reflns_classCategory> <mmCIF:reflns_class code="Main"> <mmCIF:number_gt>584</mmCIF:number_gt> </mmCIF:reflns_class> <mmCIF:reflns_class code="Sat1"> <mmCIF:number_gt>226</mmCIF:number_gt> </mmCIF:reflns_class> <mmCIF:reflns_class code="Sat2"> <mmCIF:number_gt>50</mmCIF:number_gt> </mmCIF:reflns_class> </mmCIF:reflns_classCategory> For each reflection class, the residual factor R(F^2^) calculated on the squared amplitudes of the observed and calculated structure factors for the reflections judged significantly intense (i.e. satisfying the threshold specified by attribute threshold_expression) in category reflns and included in the refinement. The reflections also satisfy the resolution limits established by _reflns_class.d_res_high and _reflns_class.d_res_low. sum | F(obs)^2^ - F(calc)^2^ | R(Fsqd) = ------------------------------- sum F(obs)^2^ F(obs)^2^ = squares of the observed structure-factor amplitudes F(calc)^2^ = squares of the calculated structure-factor amplitudes and the sum is taken over the reflections of this class. For each reflection class, the residual factor R(I) for the reflections judged significantly intense (i.e. satisfying the threshold specified by attribute threshold_expression) in category reflns and included in the refinement. This is most often calculated in Rietveld refinements against powder data, where it is referred to as R~B~ or R~Bragg~. sum | I(obs) - I(calc) | R(I) = ------------------------ sum | I(obs) | I(obs) = the net observed intensities I(calc) = the net calculated intensities and the sum is taken over the reflections of this class. For each reflection class, the residual factor for all reflections included in the refinement. The reflections also satisfy the resolution limits established by _reflns_class.d_res_high and _reflns_class.d_res_low. This is the conventional R factor. See also the definition of attribute wR_factor_all. in category reflns_class sum | F(obs) - F(calc) | R = ------------------------ sum | F(obs) | F(obs) = the observed structure-factor amplitudes F(calc) = the calculated structure-factor amplitudes and the sum is taken over the reflections of this class. For each reflection class, the residual factor for significantly intense reflections (see attribute threshold_expression) in category reflns included in the refinement. The reflections also satisfy the resolution limits established by _reflns_class.d_res_high and _reflns_class.d_res_low. This is the conventional R factor. See also the definition of attribute wR_factor_all. in category reflns_class sum | F(obs) - F(calc) | R = ------------------------ sum | F(obs) | F(obs) = the observed structure-factor amplitudes F(calc) = the calculated structure-factor amplitudes and the sum is taken over the reflections of this class. For each reflection class, the smallest value in angstroms for the interplanar spacings for the reflections used in the refinement. This is called the highest resolution. For each reflection class, the largest value in angstroms for the interplanar spacings for the reflections used in the refinement. This is called the lowest resolution. Description of each reflection class. m=1 first order satellites H0L0 common projection reflections For each reflection class, the number of significantly intense reflections (see attribute threshold_expression) in category reflns in the REFLN list (not the DIFFRN_REFLN list). This may include Friedel- equivalent reflections (i.e. those which are symmetry-equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. Any special characteristics of the reflections included in the REFLN list should be described using the item attribute details in category reflns. For each reflection class, the total number of reflections in the REFLN list (not the DIFFRN_REFLN list). This may include Friedel-equivalent reflections (i.e. those which are symmetry-equivalent under the Laue symmetry but inequivalent under the crystal class) according to the nature of the structure and the procedures used. Any special characteristics of the reflections included in the REFLN list should be described using the item attribute details in category reflns. For each reflection class, the weighted residual factors for all reflections included in the refinement. The reflections also satisfy the resolution limits established by _reflns_class.d_res_high and _reflns_class.d_res_low. See also attribute R_factor_ in category reflns_class definitions. ( sum w [ Y(obs) - Y(calc) ]^2^ )^1/2^ wR = ( ------------------------------ ) ( sum w Y(obs)^2^ ) Y(obs) = the observed amplitude specified by attribute ls_structure_factor_coef in category refine Y(calc) = the calculated amplitude specified by attribute ls_structure_factor_coef in category refine w = the least-squares weight and the sum is taken over the reflections of this class. The code identifying a certain reflection class. 1 m1 s2 Data items in the REFLNS_SCALE category record details about the structure-factor scales. They are referenced from within the REFLN list through attribute scale_group_code in category refln. Example 1 - based on laboratory records for the collagen-like peptide [(POG)4 EKG (POG)5]3. <mmCIF:reflns_scaleCategory> <mmCIF:reflns_scale group_code="SG1"> <mmCIF:meas_F>4.0</mmCIF:meas_F> </mmCIF:reflns_scale> </mmCIF:reflns_scaleCategory> A scale associated with attribute group_code in category reflns_scale. A scale associated with attribute group_code in category reflns_scale. A scale associated with attribute group_code in category reflns_scale. The code identifying a scale attribute meas_F, in category reflns_scale _reflns_scale.meas_F_squared or _reflns_scale.meas_intensity. These are linked to the REFLN list by the attribute scale_group_code in category refln. These codes need not correspond to those in the DIFFRN_SCALE list. 1 2 c1 c2 Data items in the REFLNS_SHELL category record details about the reflection data used to determine the ATOM_SITE data items broken down into shells of resolution. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:reflns_shellCategory> <mmCIF:reflns_shell d_res_high="31.38" d_res_low="3.82"> <mmCIF:Rmerge_F_obs>1.98</mmCIF:Rmerge_F_obs> <mmCIF:meanI_over_sigI_obs>69.8</mmCIF:meanI_over_sigI_obs> <mmCIF:number_measured_obs>9024</mmCIF:number_measured_obs> <mmCIF:number_unique_obs>2540</mmCIF:number_unique_obs> <mmCIF:percent_possible_obs>96.8</mmCIF:percent_possible_obs> </mmCIF:reflns_shell> <mmCIF:reflns_shell d_res_high="3.82" d_res_low="3.03"> <mmCIF:Rmerge_F_obs>3.85</mmCIF:Rmerge_F_obs> <mmCIF:meanI_over_sigI_obs>26.1</mmCIF:meanI_over_sigI_obs> <mmCIF:number_measured_obs>7413</mmCIF:number_measured_obs> <mmCIF:number_unique_obs>2364</mmCIF:number_unique_obs> <mmCIF:percent_possible_obs>95.1</mmCIF:percent_possible_obs> </mmCIF:reflns_shell> <mmCIF:reflns_shell d_res_high="3.03" d_res_low="2.65"> <mmCIF:Rmerge_F_obs>6.37</mmCIF:Rmerge_F_obs> <mmCIF:meanI_over_sigI_obs>10.5</mmCIF:meanI_over_sigI_obs> <mmCIF:number_measured_obs>5640</mmCIF:number_measured_obs> <mmCIF:number_unique_obs>2123</mmCIF:number_unique_obs> <mmCIF:percent_possible_obs>86.2</mmCIF:percent_possible_obs> </mmCIF:reflns_shell> <mmCIF:reflns_shell d_res_high="2.65" d_res_low="2.41"> <mmCIF:Rmerge_F_obs>8.01</mmCIF:Rmerge_F_obs> <mmCIF:meanI_over_sigI_obs>6.4</mmCIF:meanI_over_sigI_obs> <mmCIF:number_measured_obs>4322</mmCIF:number_measured_obs> <mmCIF:number_unique_obs>1882</mmCIF:number_unique_obs> <mmCIF:percent_possible_obs>76.8</mmCIF:percent_possible_obs> </mmCIF:reflns_shell> <mmCIF:reflns_shell d_res_high="2.41" d_res_low="2.23"> <mmCIF:Rmerge_F_obs>9.86</mmCIF:Rmerge_F_obs> <mmCIF:meanI_over_sigI_obs>4.3</mmCIF:meanI_over_sigI_obs> <mmCIF:number_measured_obs>3247</mmCIF:number_measured_obs> <mmCIF:number_unique_obs>1714</mmCIF:number_unique_obs> <mmCIF:percent_possible_obs>70.4</mmCIF:percent_possible_obs> </mmCIF:reflns_shell> <mmCIF:reflns_shell d_res_high="2.23" d_res_low="2.10"> <mmCIF:Rmerge_F_obs>13.99</mmCIF:Rmerge_F_obs> <mmCIF:meanI_over_sigI_obs>3.1</mmCIF:meanI_over_sigI_obs> <mmCIF:number_measured_obs>1140</mmCIF:number_measured_obs> <mmCIF:number_unique_obs>812</mmCIF:number_unique_obs> <mmCIF:percent_possible_obs>33.3</mmCIF:percent_possible_obs> </mmCIF:reflns_shell> </mmCIF:reflns_shellCategory> Residual factor Rmerge for all reflections that satisfy the resolution limits established by attribute d_res_high in category reflns_shell and attribute d_res_low. in category reflns_shell sum~i~(sum~j~|F~j~ - <F>|) Rmerge(F) = -------------------------- sum~i~(sum~j~<F>) F~j~ = the amplitude of the jth observation of reflection i <F> = the mean of the amplitudes of all observations of reflection i sum~i~ is taken over all reflections sum~j~ is taken over all observations of each reflection The value of Rmerge(F) for significantly intense reflections (see attribute threshold_expression) in category reflns in a given shell. sum~i~ ( sum~j~ | F~j~ - <F> | ) Rmerge(F) = -------------------------------- sum~i~ ( sum~j~ <F> ) F~j~ = the amplitude of the jth observation of reflection i <F> = the mean of the amplitudes of all observations of reflection i sum~i~ is taken over all reflections sum~j~ is taken over all observations of each reflection. Residual factor Rmerge for reflections that satisfy the resolution limits established by attribute d_res_high in category reflns_shell and attribute d_res_low in category reflns_shell and the observation criterion established by attribute observed_criterion. in category reflns sum~i~(sum~j~|F~j~ - <F>|) Rmerge(F) = -------------------------- sum~i~(sum~j~<F>) F~j~ = the amplitude of the jth observation of reflection i <F> = the mean of the amplitudes of all observations of reflection i sum~i~ is taken over all reflections sum~j~ is taken over all observations of each reflection The value of Rmerge(I) for all reflections in a given shell. sum~i~(sum~j~|I~j~ - <I>|) Rmerge(I) = -------------------------- sum~i~(sum~j~<I>) I~j~ = the intensity of the jth observation of reflection i <I> = the mean of the intensities of all observations of reflection i sum~i~ is taken over all reflections sum~j~ is taken over all observations of each reflection The value of Rmerge(I) for significantly intense reflections (see attribute threshold_expression) in category reflns in a given shell. sum~i~ ( sum~j~ | I~j~ - <I> | ) Rmerge(I) = -------------------------------- sum~i~ ( sum~j~ <I> ) I~j~ = the intensity of the jth observation of reflection i <I> = the mean of the intensities of all observations of reflection i sum~i~ is taken over all reflections sum~j~ is taken over all observations of each reflection. The value of Rmerge(I) for reflections classified as 'observed' (see attribute observed_criterion) in category reflns in a given shell. sum~i~(sum~j~|I~j~ - <I>|) Rmerge(I) = -------------------------- sum~i~(sum~j~<I>) I~j~ = the intensity of the jth observation of reflection i <I> = the mean of the intensities of all observations of reflection i sum~i~ is taken over all reflections sum~j~ is taken over all observations of each reflection The ratio of the mean of the intensities of all reflections in this shell to the mean of the standard uncertainties of the intensities of all reflections in this shell. The ratio of the mean of the intensities of the significantly intense reflections (see attribute threshold_expression) in category reflns in this shell to the mean of the standard uncertainties of the intensities of the significantly intense reflections in this shell. The ratio of the mean of the intensities of the reflections classified as 'observed' (see attribute observed_criterion) in category reflns in this shell to the mean of the standard uncertainties of the intensities of the 'observed' reflections in this shell. The ratio of the mean of the intensities of all reflections in this shell to the mean of the standard uncertainties of the intensities of all reflections in this shell. The ratio of the mean of the intensities of the significantly intense reflections (see attribute threshold_expression) in category reflns in this shell to the mean of the standard uncertainties of the intensities of the significantly intense reflections in this shell. The total number of reflections measured for this shell. The number of significantly intense reflections (see attribute threshold_expression) in category reflns measured for this shell. The number of reflections classified as 'observed' (see attribute observed_criterion) in category reflns for this shell. The number of unique reflections it is possible to measure in this shell. The total number of measured reflections which are symmetry- unique after merging for this shell. The total number of significantly intense reflections (see attribute threshold_expression) in category reflns resulting from merging measured symmetry-equivalent reflections for this resolution shell. The total number of measured reflections classified as 'observed' (see attribute observed_criterion) in category reflns which are symmetry-unique after merging for this shell. The percentage of geometrically possible reflections represented by all reflections measured for this shell. The percentage of geometrically possible reflections represented by significantly intense reflections (see attribute threshold_expression) in category reflns measured for this shell. The percentage of geometrically possible reflections represented by reflections classified as 'observed' (see attribute observed_criterion) in category reflns for this shell. The smallest value in angstroms for the interplanar spacings for the reflections in this shell. This is called the highest resolution. The highest value in angstroms for the interplanar spacings for the reflections in this shell. This is called the lowest resolution. Data items in the SOFTWARE category record details about the software used in the structure analysis, which implies any software used in the generation of any data items associated with the structure determination and structure representation. These data items allow computer programs to be referenced in more detail than data items in the COMPUTING category do. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:softwareCategory> <mmCIF:software name="Prolsq" version="unknown"> <mmCIF:citation_id>ref5</mmCIF:citation_id> <mmCIF:classification>refinement</mmCIF:classification> <mmCIF:compiler_name>Convex Fortran</mmCIF:compiler_name> <mmCIF:compiler_version>v8.0</mmCIF:compiler_version> <mmCIF:contact_author>Wayne A. Hendrickson</mmCIF:contact_author> <mmCIF:date xsi:nil="true" /> <mmCIF:dependencies>Requires that Protin be run first</mmCIF:dependencies> <mmCIF:description>restrained least-squares refinement</mmCIF:description> <mmCIF:hardware>Convex C220</mmCIF:hardware> <mmCIF:language>Fortran</mmCIF:language> <mmCIF:location>ftp://rosebud.sdsc.edu/pub/sdsc/xtal/CCP4/ccp4/</mmCIF:location> <mmCIF:mods>optimized</mmCIF:mods> <mmCIF:os>ConvexOS</mmCIF:os> <mmCIF:os_version>v10.1</mmCIF:os_version> <mmCIF:type>program</mmCIF:type> </mmCIF:software> </mmCIF:softwareCategory> This data item is a pointer to attribute id in category citation in the CITATION category. The classification of the program according to its major function. data collection data reduction phasing model building refinement validation other The compiler used to compile the software. Convex Fortran gcc DEC C The version of the compiler used to compile the software. 3.1 2.1 alpha The recognized contact author of the software. This could be the original author, someone who has modified the code or someone who maintains the code. It should be the person most commonly associated with the code. T. Alwyn Jones Axel Brunger The e-mail address of the person specified in attribute contact_author in category software. bourne@sdsc.edu The date the software was released. 1991-10-01 1990-04-30 Any prerequisite software required to run attribute name in category software. PDBlib class library Description of the software. Uses method of restrained least squares The hardware upon which the software was run. Sun Sparc 10 model 41 Dec Alpha 3000 model 500S Silicon Graphics Elan Compaq PC 486/66 The major computing language in which the software is coded. The URL for an Internet address at which details of the software can be found. http://rosebud.sdsc.edu/projects/pb/IUCr/software.html ftp://ftp.sdsc.edu/pub/sdsc/biology/ Any noteworthy modifications to the base software, if applicable. Added support for space group F432 The name of the operating system under which the software runs. Ultrix OpenVMS DOS Windows 95 Windows NT Irix HPUX DEC Unix The version of the operating system under which the software runs. 3.1 4.2.1 The classification of the software according to the most common types. The name of the software. Merlot O Xengen X-plor The version of the software. v1.0 beta 3.1-2 unknown Contains all the data items that refer to the space group as a whole, such as its name or crystal system. They may be looped, for example, in a list of space groups and their properties. Only a subset of the SPACE_GROUP category items appear in this dictionary. The remainder are found in the symmetry CIF dictionary. Space-group types are identified by their number as given in International Tables for Crystallography Vol. A. Specific settings of the space groups can be identified either by their Hall symbol or by specifying their symmetry operations. The commonly used Hermann-Mauguin symbol determines the space-group type uniquely but several different Hermann-Mauguin symbols may refer to the same space-group type. A Hermann-Mauguin symbol contains information on the choice of the basis, but not on the choice of origin. Different formats for the Hermann-Mauguin symbol are found in the symmetry CIF dictionary. Example 1 - the monoclinic space group No. 15 with unique axis b. <mmCIF:space_groupCategory> <mmCIF:space_group id="1"> <mmCIF:IT_number>15</mmCIF:IT_number> <mmCIF:crystal_system>monoclinic</mmCIF:crystal_system> <mmCIF:name_H-M_alt>C 2/c</mmCIF:name_H-M_alt> <mmCIF:name_Hall>-C 2yc</mmCIF:name_Hall> </mmCIF:space_group> </mmCIF:space_groupCategory> The number as assigned in International Tables for Crystallography Vol. A, specifying the proper affine class (i.e. the orientation-preserving affine class) of space groups (crystallographic space-group type) to which the space group belongs. This number defines the space-group type but not the coordinate system in which it is expressed. The name of the system of geometric crystal classes of space groups (crystal system) to which the space group belongs. Note that rhombohedral space groups belong to the trigonal system. attribute name_H-M_alt in category space_group allows any Hermann-Mauguin symbol to be given. The way in which this item is used is determined by the user and in general is not intended to be interpreted by computer. It may, for example, be used to give one of the extended Hermann-Mauguin symbols given in Table 4.3.2.1 of International Tables for Crystallography Vol. A (2002) or a Hermann-Mauguin symbol for a conventional or unconventional setting. Each component of the space-group name is separated by a space or an underscore. The use of a space is strongly recommended. The underscore is only retained because it was used in old CIFs. It should not be used in new CIFs. Subscripts should appear without special symbols. Bars should be given as negative signs before the numbers to which they apply. The commonly used Hermann-Mauguin symbol determines the space- group type uniquely but a given space-group type may be described by more than one Hermann-Mauguin symbol. The space- group type is best described using attribute IT_number. in category space_group The Hermann-Mauguin symbol may contain information on the choice of basis, but not on the choice of origin. To define the setting uniquely, use attribute name_Hall in category space_group or list the symmetry operations. three examples for space group No. 63 loop_ _space_group.name_H-M_alt 'C m c m' 'C 2/c 2/m 21/m' 'A m a m' Space-group symbol defined by Hall. Each component of the space-group name is separated by a space or an underscore. The use of a space is strongly recommended. The underscore is only retained because it was used in old CIFs. It should not be used in new CIFs. attribute name_Hall in category space_group uniquely defines the space group and its reference to a particular coordinate system. Ref: Hall, S. R. (1981). Acta Cryst. A37, 517-525; erratum (1981), A37, 921. [See also International Tables for Crystallography Vol. B (2001), Chapter 1.4, Appendix 1.4.2.] equivalent to Pca21 P 2c -2ac equivalent to Ia3d -I 4bd 2ab 3 This is the unique identifier for the SPACE_GROUP category. Contains information about the symmetry operations of the space group. Example 1 - The symmetry operations for the space group P21/c. <mmCIF:space_group_symopCategory> <mmCIF:space_group_symop id="1"> <mmCIF:operation_xyz>x,y,z</mmCIF:operation_xyz> </mmCIF:space_group_symop> <mmCIF:space_group_symop id="2"> <mmCIF:operation_xyz>-x,-y,-z</mmCIF:operation_xyz> </mmCIF:space_group_symop> <mmCIF:space_group_symop id="3"> <mmCIF:operation_xyz>-x,1/2+y,1/2-z</mmCIF:operation_xyz> </mmCIF:space_group_symop> <mmCIF:space_group_symop id="4"> <mmCIF:operation_xyz>x,1/2-y,1/2+z</mmCIF:operation_xyz> </mmCIF:space_group_symop> </mmCIF:space_group_symopCategory> A parsable string giving one of the symmetry operations of the space group in algebraic form. If W is a matrix representation of the rotational part of the symmetry operation defined by the positions and signs of x, y and z, and w is a column of translations defined by the fractions, an equivalent position X' is generated from a given position X by the equation X' = WX + w (Note: X is used to represent bold_italics_x in International Tables for Crystallography Vol. A, Part 5) When a list of symmetry operations is given, it must contain a complete set of coordinate representatives which generates all the operations of the space group by the addition of all primitive translations of the space group. Such representatives are to be found as the coordinates of the general-equivalent position in International Tables for Crystallography Vol. A (2002), to which it is necessary to add any centring translations shown above the general-equivalent position. That is to say, it is necessary to list explicity all the symmetry operations required to generate all the atoms in the unit cell defined by the setting used. glide reflection through the plane (x,1/4,z), with glide vector 1/2 c x,1/2-y,1/2+z This must match a particular value of attribute id in category space_group, allowing the symmetry operation to be identified with a particular space group. An arbitrary identifier that uniquely labels each symmetry operation in the list. Data items in the STRUCT category record details about the description of the crystallographic structure. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:structCategory> <mmCIF:struct entry_id="5HVP"> <mmCIF:title> HIV-1 protease complex with acetyl-pepstatin</mmCIF:title> </mmCIF:struct> </mmCIF:structCategory> A title for the data block. The author should attempt to convey the essence of the structure archived in the CIF in the title, and to distinguish this structural result from others. 5'-D(*(I)CP*CP*GP*G)-3 T4 lysozyme mutant - S32A hen egg white lysozyme at -30 degrees C quail egg white lysozyme at 2 atmospheres This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the STRUCT_ASYM category record details about the structural elements in the asymmetric unit. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:struct_asymCategory> <mmCIF:struct_asym id="A"> <mmCIF:details>one monomer of the dimeric enzyme</mmCIF:details> <mmCIF:entity_id>1</mmCIF:entity_id> </mmCIF:struct_asym> <mmCIF:struct_asym id="B"> <mmCIF:details>one monomer of the dimeric enzyme</mmCIF:details> <mmCIF:entity_id>1</mmCIF:entity_id> </mmCIF:struct_asym> <mmCIF:struct_asym id="C"> <mmCIF:details>one partially occupied position for the inhibitor</mmCIF:details> <mmCIF:entity_id>2</mmCIF:entity_id> </mmCIF:struct_asym> <mmCIF:struct_asym id="D"> <mmCIF:details>one partially occupied position for the inhibitor</mmCIF:details> <mmCIF:entity_id>2</mmCIF:entity_id> </mmCIF:struct_asym> </mmCIF:struct_asymCategory> A description of special aspects of this portion of the contents of the asymmetric unit. The drug binds to this enzyme in two roughly twofold symmetric modes. Hence this biological unit (3) is roughly twofold symmetric to biological unit (2). Disorder in the protein chain indicated with alternative ID 2 should be used with this biological unit. This data item is a pointer to attribute id in category entity in the ENTITY category. The value of attribute id in category struct_asym must uniquely identify a record in the STRUCT_ASYM list. Note that this item need not be a number; it can be any unique identifier. 1 A 2B3 Data items in the STRUCT_BIOL category record details about the structural elements that form each structure of biological significance. A given crystal structure may contain many different biological structures. A given structural component in the asymmetric unit may be part of more than one biological unit. A given biological structure may involve crystallographic symmetry. For instance, in a structure of a lysozyme-FAB structure, the light- and heavy-chain components of the FAB could be one biological unit, while the two chains of the FAB and the lysozyme could constitute a second biological unit. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:struct_biolCategory> <mmCIF:struct_biol id="1"> <mmCIF:details> significant deviations from twofold symmetry exist in this dimeric enzyme</mmCIF:details> </mmCIF:struct_biol> <mmCIF:struct_biol id="2"> <mmCIF:details> The drug binds to this enzyme in two roughly twofold symmetric modes. Hence this biological unit (2) is roughly twofold symmetric to biological unit (3). Disorder in the protein chain indicated with alternative ID 1 should be used with this biological unit.</mmCIF:details> </mmCIF:struct_biol> <mmCIF:struct_biol id="3"> <mmCIF:details> The drug binds to this enzyme in two roughly twofold symmetric modes. Hence this biological unit (3) is roughly twofold symmetric to biological unit (2). Disorder in the protein chain indicated with alternative ID 2 should be used with this biological unit.</mmCIF:details> </mmCIF:struct_biol> </mmCIF:struct_biolCategory> A description of special aspects of the biological unit. The drug binds to this enzyme in two roughly twofold symmetric modes. Hence this biological unit (3) is roughly twofold symmetric to biological unit (2). Disorder in the protein chain indicated with alternative ID 2 should be used with this biological unit. The value of attribute id in category struct_biol must uniquely identify a record in the STRUCT_BIOL list. Note that this item need not be a number; it can be any unique identifier. Data items in the STRUCT_BIOL_GEN category record details about the generation of each biological unit. The STRUCT_BIOL_GEN data items provide the specifications of the components that constitute that biological unit, which may include symmetry elements. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:struct_biol_genCategory> <mmCIF:struct_biol_gen asym_id="A" biol_id="1" symmetry="1_555"></mmCIF:struct_biol_gen> <mmCIF:struct_biol_gen asym_id="B" biol_id="1" symmetry="1_555"></mmCIF:struct_biol_gen> <mmCIF:struct_biol_gen asym_id="A" biol_id="2" symmetry="1_555"></mmCIF:struct_biol_gen> <mmCIF:struct_biol_gen asym_id="B" biol_id="2" symmetry="1_555"></mmCIF:struct_biol_gen> <mmCIF:struct_biol_gen asym_id="C" biol_id="2" symmetry="1_555"></mmCIF:struct_biol_gen> <mmCIF:struct_biol_gen asym_id="A" biol_id="3" symmetry="1_555"></mmCIF:struct_biol_gen> <mmCIF:struct_biol_gen asym_id="B" biol_id="3" symmetry="1_555"></mmCIF:struct_biol_gen> <mmCIF:struct_biol_gen asym_id="D" biol_id="3" symmetry="1_555"></mmCIF:struct_biol_gen> </mmCIF:struct_biol_genCategory> A description of special aspects of the symmetry generation of this portion of the biological structure. The zinc atom lies on a special position; application of symmetry elements to generate the insulin hexamer will generate excess zinc atoms, which must be removed by hand. This data item is a pointer to attribute id in category struct_asym in the STRUCT_ASYM category. This data item is a pointer to attribute id in category struct_biol in the STRUCT_BIOL category. Describes the symmetry operation that should be applied to the atom set specified by attribute asym_id in category struct_biol_gen to generate a portion of the biological structure. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 Data items in the STRUCT_BIOL_KEYWORDS category record keywords that describe each biological unit. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:struct_biol_keywordsCategory> <mmCIF:struct_biol_keywords biol_id="1" text="aspartyl-protease"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="1" text="aspartic-protease"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="1" text="acid-protease"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="1" text="aspartyl-proteinase"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="1" text="aspartic-proteinase"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="1" text="acid-proteinase"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="1" text="enzyme"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="1" text="protease"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="1" text="proteinase"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="1" text="dimer"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="2" text="drug-enzyme complex"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="2" text="inhibitor-enzyme complex"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="2" text="drug-protease complex"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="2" text="inhibitor-protease complex"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="3" text="drug-enzyme complex"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="3" text="inhibitor-enzyme complex"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="3" text="drug-protease complex"></mmCIF:struct_biol_keywords> <mmCIF:struct_biol_keywords biol_id="3" text="inhibitor-protease complex"></mmCIF:struct_biol_keywords> </mmCIF:struct_biol_keywordsCategory> This data item is a pointer to attribute id in category struct_biol in the STRUCT_BIOL category. Keywords describing this biological entity. antibody antigen enzyme cytokine tRNA Data items in the STRUCT_BIOL_VIEW category record details about how to draw and annotate an informative view of the biological structure. Example 1 - based on NDB structure GDL001 by Coll, Aymami, Van Der Marel, Van Boom, Rich & Wang [Biochemistry, (1989), 28, 310-320]. <mmCIF:struct_biol_viewCategory> <mmCIF:struct_biol_view biol_id="c1" id="1"> <mmCIF:details> This view highlights the ATAT-Netropsin interaction in the DNA-drug complex.</mmCIF:details> <mmCIF:rot_matrix11>0.132</mmCIF:rot_matrix11> <mmCIF:rot_matrix12>0.922</mmCIF:rot_matrix12> <mmCIF:rot_matrix13>-0.363</mmCIF:rot_matrix13> <mmCIF:rot_matrix21>0.131</mmCIF:rot_matrix21> <mmCIF:rot_matrix22>-0.380</mmCIF:rot_matrix22> <mmCIF:rot_matrix23>-0.916</mmCIF:rot_matrix23> <mmCIF:rot_matrix31>-0.982</mmCIF:rot_matrix31> <mmCIF:rot_matrix32>0.073</mmCIF:rot_matrix32> <mmCIF:rot_matrix33>-0.172</mmCIF:rot_matrix33> </mmCIF:struct_biol_view> </mmCIF:struct_biol_viewCategory> A description of special aspects of this view of the biological structure. This data item can be used as a figure legend. The enzyme has been oriented with the molecular twofold axis aligned with the horizontal axis of the figure. The [1][1] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in attribute details. in category struct_biol_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [1][2] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in attribute details. in category struct_biol_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [1][3] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in attribute details. in category struct_biol_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [2][1] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in attribute details. in category struct_biol_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [2][2] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in attribute details. in category struct_biol_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [2][3] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in attribute details. in category struct_biol_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [3][1] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in attribute details. in category struct_biol_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [3][2] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in attribute details. in category struct_biol_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [3][3] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_BIOL_GEN category to give a view useful for describing the structure. The conventions used in the rotation are described in attribute details. in category struct_biol_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| This data item is a pointer to attribute id in category struct_biol in the STRUCT_BIOL category. The value of attribute id in category struct_biol_view must uniquely identify a record in the STRUCT_BIOL_VIEW list. Note that this item need not be a number; it can be any unique identifier. Figure 1 unliganded enzyme view down enzyme active site Data items in the STRUCT_CONF category record details about the backbone conformation of a segment of polymer. Data items in the STRUCT_CONF_TYPE category define the criteria used to identify the backbone conformations. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:struct_confCategory> <mmCIF:struct_conf id="HELX1"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ARG</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>87</mmCIF:beg_label_seq_id> <mmCIF:conf_type_id>HELX_RH_AL_P</mmCIF:conf_type_id> <mmCIF:details xsi:nil="true" /> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>GLN</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>92</mmCIF:end_label_seq_id> </mmCIF:struct_conf> <mmCIF:struct_conf id="HELX2"> <mmCIF:beg_label_asym_id>B</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ARG</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>287</mmCIF:beg_label_seq_id> <mmCIF:conf_type_id>HELX_RH_AL_P</mmCIF:conf_type_id> <mmCIF:details xsi:nil="true" /> <mmCIF:end_label_asym_id>B</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>GLN</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>292</mmCIF:end_label_seq_id> </mmCIF:struct_conf> <mmCIF:struct_conf id="STRN1"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>PRO</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>1</mmCIF:beg_label_seq_id> <mmCIF:conf_type_id>STRN_P</mmCIF:conf_type_id> <mmCIF:details xsi:nil="true" /> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>LEU</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>5</mmCIF:end_label_seq_id> </mmCIF:struct_conf> <mmCIF:struct_conf id="STRN2"> <mmCIF:beg_label_asym_id>B</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>CYS</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>295</mmCIF:beg_label_seq_id> <mmCIF:conf_type_id>STRN_P</mmCIF:conf_type_id> <mmCIF:details xsi:nil="true" /> <mmCIF:end_label_asym_id>B</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>PHE</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>299</mmCIF:end_label_seq_id> </mmCIF:struct_conf> <mmCIF:struct_conf id="STRN3"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>CYS</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>95</mmCIF:beg_label_seq_id> <mmCIF:conf_type_id>STRN_P</mmCIF:conf_type_id> <mmCIF:details xsi:nil="true" /> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>PHE</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>299</mmCIF:end_label_seq_id> </mmCIF:struct_conf> <mmCIF:struct_conf id="STRN4"> <mmCIF:beg_label_asym_id>B</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>PRO</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>201</mmCIF:beg_label_seq_id> <mmCIF:conf_type_id>STRN_P</mmCIF:conf_type_id> <mmCIF:details xsi:nil="true" /> <mmCIF:end_label_asym_id>B</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>LEU</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>205</mmCIF:end_label_seq_id> </mmCIF:struct_conf> <mmCIF:struct_conf id="TURN1"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ILE</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>15</mmCIF:beg_label_seq_id> <mmCIF:conf_type_id>TURN_TY1P_P</mmCIF:conf_type_id> <mmCIF:details xsi:nil="true" /> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>GLN</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>18</mmCIF:end_label_seq_id> </mmCIF:struct_conf> <mmCIF:struct_conf id="TURN2"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>GLY</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>49</mmCIF:beg_label_seq_id> <mmCIF:conf_type_id>TURN_TY2_P</mmCIF:conf_type_id> <mmCIF:details xsi:nil="true" /> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>GLY</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>52</mmCIF:end_label_seq_id> </mmCIF:struct_conf> <mmCIF:struct_conf id="TURN3"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ILE</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>55</mmCIF:beg_label_seq_id> <mmCIF:conf_type_id>TURN_TY1P_P</mmCIF:conf_type_id> <mmCIF:details xsi:nil="true" /> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>HIS</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>69</mmCIF:end_label_seq_id> </mmCIF:struct_conf> <mmCIF:struct_conf id="TURN4"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>THR</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>91</mmCIF:beg_label_seq_id> <mmCIF:conf_type_id>TURN_TY1_P</mmCIF:conf_type_id> <mmCIF:details xsi:nil="true" /> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>GLY</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>94</mmCIF:end_label_seq_id> </mmCIF:struct_conf> </mmCIF:struct_confCategory> A component of the identifier for the residue at which the conformation segment begins. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the conformation segment begins. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the conformation segment begins. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the conformation segment begins. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the conformation segment begins. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the conformation segment begins. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. This data item is a pointer to attribute id in category struct_conf_type in the STRUCT_CONF_TYPE category. A description of special aspects of the conformation assignment. A component of the identifier for the residue at which the conformation segment ends. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the conformation segment ends. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the conformation segment ends. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the conformation segment ends. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the conformation segment ends. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the conformation segment ends. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. The value of attribute id in category struct_conf must uniquely identify a record in the STRUCT_CONF list. Note that this item need not be a number; it can be any unique identifier. Data items in the STRUCT_CONF_TYPE category record details about the criteria used to identify backbone conformations of a segment of polymer. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:struct_conf_typeCategory> <mmCIF:struct_conf_type id="HELX_RH_AL_P"> <mmCIF:criteria>author judgement</mmCIF:criteria> <mmCIF:reference xsi:nil="true" /> </mmCIF:struct_conf_type> <mmCIF:struct_conf_type id="STRN_P"> <mmCIF:criteria>author judgement</mmCIF:criteria> <mmCIF:reference xsi:nil="true" /> </mmCIF:struct_conf_type> <mmCIF:struct_conf_type id="TURN_TY1_P"> <mmCIF:criteria>author judgement</mmCIF:criteria> <mmCIF:reference xsi:nil="true" /> </mmCIF:struct_conf_type> <mmCIF:struct_conf_type id="TURN_TY1P_P"> <mmCIF:criteria>author judgement</mmCIF:criteria> <mmCIF:reference xsi:nil="true" /> </mmCIF:struct_conf_type> <mmCIF:struct_conf_type id="TURN_TY2_P"> <mmCIF:criteria>author judgement</mmCIF:criteria> <mmCIF:reference xsi:nil="true" /> </mmCIF:struct_conf_type> <mmCIF:struct_conf_type id="TURN_TY2P_P"> <mmCIF:criteria>author judgement</mmCIF:criteria> <mmCIF:reference xsi:nil="true" /> </mmCIF:struct_conf_type> </mmCIF:struct_conf_typeCategory> The criteria used to assign this conformation type. author judgement phi=54-74, psi=30-50 A literature reference that defines the criteria used to assign this conformation type and subtype. The descriptor that categorizes the type of the conformation of the backbone of the polymer (whether protein or nucleic acid). Explicit values for the torsion angles that define each conformation are not given here, but it is expected that the author would provide such information in either the _struct_conf_type.criteria or _struct_conf_type.reference data items, or both. Data items in the STRUCT_CONN category record details about the connections between portions of the structure. These can be hydrogen bonds, salt bridges, disulfide bridges and so on. The STRUCT_CONN_TYPE records define the criteria used to identify these connections. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:struct_connCategory> <mmCIF:struct_conn id="C1"> <mmCIF:conn_type_id>saltbr</mmCIF:conn_type_id> <mmCIF:details xsi:nil="true" /> <mmCIF:ptnr1_label_asym_id>A</mmCIF:ptnr1_label_asym_id> <mmCIF:ptnr1_label_atom_id>NZ1</mmCIF:ptnr1_label_atom_id> <mmCIF:ptnr1_label_comp_id>ARG</mmCIF:ptnr1_label_comp_id> <mmCIF:ptnr1_label_seq_id>87</mmCIF:ptnr1_label_seq_id> <mmCIF:ptnr1_role>positive</mmCIF:ptnr1_role> <mmCIF:ptnr1_symmetry>1_555</mmCIF:ptnr1_symmetry> <mmCIF:ptnr2_label_asym_id>A</mmCIF:ptnr2_label_asym_id> <mmCIF:ptnr2_label_atom_id>OE1</mmCIF:ptnr2_label_atom_id> <mmCIF:ptnr2_label_comp_id>GLU</mmCIF:ptnr2_label_comp_id> <mmCIF:ptnr2_label_seq_id>92</mmCIF:ptnr2_label_seq_id> <mmCIF:ptnr2_role>negative</mmCIF:ptnr2_role> <mmCIF:ptnr2_symmetry>1_555</mmCIF:ptnr2_symmetry> </mmCIF:struct_conn> <mmCIF:struct_conn id="C2"> <mmCIF:conn_type_id>hydrog</mmCIF:conn_type_id> <mmCIF:details xsi:nil="true" /> <mmCIF:ptnr1_label_asym_id>B</mmCIF:ptnr1_label_asym_id> <mmCIF:ptnr1_label_atom_id>N</mmCIF:ptnr1_label_atom_id> <mmCIF:ptnr1_label_comp_id>ARG</mmCIF:ptnr1_label_comp_id> <mmCIF:ptnr1_label_seq_id>287</mmCIF:ptnr1_label_seq_id> <mmCIF:ptnr1_role>donor</mmCIF:ptnr1_role> <mmCIF:ptnr1_symmetry>1_555</mmCIF:ptnr1_symmetry> <mmCIF:ptnr2_label_asym_id>B</mmCIF:ptnr2_label_asym_id> <mmCIF:ptnr2_label_atom_id>O</mmCIF:ptnr2_label_atom_id> <mmCIF:ptnr2_label_comp_id>GLY</mmCIF:ptnr2_label_comp_id> <mmCIF:ptnr2_label_seq_id>292</mmCIF:ptnr2_label_seq_id> <mmCIF:ptnr2_role>acceptor</mmCIF:ptnr2_role> <mmCIF:ptnr2_symmetry>1_555</mmCIF:ptnr2_symmetry> </mmCIF:struct_conn> </mmCIF:struct_connCategory> This data item is a pointer to attribute id in category struct_conn_type in the STRUCT_CONN_TYPE category. A description of special aspects of the connection. disulfide bridge C-S-S-C is highly distorted A component of the identifier for partner 1 of the structure connection. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for partner 1 of the structure connection. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. A component of the identifier for partner 1 of the structure connection. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for partner 1 of the structure connection. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for partner 1 of the structure connection. This data item is a pointer to attribute id in category atom_sites_alt in the ATOM_SITES_ALT category. A component of the identifier for partner 1 of the structure connection. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for partner 1 of the structure connection. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. A component of the identifier for partner 1 of the structure connection. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for partner 1 of the structure connection. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. The chemical or structural role of the first partner in the structure connection. donor acceptor negative positive metal metal coordination Describes the symmetry operation that should be applied to the atom set specified by attribute ptnr1_label* in category struct_conn to generate the first partner in the structure connection. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 A component of the identifier for partner 2 of the structure connection. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for partner 2 of the structure connection. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. A component of the identifier for partner 2 of the structure connection. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for partner 2 of the structure connection. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for partner 2 of the structure connection. This data item is a pointer to attribute id in category atom_sites_alt in the ATOM_SITES_ALT category. A component of the identifier for partner 2 of the structure connection. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for partner 2 of the structure connection. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. A component of the identifier for partner 2 of the structure connection. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for partner 2 of the structure connection. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. The chemical or structural role of the second partner in the structure connection. donor acceptor negative positive metal metal coordination Describes the symmetry operation that should be applied to the atom set specified by attribute ptnr2_label* in category struct_conn to generate the second partner in the structure connection. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 The value of attribute id in category struct_conn must uniquely identify a record in the STRUCT_CONN list. Note that this item need not be a number; it can be any unique identifier. Data items in the STRUCT_CONN_TYPE category record details about the criteria used to identify interactions between portions of the structure. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:struct_conn_typeCategory> <mmCIF:struct_conn_type id="saltbr"> <mmCIF:criteria>negative to positive distance &gt; 2.5 \&#37;A, &lt; 3.2 \&#37;A</mmCIF:criteria> <mmCIF:reference xsi:nil="true" /> </mmCIF:struct_conn_type> <mmCIF:struct_conn_type id="hydrog"> <mmCIF:criteria>NO distance &gt; 2.5\&#37;A, &lt; 3.5\&#37;A, NOC angle &lt; 120 degrees</mmCIF:criteria> <mmCIF:reference xsi:nil="true" /> </mmCIF:struct_conn_type> </mmCIF:struct_conn_typeCategory> The criteria used to define the interaction. O to N distance > 2.5 \%A, < 3.2 \%A authors judgement A reference that specifies the criteria used to define the interaction. The chemical or structural type of the interaction. Data items in the STRUCT_KEYWORDS category specify keywords that describe the chemical structure in this entry. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:struct_keywordsCategory> <mmCIF:struct_keywords entry_id="5HVP"> <mmCIF:text>enzyme-inhibitor complex</mmCIF:text> </mmCIF:struct_keywords> <mmCIF:struct_keywords entry_id="5HVP"> <mmCIF:text>aspartyl protease</mmCIF:text> </mmCIF:struct_keywords> <mmCIF:struct_keywords entry_id="5HVP"> <mmCIF:text>structure-based drug design</mmCIF:text> </mmCIF:struct_keywords> <mmCIF:struct_keywords entry_id="5HVP"> <mmCIF:text>static disorder</mmCIF:text> </mmCIF:struct_keywords> </mmCIF:struct_keywordsCategory> Keywords describing this structure. serine protease inhibited complex high-resolution refinement This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the STRUCT_MON_DETAILS category record details about specifics of calculations summarized in data items in the STRUCT_MON_PROT and STRUCT_MON_NUCL categories. These can include the coefficients used in map calculations, the radii used for including points in a calculation and so on. This data item describes the specifics of the calculations that generated the values given in attribute RSCC_all, in category struct_mon_prot _struct_mon_prot.RSCC_main and _struct_mon_prot.RSCC_side. The coefficients used to calculate the p(o) and p(c) maps should be given as well as the criterion for the inclusion of map grid points in the calculation. The map p(o) was calculated with coefficients 2F(o) - F(c) and with phase alpha(c). F(o) are the observed structure-factor amplitudes, F(c) are the amplitudes calculated from the current model and alpha(c) are the phases calculated from the current model. The map p(c) was calculated in program O using a Gaussian distribution function around the atoms in the current model. Map grid points within 1.5 A of the designated atoms were included in the calculation. The map p(o) was calculated with coefficients F(o) and with phase alpha(c). F(o) are the observed structure-factor amplitudes, and alpha(c) are the phases calculated from the current model. The map p(c) was calculated with coefficients F(c) and with phases alpha(c). F(c) and alpha(c) are the structure-factor amplitudes and phases, respectively, calculated from the current model. Map grid points within a van der Waals radius of the designated atoms were included in the calculation. This data item describes the specifics of the calculations that generated the values given in attribute RSR_all, in category struct_mon_prot _struct_mon_prot.RSR_main and _struct_mon_prot.RSR_side. The coefficients used to calculate the p(o) and p(c) maps should be given as well as the criterion for the inclusion of map grid points in the calculation. The map p(o) was calculated with coefficients 2F(o) - F(c) and with phase alpha(c). F(o) are the observed structure-factor amplitudes, F(c) are the amplitudes calculated from the current model and alpha(c) are the phases calculated from the current model. The map p(c) was calculated in program O using a Gaussian distribution function around the atoms in the current model. Map grid points within 1.5 A of the designated atoms were included in the calculation. The map p(o) was calculated with coefficients F(o) and with phase alpha(c). F(o) are the observed structure-factor amplitudes, and alpha(c) are the phases calculated from the current model. The map p(c) was calculated with coefficients F(c) and with phases alpha(c). F(c) and alpha(c) are the structure-factor amplitudes and phases, respectively, calculated from the current model. Map grid points within a van der Waals radius of the designated atoms were included in the calculation. An ideal cis peptide bond would have an omega torsion angle of zero. This data item gives the value in degrees by which the observed torsion angle can differ from 0.0 and still be considered cis. 30.0 This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the STRUCT_MON_NUCL category record details about structural properties of a nucleic acid when analyzed at the monomer level. Analogous data items for proteins are given in the STRUCT_MON_PROT category. For items where the value of the property depends on the method employed to calculate it, details of the method of calculation are given using data items in the STRUCT_MON_DETAILS category. Example 1 - based on NDB structure BDL028. P is the phase angle of pseudorotation for five-membered rings. For ribose and deoxyribose sugars in nucleic acids (tau4 +tau1)-(tau3+tau0) P = ATAN (-------------------------) 2tau2 (sin 36+sin 72) If tau2 is <0, then P=P+180 degree (Altona & Sundaralingam, 1972). Ref: Altona, C. & Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 8205-8212. The real-space (linear) correlation coefficient RSCC, as described by Jones et al. (1991), evaluated over all atoms in the nucleic acid monomer. sum|p~obs~ - <p~obs~>| * sum|p~calc~ - <p~calc~>| RSCC = ------------------------------------------------- [ sum|p~obs~ - <p~obs~> |^2^ * sum|p~calc~ - <p~calc~>|^2^ ]^1/2^ p~obs~ = the density in an 'experimental' map p~calc~ = the density in a 'calculated' map sum is taken over the specified grid points Details of how these maps were calculated should be given in attribute RSCC in category struct_mon_details. < > indicates an average and the sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in attribute RSCC. in category struct_mon_details Ref: Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119. The real-space (linear) correlation coefficient RSCC, as described by Jones et al. (1991), evaluated over all atoms in the base moiety of the nucleic acid monomer. sum|p~obs~ - <p~obs~>| * sum|p~calc~ - <p~calc~>| RSCC = ------------------------------------------------- [ sum|p~obs~ - <p~obs~> |^2^ * sum|p~calc~ - <p~calc~>|^2^ ]^1/2^ p~obs~ = the density in an 'experimental' map p~calc~ = the density in a 'calculated' map sum is taken over the specified grid points Details of how these maps were calculated should be given in attribute RSCC in category struct_mon_details. < > indicates an average and the sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in attribute RSCC. in category struct_mon_details Ref: Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119. The real-space (linear) correlation coefficient RSCC, as described by Jones et al. (1991), evaluated over all atoms in the phosphate moiety of the nucleic acid monomer. sum|p~obs~ - <p~obs~>| * sum|p~calc~ - <p~calc~>| RSCC = ------------------------------------------------- [ sum|p~obs~ - <p~obs~> |^2^ * sum|p~calc~ - <p~calc~>|^2^ ]^1/2^ p~obs~ = the density in an 'experimental' map p~calc~ = the density in a 'calculated' map sum is taken over the specified grid points Details of how these maps were calculated should be given in attribute RSCC in category struct_mon_details. < > indicates an average and the sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in attribute RSCC. in category struct_mon_details Ref: Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119. The real-space (linear) correlation coefficient RSCC, as described by Jones et al. (1991), evaluated over all atoms in the sugar moiety of the nucleic acid monomer. sum|p~obs~ - <p~obs~>| * sum|p~calc~ - <p~calc~>| RSCC = ------------------------------------------------- [ sum|p~obs~ - <p~obs~> |^2^ * sum|p~calc~ - <p~calc~>|^2^ ]^1/2^ p~obs~ = the density in an 'experimental' map p~calc~ = the density in a 'calculated' map sum is taken over the specified grid points Details of how these maps were calculated should be given in attribute RSCC in category struct_mon_details. < > indicates an average and the sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in attribute RSCC. in category struct_mon_details Ref: Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119. The real-space residual RSR, as described by Branden & Jones (1990), evaluated over all atoms in the nucleic acid monomer. sum|p~obs~ - p~calc~| RSR = --------------------- sum|p~obs~ + p~calc~| p~obs~ = the density in an 'experimental' map p~calc~ = the density in a 'calculated' map sum is taken over the specified grid points Details of how these maps were calculated should be given in attribute RSR in category struct_mon_details. The sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in attribute RSR. in category struct_mon_details Ref: Branden, C.-I. & Jones, T. A. (1990). Nature (London), 343, 687-689. The real-space residual RSR, as described by Branden & Jones (1990), evaluated over all atoms in the base moiety of the nucleic acid monomer. sum|p~obs~ - p~calc~| RSR = --------------------- sum|p~obs~ + p~calc~| p~obs~ = the density in an 'experimental' map p~calc~ = the density in a 'calculated' map sum is taken over the specified grid points Details of how these maps were calculated should be given in attribute RSR in category struct_mon_details. The sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in attribute RSR. in category struct_mon_details Ref: Branden, C.-I. & Jones, T. A. (1990). Nature (London), 343, 687-689. The real-space residual RSR, as described by Branden & Jones (1990), evaluated over all atoms in the phosphate moiety of the nucleic acid monomer. sum|p~obs~ - p~calc~| RSR = --------------------- sum|p~obs~ + p~calc~| p~obs~ = the density in an 'experimental' map p~calc~ = the density in a 'calculated' map sum is taken over the specified grid points Details of how these maps were calculated should be given in attribute RSR in category struct_mon_details. The sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in attribute RSR. in category struct_mon_details Ref: Branden, C.-I. & Jones, T. A. (1990). Nature (London), 343, 687-689. The real-space residual RSR, as described by Branden & Jones (1990), evaluated over all atoms in the sugar moiety of the nucleic acid monomer. sum|p~obs~ - p~calc~| RSR = --------------------- sum|p~obs~ + p~calc~| p~obs~ = the density in an 'experimental' map p~calc~ = the density in a 'calculated' map sum is taken over the specified grid points Details of how these maps were calculated should be given in attribute RSR in category struct_mon_details. The sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in attribute RSR. in category struct_mon_details Ref: Branden, C.-I. & Jones, T. A. (1990). Nature (London), 343, 687-689. The value in degrees of the backbone torsion angle alpha (O3'-P-O5'-C5'). A component of the identifier for participants in the site. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for participants in the site. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for participants in the site. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. The value in degrees of the backbone torsion angle beta (P-O5'-C5'-C4'). The value in degrees of the sugar-base torsion angle chi1 (O4'-C1'-N1-C2). The value in degrees of the sugar-base torsion angle chi2 (O4'-C1'-N9-C4). The value in degrees of the backbone torsion angle delta (C5'-C4'-C3'-O3'). A description of special aspects of the residue, its conformation, behaviour in refinement, or any other aspect that requires annotation. Part of the phosphodiester backbone not in density. The value in degrees of the backbone torsion angle epsilon (C4'-C3'-O3'-P). The value in degrees of the backbone torsion angle gamma (O5'-C5'-C4'-C3'). The mean value of the isotropic displacement parameter for all atoms in the monomer. The mean value of the isotropic displacement parameter for atoms in the base moiety of the nucleic acid monomer. The mean value of the isotropic displacement parameter for atoms in the phosphate moiety of the nucleic acid monomer. The mean value of the isotropic displacement parameter for atoms in the sugar moiety of the nucleic acid monomer. The value in degrees of the sugar torsion angle nu0 (C4'-O4'-C1'-C2'). The value in degrees of the sugar torsion angle nu1 (O4'-C1'-C2'-C3'). The value in degrees of the sugar torsion angle nu2 (C1'-C2'-C3'-C4'). The value in degrees of the sugar torsion angle nu3 (C2'-C3'-C4'-O4'). The value in degrees of the sugar torsion angle nu4 (C3'-C4'-O4'-C1'). The value in degrees of the sugar torsion angle tau0 (C4'-O4'-C1'-C2'). The value in degrees of the sugar torsion angle tau1 (O4'-C1'-C2'-C3'). The value in degrees of the sugar torsion angle tau2 (C1'-C2'-C3'-C4'). The value in degrees of the sugar torsion angle tau3 (C2'-C3'-C4'-O4'). The value in degrees of the sugar torsion angle tau4 (C3'-C4'-O4'-C1'). The maximum amplitude of puckering. This is derived from the pseudorotation value P and the torsion angles in the ribose ring. Tau2= Taum cosP Tau3= Taum cos(P+144) Tau4= Taum cos(P+288) Tau0= Taum cos(P+ 72) Tau1= Taum cos(P+216) The value in degrees of the backbone torsion angle zeta (C3'-O3'-P-O5'). A component of the identifier for participants in the site. This data item is a pointer to attribute id in category atom_sites_alt in the ATOM_SITES_ALT category. A component of the identifier for participants in the site. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for participants in the site. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for participants in the site. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. Data items in the STRUCT_MON_PROT category record details about structural properties of a protein when analyzed at the monomer level. Analogous data items for nucleic acids are given in the STRUCT_MON_NUCL category. For items where the value of the property depends on the method employed to calculate it, details of the method of calculation are given using data items in the STRUCT_MON_DETAILS category. Example 1 - based on laboratory records for protein NS1. This example provides details for residue ARG 35. The real-space (linear) correlation coefficient RSCC, as described by Jones et al. (1991), evaluated over all atoms in the monomer. sum|p~obs~ - <p~obs~>| * sum|p~calc~ - <p~calc~>| RSCC = ------------------------------------------------- [ sum|p~obs~ - <p~obs~> |^2^ * sum|p~calc~ - <p~calc~>|^2^ ]^1/2^ p~obs~ = the density in an 'experimental' map p~calc~ = the density in a 'calculated' map sum is taken over the specified grid points Details of how these maps were calculated should be given in attribute RSCC in category struct_mon_details. < > indicates an average and the sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in attribute RSCC. in category struct_mon_details Ref: Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119. The real-space (linear) correlation coefficient RSCC, as described by Jones et al. (1991), evaluated over all atoms in the main chain of the monomer. sum|p~obs~ - <p~obs~>| * sum|p~calc~ - <p~calc~>| RSCC = ------------------------------------------------- [ sum|p~obs~ - <p~obs~> |^2^ * sum|p~calc~ - <p~calc~>|^2^ ]^1/2^ p~obs~ = the density in an 'experimental' map p~calc~ = the density in a 'calculated' map sum is taken over the specified grid points Details of how these maps were calculated should be given in attribute RSCC in category struct_mon_details. < > indicates an average and the sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in attribute RSCC. in category struct_mon_details Ref: Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119. The real-space (linear) correlation coefficient RSCC, as described by Jones et al. (1991), evaluated over all atoms in the side chain of the monomer. sum|p~obs~ - <p~obs~>| * sum|p~calc~ - <p~calc~>| RSCC = ------------------------------------------------- [ sum|p~obs~ - <p~obs~> |^2^ * sum|p~calc~ - <p~calc~>|^2^ ]^1/2^ p~obs~ = the density in an 'experimental' map p~calc~ = the density in a 'calculated' map sum is taken over the specified grid points Details of how these maps were calculated should be given in attribute RSCC in category struct_mon_details. < > indicates an average and the sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in attribute RSCC. in category struct_mon_details Ref: Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Acta Cryst. A47, 110-119. The real-space residual RSR, as described by Branden & Jones (1990), evaluated over all atoms in the monomer. sum|p~obs~ - p~calc~| RSR = --------------------- sum|p~obs~ + p~calc~| p~obs~ = the density in an 'experimental' map p~calc~ = the density in a 'calculated' map sum is taken over the specified grid points Details of how these maps were calculated should be given in attribute RSR in category struct_mon_details. The sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in attribute RSR. in category struct_mon_details Ref: Branden, C.-I. & Jones, T. A. (1990). Nature (London), 343, 687-689. The real-space residual RSR, as described by Branden & Jones (1990), evaluated over all atoms in the main chain of the monomer. sum|p~obs~ - p~calc~| RSR = --------------------- sum|p~obs~ + p~calc~| p~obs~ = the density in an 'experimental' map p~calc~ = the density in a 'calculated' map sum is taken over the specified grid points Details of how these maps were calculated should be given in attribute RSR in category struct_mon_details. The sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in attribute RSR. in category struct_mon_details Ref: Branden, C.-I. & Jones, T. A. (1990). Nature (London), 343, 687-689. The real-space residual RSR, as described by Branden & Jones (1990), evaluated over all atoms in the side chain of the monomer. sum|p~obs~ - p~calc~| RSR = --------------------- sum|p~obs~ + p~calc~| p~obs~ = the density in an 'experimental' map p~calc~ = the density in a 'calculated' map sum is taken over the specified grid points Details of how these maps were calculated should be given in attribute RSR in category struct_mon_details. The sums are taken over all map grid points near the relevant atoms. The radius for including grid points in the calculation should also be given in attribute RSR. in category struct_mon_details Ref: Branden, C.-I. & Jones, T. A. (1990). Nature (London), 343, 687-689. A component of the identifier for the monomer. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. The value in degrees of the side-chain torsion angle chi1, for those residues containing such an angle. The value in degrees of the side-chain torsion angle chi2, for those residues containing such an angle. The value in degrees of the side-chain torsion angle chi3, for those residues containing such an angle. The value in degrees of the side-chain torsion angle chi4, for those residues containing such an angle. The value in degrees of the side-chain torsion angle chi5, for those residues containing such an angle. A description of special aspects of the residue, its conformation, behaviour in refinement, or any other aspect that requires annotation. very poor density The side chain of this density may occupy alternative conformations, but alternative conformations were not fit in this model. This residue has a close contact with the bound inhibitor, which may account for the nonstandard conformation of the side chain. The mean value of the isotropic displacement parameter for all atoms in the monomer. The mean value of the isotropic displacement parameter for atoms in the main chain of the monomer. The mean value of the isotropic displacement parameter for atoms in the side chain of the monomer. The value in degrees of the main-chain torsion angle omega. The value in degrees of the main-chain torsion angle phi. The value in degrees of the main-chain torsion angle psi. A component of the identifier for the monomer. This data item is a pointer to attribute id in category atom_sites_alt in the ATOM_SITES_ALT category. A component of the identifier for the monomer. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. Data items in the STRUCT_MON_PROT_CIS category identify monomers that have been found to have the peptide bond in the cis conformation. The criterion used to select residues to be designated as containing cis peptide bonds is given in attribute prot_cis in category struct_mon_details. Example 1 - based on PDB structure 1ACY of Ghiara, Stura, Stanfield, Profy & Wilson [Science (1994), 264, 82-85]. A component of the identifier for the monomer. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer. This data item is a pointer to attribute id in category atom_sites_alt in the ATOM_SITES_ALT category. A component of the identifier for the monomer. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. Data items in the STRUCT_NCS_DOM category record information about the domains in an ensemble of domains related by one or more noncrystallographic symmetry operators. A domain need not correspond to a complete polypeptide chain; it can be composed of one or more segments in a single chain, or by segments from more than one chain. Example 1 - based on laboratory records for the collagen-like peptide, HYP-. <mmCIF:struct_ncs_domCategory> <mmCIF:struct_ncs_dom id="d1"> <mmCIF:details>Chains A, B, and C</mmCIF:details> </mmCIF:struct_ncs_dom> <mmCIF:struct_ncs_dom id="d2"> <mmCIF:details>Chains D, E, and F</mmCIF:details> </mmCIF:struct_ncs_dom> </mmCIF:struct_ncs_domCategory> A description of special aspects of the structural elements that comprise a domain in an ensemble of domains related by noncrystallographic symmetry. The loop between residues 18 and 23 in this domain interacts with a symmetry-related molecule, and thus deviates significantly from the noncrystallographic threefold. The value of attribute id in category struct_ncs_dom must uniquely identify a record in the STRUCT_NCS_DOM list. Note that this item need not be a number; it can be any unique identifier. Data items in the STRUCT_NCS_DOM_LIM category identify the start and end points of polypeptide chain segments that form all or part of a domain in an ensemble of domains related by noncrystallographic symmetry. Example 1 - based on laboratory records for the collagen-like peptide, HYP-. A component of the identifier for the monomer at which this segment of the domain begins. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer at which this segment of the domain begins. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer at which this segment of the domain begins. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer at which this segment of the domain ends. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer at which this segment of the domain ends. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer at which this segment of the domain ends. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer at which this segment of the domain begins. This data item is a pointer to attribute id in category atom_sites_alt in the ATOM_SITES_ALT category. A component of the identifier for the monomer at which this segment of the domain begins. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer at which this segment of the domain begins. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer at which this segment of the domain begins. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. This data item is a pointer to attribute id in category struct_ncs_dom in the STRUCT_NCS_DOM category. A component of the identifier for the monomer at which this segment of the domain ends. This data item is a pointer to attribute id in category atom_sites_alt in the ATOM_SITES_ALT category. A component of the identifier for the monomer at which this segment of the domain ends. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer at which this segment of the domain ends. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for the monomer at which this segment of the domain ends. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. Data items in the STRUCT_NCS_ENS category record information about ensembles of domains related by noncrystallographic symmetry. The point group of the ensemble when taken as a whole may be specified, as well as any special aspects of the ensemble that require description. Example 1 - based on laboratory records for the collagen-like peptide, HYP-. <mmCIF:struct_ncs_ensCategory> <mmCIF:struct_ncs_ens id="en1"> <mmCIF:details> The ensemble represents the pseudo-twofold symmetry between domains d1 and d2.</mmCIF:details> </mmCIF:struct_ncs_ens> </mmCIF:struct_ncs_ensCategory> A description of special aspects of the ensemble. The ensemble has a slight translation between domains 1 and 4, but overall it can accurately be described as point group 222 The point group of the ensemble of structural elements related by one or more noncrystallographic symmetry operations. The relationships need not be precise; this data item is intended to give a rough description of the noncrystallographic symmetry relationships. 3 422 non-proper The value of attribute id in category struct_ncs_ens must uniquely identify a record in the STRUCT_NCS_ENS list. Note that this item need not be a number; it can be any unique identifier. Data items in the STRUCT_NCS_ENS_GEN category list domains related by a noncrystallographic symmetry operation and identify the operator. Example 1 - based on laboratory records for the collagen-like peptide, HYP-. <mmCIF:struct_ncs_ens_genCategory> <mmCIF:struct_ncs_ens_gen dom_id_1="d1" dom_id_2="d2" ens_id="en1" oper_id="ncsop1"></mmCIF:struct_ncs_ens_gen> </mmCIF:struct_ncs_ens_genCategory> The identifier for the domain that will remain unchanged by the transformation operator. This data item is a pointer to attribute id in category struct_ncs_dom in the STRUCT_NCS_DOM category. The identifier for the domain that will be transformed by application of the transformation operator. This data item is a pointer to attribute id in category struct_ncs_dom in the STRUCT_NCS_DOM category. This data item is a pointer to attribute id in category struct_ncs_ens in the STRUCT_NCS_ENS category. This data item is a pointer to attribute id in category struct_ncs_oper in the STRUCT_NCS_OPER category. Data items in the STRUCT_NCS_OPER category describe the noncrystallographic symmetry operations. Each operator is specified as a matrix and a subsequent translation vector. Operators need not represent proper rotations. Example 1 - based on laboratory records for the protein NS1. <mmCIF:struct_ncs_operCategory> <mmCIF:struct_ncs_oper id="ncsop1"> <mmCIF:code>given</mmCIF:code> <mmCIF:details> Matrix and translation vector for pseudo-twofold operation.</mmCIF:details> <mmCIF:matrix11>0.247</mmCIF:matrix11> <mmCIF:matrix12>0.935</mmCIF:matrix12> <mmCIF:matrix13>0.256</mmCIF:matrix13> <mmCIF:matrix21>0.929</mmCIF:matrix21> <mmCIF:matrix22>0.153</mmCIF:matrix22> <mmCIF:matrix23>0.337</mmCIF:matrix23> <mmCIF:matrix31>0.276</mmCIF:matrix31> <mmCIF:matrix32>0.321</mmCIF:matrix32> <mmCIF:matrix33>-0.906</mmCIF:matrix33> <mmCIF:vector1>-8.253</mmCIF:vector1> <mmCIF:vector2>-11.743</mmCIF:vector2> <mmCIF:vector3>-1.782</mmCIF:vector3> </mmCIF:struct_ncs_oper> </mmCIF:struct_ncs_operCategory> A code to indicate whether this operator describes a relationship between coordinates all of which are given in the data block (in which case the value of code is 'given'), or whether the operator is used to generate new coordinates from those that are given in the data block (in which case the value of code is 'generate'). A description of special aspects of the noncrystallographic symmetry operator. The operation is given as a precise threefold rotation, despite the fact the best rms fit between domain 1 and domain 2 yields a rotation of 119.7 degrees and a translation of 0.13 angstroms. The [1][1] element of the 3x3 matrix component of a noncrystallographic symmetry operation. The [1][2] element of the 3x3 matrix component of a noncrystallographic symmetry operation. The [1][3] element of the 3x3 matrix component of a noncrystallographic symmetry operation. The [2][1] element of the 3x3 matrix component of a noncrystallographic symmetry operation. The [2][2] element of the 3x3 matrix component of a noncrystallographic symmetry operation. The [2][3] element of the 3x3 matrix component of a noncrystallographic symmetry operation. The [3][1] element of the 3x3 matrix component of a noncrystallographic symmetry operation. The [3][2] element of the 3x3 matrix component of a noncrystallographic symmetry operation. The [3][3] element of the 3x3 matrix component of a noncrystallographic symmetry operation. The [1] element of the three-element vector component of a noncrystallographic symmetry operation. The [2] element of the three-element vector component of a noncrystallographic symmetry operation. The [3] element of the three-element vector component of a noncrystallographic symmetry operation. The value of attribute id in category struct_ncs_oper must uniquely identify a record in the STRUCT_NCS_OPER list. Note that this item need not be a number; it can be any unique identifier. Data items in the STRUCT_REF category allow the author of a data block to relate the entities or biological units described in the data block to information archived in external databases. For references to the sequence of a polymer, the value of the data item attribute seq_align in category struct_ref is used to indicate whether the correspondence between the sequence of the entity or biological unit in the data block and the sequence in the referenced database entry is 'complete' or 'partial'. If this value is 'partial', the region (or regions) of the alignment may be delimited using data items in the STRUCT_REF_SEQ category. Similarly, the value of attribute seq_dif in category struct_ref is used to indicate whether the two sequences contain point differences. If the value is 'yes', the differences may be identified and annotated using data items in the STRUCT_REF_SEQ_DIF category. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:struct_refCategory> <mmCIF:struct_ref id="1"> <mmCIF:biol_id xsi:nil="true" /> <mmCIF:db_code>12345</mmCIF:db_code> <mmCIF:db_name>Genbank</mmCIF:db_name> <mmCIF:details xsi:nil="true" /> <mmCIF:entity_id>1</mmCIF:entity_id> <mmCIF:seq_align>entire</mmCIF:seq_align> <mmCIF:seq_dif>yes</mmCIF:seq_dif> </mmCIF:struct_ref> <mmCIF:struct_ref id="2"> <mmCIF:biol_id>2</mmCIF:biol_id> <mmCIF:db_code>1ABC</mmCIF:db_code> <mmCIF:db_name>PDB</mmCIF:db_name> <mmCIF:details> The structure of the closely related compound, isobutyryl-pepstatin (pepstatin A) in complex with rhizopuspepsin</mmCIF:details> <mmCIF:entity_id xsi:nil="true" /> <mmCIF:seq_align xsi:nil="true" /> <mmCIF:seq_dif xsi:nil="true" /> </mmCIF:struct_ref> </mmCIF:struct_refCategory> This data item is a pointer to attribute id in category struct_biol in the STRUCT_BIOL category. The code for this entity or biological unit or for a closely related entity or biological unit in the named database. 1ABC ABCDEF The name of the database containing reference information about this entity or biological unit. PDB CSD Genbank A description of special aspects of the relationship between the entity or biological unit described in the data block and that in the referenced database entry. This data item is a pointer to attribute id in category entity in the ENTITY category. A flag to indicate the scope of the alignment between the sequence of the entity or biological unit described in the data block and that in the referenced database entry. 'entire' indicates that alignment spans the entire length of both sequences (although point differences may occur and can be annotated using the data items in the STRUCT_REF_SEQ_DIF category). 'partial' indicates a partial alignment. The region (or regions) of the alignment may be delimited using data items in the STRUCT_REF_SEQ category. This data item may also take the value '.', indicating that the reference is not to a sequence. A flag to indicate the presence ('yes') or absence ('no') of point differences between the sequence of the entity or biological unit described in the data block and that in the referenced database entry. This data item may also take the value '.', indicating that the reference is not to a sequence. The value of attribute id in category struct_ref must uniquely identify a record in the STRUCT_REF list. Note that this item need not be a number; it can be any unique identifier. Data items in the STRUCT_REF_SEQ category provide a mechanism for indicating and annotating a region (or regions) of alignment between the sequence of an entity or biological unit described in the data block and the sequence in the referenced database entry. Example 1 - based on the sequence alignment of CHER from M. xantus (36 to 288) and CHER from S. typhimurium (18 to 276). <mmCIF:struct_ref_seqCategory> <mmCIF:struct_ref_seq align_id="alg1"> <mmCIF:db_align_beg>18</mmCIF:db_align_beg> <mmCIF:db_align_end>276</mmCIF:db_align_end> <mmCIF:details> The alignment contains 3 gaps larger than 2 residues</mmCIF:details> <mmCIF:ref_id>seqdb1</mmCIF:ref_id> <mmCIF:seq_align_beg>36</mmCIF:seq_align_beg> <mmCIF:seq_align_end>288</mmCIF:seq_align_end> </mmCIF:struct_ref_seq> </mmCIF:struct_ref_seqCategory> The sequence position in the referenced database entry at which the alignment begins. The sequence position in the referenced database entry at which the alignment ends. A description of special aspects of the sequence alignment. This data item is a pointer to attribute id in category struct_ref in the STRUCT_REF category. The sequence position in the entity or biological unit described in the data block at which the alignment begins. This data item is a pointer to attribute num in category entity_poly_seq in the ENTITY_POLY_SEQ category. The sequence position in the entity or biological unit described in the data block at which the alignment ends. This data item is a pointer to attribute num in category entity_poly_seq in the ENTITY_POLY_SEQ category. The value of attribute align_id in category struct_ref_seq must uniquely identify a record in the STRUCT_REF_SEQ list. Note that this item need not be a number; it can be any unique identifier. Data items in the STRUCT_REF_SEQ_DIF category provide a mechanism for indicating and annotating point differences between the sequence of the entity or biological unit described in the data block and the sequence of the referenced database entry. Example 1 - based on laboratory records for CAP-DNA complex. <mmCIF:struct_ref_seq_difCategory> <mmCIF:struct_ref_seq_dif align_id="algn2" seq_num="181"> <mmCIF:db_mon_id>GLU</mmCIF:db_mon_id> <mmCIF:details> A point mutation was introduced in the CAP at position 181 substituting PHE for GLU.</mmCIF:details> <mmCIF:mon_id>PHE</mmCIF:mon_id> </mmCIF:struct_ref_seq_dif> </mmCIF:struct_ref_seq_difCategory> The monomer type found at this position in the referenced database entry. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. A description of special aspects of the point differences between the sequence of the entity or biological unit described in the data block and that in the referenced database entry. The monomer type found at this position in the sequence of the entity or biological unit described in this data block. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. This data item is a pointer to attribute align_id in category struct_ref_seq in the STRUCT_REF_SEQ category. This data item is a pointer to attribute num in category entity_poly_seq in the ENTITY_POLY_SEQ category. Data items in the STRUCT_SHEET category record details about the beta-sheets. Example 1 - simple beta-barrel. N O N O N O N O N O N O 10--11--12--13--14--15--16--17--18--19--20 strand_a N O N O N O N O N O / \ / \ / \ / \ / \ N O N O N O N O N O N O 30--31--32--33--34--35--36--37--38--39--40 strand_b N O N O N O N O N O / \ / \ / \ / \ / \ N O N O N O N O N O N O 50--51--52--53--54--55--56--57--58--59--60 strand_c N O N O N O N O N O / \ / \ / \ / \ / \ N O N O N O N O N O N O 70--71--72--73--74--75--76--77--78--79--80 strand_d N O N O N O N O N O / \ / \ / \ / \ / \ N O N O N O N O N O N O 90--91--92--93--94--95--96--97--98--99-100 strand_e N O N O N O N O N O / \ / \ / \ / \ / \ N O N O N O N O N O N O 110-111-112-113-114-115-116-117-118-119-120 strand_f N O N O N O N O N O / \ / \ / \ / \ / \ N O N O N O N O N O N O 130-131-132-133-134-135-136-137-138-139-140 strand_g N O N O N O N O N O / \ / \ / \ / \ / \ N O N O N O N O N O N O 150-151-152-153-154-155-156-157-158-159-160 strand_h N O N O N O N O N O / \ / \ / \ / \ / \ <mmCIF:struct_sheetCategory> <mmCIF:struct_sheet id="sheet_1"> <mmCIF:details xsi:nil="true" /> <mmCIF:number_strands>8</mmCIF:number_strands> <mmCIF:type>beta-barrel</mmCIF:type> </mmCIF:struct_sheet> </mmCIF:struct_sheetCategory> Example 2 - five stranded mixed-sense sheet with one two-piece strand. N O N O N O N O -10--11--12--13--14--15--16--17--18-> strand_a N O N O N O N O N O | | | | | | | | | | O N O N O N O N O N <-119-118-117-116-115-114-113-112-111-110- strand_b O N O N O N O N O N \ / \ / \ / \ / \ O N O N O N O N O N O N <-41--40--39--38--37--36--35--34--33--32--31--30- strand_c O N O N O N O N O N O N | | | | | | | | | | | | N O N O N O N O N O N O strand_d1 -50--51--52-> -90--91--92--93--95--95--96--97-> strand_d2 N O N O N O N O N O | | | | | | | | | | | | O N O N O N O N O N O N <-80--79--78--77--76--75--74--73--72--71--70- strand_e O N O N O N O N O N <mmCIF:struct_sheetCategory> <mmCIF:struct_sheet id="sheet_2"> <mmCIF:details>strand_d is in two pieces</mmCIF:details> <mmCIF:number_strands>5</mmCIF:number_strands> <mmCIF:type>five stranded, mixed-sense</mmCIF:type> </mmCIF:struct_sheet> </mmCIF:struct_sheetCategory> A description of special aspects of the beta-sheet. The number of strands in the sheet. If a given range of residues bulges out from the strands, it is still counted as one strand. If a strand is composed of two different regions of polypeptide, it is still counted as one strand, as long as the proper hydrogen- bonding connections are made to adjacent strands. A simple descriptor for the type of the sheet. jelly-roll Rossmann fold beta barrel The value of attribute id in category struct_sheet must uniquely identify a record in the STRUCT_SHEET list. Note that this item need not be a number; it can be any unique identifier. Data items in the STRUCT_SHEET_HBOND category record details about the hydrogen bonding between residue ranges in a beta- sheet. It is necessary to treat hydrogen bonding independently of the designation of ranges, because the hydrogen bonding may begin in different places for the interactions of a given strand with the one preceding it and the one following it in the sheet. Example 1 - simple beta-barrel. <mmCIF:struct_sheet_hbondCategory> <mmCIF:struct_sheet_hbond range_id_1="strand_a" range_id_2="strand_b" sheet_id="sheet_1"> <mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id> <mmCIF:range_1_beg_label_seq_id>11</mmCIF:range_1_beg_label_seq_id> <mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id> <mmCIF:range_1_end_label_seq_id>19</mmCIF:range_1_end_label_seq_id> <mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id> <mmCIF:range_2_beg_label_seq_id>30</mmCIF:range_2_beg_label_seq_id> <mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id> <mmCIF:range_2_end_label_seq_id>40</mmCIF:range_2_end_label_seq_id> </mmCIF:struct_sheet_hbond> <mmCIF:struct_sheet_hbond range_id_1="strand_b" range_id_2="strand_c" sheet_id="sheet_1"> <mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id> <mmCIF:range_1_beg_label_seq_id>31</mmCIF:range_1_beg_label_seq_id> <mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id> <mmCIF:range_1_end_label_seq_id>39</mmCIF:range_1_end_label_seq_id> <mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id> <mmCIF:range_2_beg_label_seq_id>50</mmCIF:range_2_beg_label_seq_id> <mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id> <mmCIF:range_2_end_label_seq_id>60</mmCIF:range_2_end_label_seq_id> </mmCIF:struct_sheet_hbond> <mmCIF:struct_sheet_hbond range_id_1="strand_c" range_id_2="strand_d" sheet_id="sheet_1"> <mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id> <mmCIF:range_1_beg_label_seq_id>51</mmCIF:range_1_beg_label_seq_id> <mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id> <mmCIF:range_1_end_label_seq_id>59</mmCIF:range_1_end_label_seq_id> <mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id> <mmCIF:range_2_beg_label_seq_id>70</mmCIF:range_2_beg_label_seq_id> <mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id> <mmCIF:range_2_end_label_seq_id>80</mmCIF:range_2_end_label_seq_id> </mmCIF:struct_sheet_hbond> <mmCIF:struct_sheet_hbond range_id_1="strand_d" range_id_2="strand_e" sheet_id="sheet_1"> <mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id> <mmCIF:range_1_beg_label_seq_id>71</mmCIF:range_1_beg_label_seq_id> <mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id> <mmCIF:range_1_end_label_seq_id>89</mmCIF:range_1_end_label_seq_id> <mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id> <mmCIF:range_2_beg_label_seq_id>90</mmCIF:range_2_beg_label_seq_id> <mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id> <mmCIF:range_2_end_label_seq_id>100</mmCIF:range_2_end_label_seq_id> </mmCIF:struct_sheet_hbond> <mmCIF:struct_sheet_hbond range_id_1="strand_e" range_id_2="strand_f" sheet_id="sheet_1"> <mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id> <mmCIF:range_1_beg_label_seq_id>91</mmCIF:range_1_beg_label_seq_id> <mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id> <mmCIF:range_1_end_label_seq_id>99</mmCIF:range_1_end_label_seq_id> <mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id> <mmCIF:range_2_beg_label_seq_id>110</mmCIF:range_2_beg_label_seq_id> <mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id> <mmCIF:range_2_end_label_seq_id>120</mmCIF:range_2_end_label_seq_id> </mmCIF:struct_sheet_hbond> <mmCIF:struct_sheet_hbond range_id_1="strand_f" range_id_2="strand_g" sheet_id="sheet_1"> <mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id> <mmCIF:range_1_beg_label_seq_id>111</mmCIF:range_1_beg_label_seq_id> <mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id> <mmCIF:range_1_end_label_seq_id>119</mmCIF:range_1_end_label_seq_id> <mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id> <mmCIF:range_2_beg_label_seq_id>130</mmCIF:range_2_beg_label_seq_id> <mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id> <mmCIF:range_2_end_label_seq_id>140</mmCIF:range_2_end_label_seq_id> </mmCIF:struct_sheet_hbond> <mmCIF:struct_sheet_hbond range_id_1="strand_g" range_id_2="strand_h" sheet_id="sheet_1"> <mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id> <mmCIF:range_1_beg_label_seq_id>131</mmCIF:range_1_beg_label_seq_id> <mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id> <mmCIF:range_1_end_label_seq_id>139</mmCIF:range_1_end_label_seq_id> <mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id> <mmCIF:range_2_beg_label_seq_id>150</mmCIF:range_2_beg_label_seq_id> <mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id> <mmCIF:range_2_end_label_seq_id>160</mmCIF:range_2_end_label_seq_id> </mmCIF:struct_sheet_hbond> <mmCIF:struct_sheet_hbond range_id_1="strand_h" range_id_2="strand_a" sheet_id="sheet_1"> <mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id> <mmCIF:range_1_beg_label_seq_id>151</mmCIF:range_1_beg_label_seq_id> <mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id> <mmCIF:range_1_end_label_seq_id>159</mmCIF:range_1_end_label_seq_id> <mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id> <mmCIF:range_2_beg_label_seq_id>10</mmCIF:range_2_beg_label_seq_id> <mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id> <mmCIF:range_2_end_label_seq_id>180</mmCIF:range_2_end_label_seq_id> </mmCIF:struct_sheet_hbond> </mmCIF:struct_sheet_hbondCategory> Example 2 - five stranded mixed-sense sheet with one two-piece strand. <mmCIF:struct_sheet_hbondCategory> <mmCIF:struct_sheet_hbond range_id_1="strand_a" range_id_2="strand_b" sheet_id="sheet_2"> <mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id> <mmCIF:range_1_beg_label_seq_id>20</mmCIF:range_1_beg_label_seq_id> <mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id> <mmCIF:range_1_end_label_seq_id>18</mmCIF:range_1_end_label_seq_id> <mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id> <mmCIF:range_2_beg_label_seq_id>119</mmCIF:range_2_beg_label_seq_id> <mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id> <mmCIF:range_2_end_label_seq_id>111</mmCIF:range_2_end_label_seq_id> </mmCIF:struct_sheet_hbond> <mmCIF:struct_sheet_hbond range_id_1="strand_b" range_id_2="strand_c" sheet_id="sheet_2"> <mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id> <mmCIF:range_1_beg_label_seq_id>110</mmCIF:range_1_beg_label_seq_id> <mmCIF:range_1_end_label_atom_id>N</mmCIF:range_1_end_label_atom_id> <mmCIF:range_1_end_label_seq_id>118</mmCIF:range_1_end_label_seq_id> <mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id> <mmCIF:range_2_beg_label_seq_id>33</mmCIF:range_2_beg_label_seq_id> <mmCIF:range_2_end_label_atom_id>O</mmCIF:range_2_end_label_atom_id> <mmCIF:range_2_end_label_seq_id>41</mmCIF:range_2_end_label_seq_id> </mmCIF:struct_sheet_hbond> <mmCIF:struct_sheet_hbond range_id_1="strand_c" range_id_2="strand_d1" sheet_id="sheet_2"> <mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id> <mmCIF:range_1_beg_label_seq_id>38</mmCIF:range_1_beg_label_seq_id> <mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id> <mmCIF:range_1_end_label_seq_id>40</mmCIF:range_1_end_label_seq_id> <mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id> <mmCIF:range_2_beg_label_seq_id>52</mmCIF:range_2_beg_label_seq_id> <mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id> <mmCIF:range_2_end_label_seq_id>50</mmCIF:range_2_end_label_seq_id> </mmCIF:struct_sheet_hbond> <mmCIF:struct_sheet_hbond range_id_1="strand_c" range_id_2="strand_d2" sheet_id="sheet_2"> <mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id> <mmCIF:range_1_beg_label_seq_id>30</mmCIF:range_1_beg_label_seq_id> <mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id> <mmCIF:range_1_end_label_seq_id>36</mmCIF:range_1_end_label_seq_id> <mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id> <mmCIF:range_2_beg_label_seq_id>96</mmCIF:range_2_beg_label_seq_id> <mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id> <mmCIF:range_2_end_label_seq_id>90</mmCIF:range_2_end_label_seq_id> </mmCIF:struct_sheet_hbond> <mmCIF:struct_sheet_hbond range_id_1="strand_d1" range_id_2="strand_e" sheet_id="sheet_2"> <mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id> <mmCIF:range_1_beg_label_seq_id>51</mmCIF:range_1_beg_label_seq_id> <mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id> <mmCIF:range_1_end_label_seq_id>51</mmCIF:range_1_end_label_seq_id> <mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id> <mmCIF:range_2_beg_label_seq_id>80</mmCIF:range_2_beg_label_seq_id> <mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id> <mmCIF:range_2_end_label_seq_id>80</mmCIF:range_2_end_label_seq_id> </mmCIF:struct_sheet_hbond> <mmCIF:struct_sheet_hbond range_id_1="strand_d2" range_id_2="strand_e" sheet_id="sheet_2"> <mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id> <mmCIF:range_1_beg_label_seq_id>91</mmCIF:range_1_beg_label_seq_id> <mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id> <mmCIF:range_1_end_label_seq_id>97</mmCIF:range_1_end_label_seq_id> <mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id> <mmCIF:range_2_beg_label_seq_id>76</mmCIF:range_2_beg_label_seq_id> <mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id> <mmCIF:range_2_end_label_seq_id>70</mmCIF:range_2_end_label_seq_id> </mmCIF:struct_sheet_hbond> </mmCIF:struct_sheet_hbondCategory> A component of the identifier for the residue for the first partner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the first partner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the first partner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the first partner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the first partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the first partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the first partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the first partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the second partner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the second partner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the second partner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the second partner of the first hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the second partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the second partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the second partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute label_atom_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue for the second partner of the last hydrogen bond between two residue ranges in a sheet. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. This data item is a pointer to attribute id in category struct_sheet_range in the STRUCT_SHEET_RANGE category. This data item is a pointer to attribute id in category struct_sheet_range in the STRUCT_SHEET_RANGE category. This data item is a pointer to attribute id in category struct_sheet in the STRUCT_SHEET category. Data items in the STRUCT_SHEET_ORDER category record details about the order of the residue ranges that form a beta-sheet. All order links are pairwise and the specified pairs are assumed to be adjacent to one another in the sheet. These data items are an alternative to the STRUCT_SHEET_TOPOLOGY data items and they allow all manner of sheets to be described. Example 1 - simple beta-barrel. <mmCIF:struct_sheet_orderCategory> <mmCIF:struct_sheet_order range_id_1="strand_a" range_id_2="strand_b" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_order> <mmCIF:struct_sheet_order range_id_1="strand_b" range_id_2="strand_c" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_order> <mmCIF:struct_sheet_order range_id_1="strand_c" range_id_2="strand_d" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_order> <mmCIF:struct_sheet_order range_id_1="strand_d" range_id_2="strand_e" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_order> <mmCIF:struct_sheet_order range_id_1="strand_e" range_id_2="strand_f" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_order> <mmCIF:struct_sheet_order range_id_1="strand_f" range_id_2="strand_g" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_order> <mmCIF:struct_sheet_order range_id_1="strand_g" range_id_2="strand_h" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_order> <mmCIF:struct_sheet_order range_id_1="strand_h" range_id_2="strand_a" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_order> </mmCIF:struct_sheet_orderCategory> Example 2 - five stranded mixed-sense sheet with one two-piece strand. <mmCIF:struct_sheet_orderCategory> <mmCIF:struct_sheet_order range_id_1="strand_a" range_id_2="strand_b" sheet_id="sheet_2"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>anti-parallel</mmCIF:sense> </mmCIF:struct_sheet_order> <mmCIF:struct_sheet_order range_id_1="strand_b" range_id_2="strand_c" sheet_id="sheet_2"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_order> <mmCIF:struct_sheet_order range_id_1="strand_c" range_id_2="strand_d1" sheet_id="sheet_2"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>anti-parallel</mmCIF:sense> </mmCIF:struct_sheet_order> <mmCIF:struct_sheet_order range_id_1="strand_c" range_id_2="strand_d2" sheet_id="sheet_2"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>anti-parallel</mmCIF:sense> </mmCIF:struct_sheet_order> <mmCIF:struct_sheet_order range_id_1="strand_d1" range_id_2="strand_e" sheet_id="sheet_2"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>anti-parallel</mmCIF:sense> </mmCIF:struct_sheet_order> <mmCIF:struct_sheet_order range_id_1="strand_d2" range_id_2="strand_e" sheet_id="sheet_2"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>anti-parallel</mmCIF:sense> </mmCIF:struct_sheet_order> </mmCIF:struct_sheet_orderCategory> Designates the relative position in the sheet, plus or minus, of the second residue range to the first. A flag to indicate whether the two designated residue ranges are parallel or antiparallel to one another. This data item is a pointer to attribute id in category struct_sheet_range in the STRUCT_SHEET_RANGE category. This data item is a pointer to attribute id in category struct_sheet_range in the STRUCT_SHEET_RANGE category. This data item is a pointer to attribute id in category struct_sheet in the STRUCT_SHEET category. Data items in the STRUCT_SHEET_RANGE category record details about the residue ranges that form a beta-sheet. Residues are included in a range if they made beta-sheet-type hydrogen-bonding interactions with at least one adjacent strand and if there are at least two residues in the range. Example 1 - simple beta-barrel. <mmCIF:struct_sheet_rangeCategory> <mmCIF:struct_sheet_range id="strand_a" sheet_id="sheet_1"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>20</mmCIF:beg_label_seq_id> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>30</mmCIF:end_label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_sheet_range> <mmCIF:struct_sheet_range id="strand_b" sheet_id="sheet_1"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>40</mmCIF:beg_label_seq_id> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>50</mmCIF:end_label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_sheet_range> <mmCIF:struct_sheet_range id="strand_c" sheet_id="sheet_1"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>60</mmCIF:beg_label_seq_id> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>70</mmCIF:end_label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_sheet_range> <mmCIF:struct_sheet_range id="strand_d" sheet_id="sheet_1"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>80</mmCIF:beg_label_seq_id> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>90</mmCIF:end_label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_sheet_range> <mmCIF:struct_sheet_range id="strand_e" sheet_id="sheet_1"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>100</mmCIF:beg_label_seq_id> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>110</mmCIF:end_label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_sheet_range> <mmCIF:struct_sheet_range id="strand_f" sheet_id="sheet_1"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>120</mmCIF:beg_label_seq_id> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>130</mmCIF:end_label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_sheet_range> <mmCIF:struct_sheet_range id="strand_g" sheet_id="sheet_1"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>140</mmCIF:beg_label_seq_id> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>150</mmCIF:end_label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_sheet_range> <mmCIF:struct_sheet_range id="strand_h" sheet_id="sheet_1"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>160</mmCIF:beg_label_seq_id> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>170</mmCIF:end_label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_sheet_range> </mmCIF:struct_sheet_rangeCategory> Example 2 - five stranded mixed-sense sheet with one two-piece strand. <mmCIF:struct_sheet_rangeCategory> <mmCIF:struct_sheet_range id="strand_a" sheet_id="sheet_2"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>10</mmCIF:beg_label_seq_id> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>18</mmCIF:end_label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_sheet_range> <mmCIF:struct_sheet_range id="strand_b" sheet_id="sheet_2"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>110</mmCIF:beg_label_seq_id> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>119</mmCIF:end_label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_sheet_range> <mmCIF:struct_sheet_range id="strand_c" sheet_id="sheet_2"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>30</mmCIF:beg_label_seq_id> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>41</mmCIF:end_label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_sheet_range> <mmCIF:struct_sheet_range id="strand_d1" sheet_id="sheet_2"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>50</mmCIF:beg_label_seq_id> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>52</mmCIF:end_label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_sheet_range> <mmCIF:struct_sheet_range id="strand_d2" sheet_id="sheet_2"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>90</mmCIF:beg_label_seq_id> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>97</mmCIF:end_label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_sheet_range> <mmCIF:struct_sheet_range id="strand_e" sheet_id="sheet_2"> <mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id> <mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id> <mmCIF:beg_label_seq_id>70</mmCIF:beg_label_seq_id> <mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id> <mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id> <mmCIF:end_label_seq_id>80</mmCIF:end_label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_sheet_range> </mmCIF:struct_sheet_rangeCategory> A component of the identifier for the residue at which the beta-sheet range begins. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the beta-sheet range begins. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the beta-sheet range begins. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the beta-sheet range begins. This data item is a pointer to attribute id in category struct_asym in the STRUCT_ASYM category. A component of the identifier for the residue at which the beta-sheet range begins. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. A component of the identifier for the residue at which the beta-sheet range begins. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the beta-sheet range ends. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the beta-sheet range ends. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the beta-sheet range ends. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. A component of the identifier for the residue at which the beta-sheet range ends. This data item is a pointer to attribute id in category struct_asym in the STRUCT_ASYM category. A component of the identifier for the residue at which the beta-sheet range ends. This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP category. A component of the identifier for the residue at which the beta-sheet range ends. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. Describes the symmetry operation that should be applied to the residues delimited by the start and end designators in order to generate the appropriate strand in this sheet. The value of attribute id in category struct_sheet_range must uniquely identify a range in a given sheet in the STRUCT_SHEET_RANGE list. Note that this item need not be a number; it can be any unique identifier. This data item is a pointer to attribute id in category struct_sheet in the STRUCT_SHEET category. Data items in the STRUCT_SHEET_TOPOLOGY category record details about the topology of the residue ranges that form a beta-sheet. All topology links are pairwise and the specified pairs are assumed to be successive in the amino-acid sequence. These data items are useful in describing various simple and complex folds, but they become inadequate when the strands in the sheet come from more than one chain. The STRUCT_SHEET_ORDER data items can be used to describe single- and multiple-chain-containing sheets. Example 1 - simple beta-barrel. <mmCIF:struct_sheet_topologyCategory> <mmCIF:struct_sheet_topology range_id_1="strand_a" range_id_2="strand_b" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_topology> <mmCIF:struct_sheet_topology range_id_1="strand_b" range_id_2="strand_c" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_topology> <mmCIF:struct_sheet_topology range_id_1="strand_c" range_id_2="strand_d" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_topology> <mmCIF:struct_sheet_topology range_id_1="strand_d" range_id_2="strand_e" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_topology> <mmCIF:struct_sheet_topology range_id_1="strand_e" range_id_2="strand_f" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_topology> <mmCIF:struct_sheet_topology range_id_1="strand_f" range_id_2="strand_g" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_topology> <mmCIF:struct_sheet_topology range_id_1="strand_g" range_id_2="strand_h" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_topology> <mmCIF:struct_sheet_topology range_id_1="strand_h" range_id_2="strand_a" sheet_id="sheet_1"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>parallel</mmCIF:sense> </mmCIF:struct_sheet_topology> </mmCIF:struct_sheet_topologyCategory> Example 2 - five stranded mixed-sense sheet with one two-piece strand. <mmCIF:struct_sheet_topologyCategory> <mmCIF:struct_sheet_topology range_id_1="strand_a" range_id_2="strand_c" sheet_id="sheet_2"> <mmCIF:offset>+2</mmCIF:offset> <mmCIF:sense>anti-parallel</mmCIF:sense> </mmCIF:struct_sheet_topology> <mmCIF:struct_sheet_topology range_id_1="strand_c" range_id_2="strand_d1" sheet_id="sheet_2"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>anti-parallel</mmCIF:sense> </mmCIF:struct_sheet_topology> <mmCIF:struct_sheet_topology range_id_1="strand_d1" range_id_2="strand_e" sheet_id="sheet_2"> <mmCIF:offset>+1</mmCIF:offset> <mmCIF:sense>anti-parallel</mmCIF:sense> </mmCIF:struct_sheet_topology> <mmCIF:struct_sheet_topology range_id_1="strand_e" range_id_2="strand_d2" sheet_id="sheet_2"> <mmCIF:offset>-1</mmCIF:offset> <mmCIF:sense>anti-parallel</mmCIF:sense> </mmCIF:struct_sheet_topology> <mmCIF:struct_sheet_topology range_id_1="strand_d2" range_id_2="strand_b" sheet_id="sheet_2"> <mmCIF:offset>-2</mmCIF:offset> <mmCIF:sense>anti-parallel</mmCIF:sense> </mmCIF:struct_sheet_topology> </mmCIF:struct_sheet_topologyCategory> Designates the relative position in the sheet, plus or minus, of the second residue range to the first. A flag to indicate whether the two designated residue ranges are parallel or antiparallel to one another. This data item is a pointer to attribute id in category struct_sheet_range in the STRUCT_SHEET_RANGE category. This data item is a pointer to attribute id in category struct_sheet_range in the STRUCT_SHEET_RANGE category. This data item is a pointer to attribute id in category struct_sheet in the STRUCT_SHEET category. Data items in the STRUCT_SITE category record details about portions of the structure that contribute to structurally relevant sites (e.g. active sites, substrate-binding subsites, metal-coordination sites). Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:struct_siteCategory> <mmCIF:struct_site id="P2 site C"> <mmCIF:details> residues with a contact &lt; 3.7 \&#37;A to an atom in the P2 moiety of the inhibitor in the conformation with _struct_asym.id = C</mmCIF:details> </mmCIF:struct_site> <mmCIF:struct_site id="P2 site D"> <mmCIF:details> residues with a contact &lt; 3.7 \&#37;A to an atom in the P1 moiety of the inhibitor in the conformation with _struct_asym.id = D)</mmCIF:details> </mmCIF:struct_site> </mmCIF:struct_siteCategory> A description of special aspects of the site. The value of attribute id in category struct_site must uniquely identify a record in the STRUCT_SITE list. Note that this item need not be a number; it can be any unique identifier. Data items in the STRUCT_SITE_GEN category record details about the generation of portions of the structure that contribute to structurally relevant sites. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:struct_site_genCategory> <mmCIF:struct_site_gen id="1" site_id="1"> <mmCIF:details xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_comp_id>VAL</mmCIF:label_comp_id> <mmCIF:label_seq_id>32</mmCIF:label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_site_gen> <mmCIF:struct_site_gen id="2" site_id="1"> <mmCIF:details xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_comp_id>ILE</mmCIF:label_comp_id> <mmCIF:label_seq_id>47</mmCIF:label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_site_gen> <mmCIF:struct_site_gen id="3" site_id="1"> <mmCIF:details xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_comp_id>VAL</mmCIF:label_comp_id> <mmCIF:label_seq_id>82</mmCIF:label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_site_gen> <mmCIF:struct_site_gen id="4" site_id="1"> <mmCIF:details xsi:nil="true" /> <mmCIF:label_asym_id>A</mmCIF:label_asym_id> <mmCIF:label_comp_id>ILE</mmCIF:label_comp_id> <mmCIF:label_seq_id>84</mmCIF:label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_site_gen> <mmCIF:struct_site_gen id="5" site_id="2"> <mmCIF:details xsi:nil="true" /> <mmCIF:label_asym_id>B</mmCIF:label_asym_id> <mmCIF:label_comp_id>VAL</mmCIF:label_comp_id> <mmCIF:label_seq_id>232</mmCIF:label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_site_gen> <mmCIF:struct_site_gen id="6" site_id="2"> <mmCIF:details xsi:nil="true" /> <mmCIF:label_asym_id>B</mmCIF:label_asym_id> <mmCIF:label_comp_id>ILE</mmCIF:label_comp_id> <mmCIF:label_seq_id>247</mmCIF:label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_site_gen> <mmCIF:struct_site_gen id="7" site_id="2"> <mmCIF:details xsi:nil="true" /> <mmCIF:label_asym_id>B</mmCIF:label_asym_id> <mmCIF:label_comp_id>VAL</mmCIF:label_comp_id> <mmCIF:label_seq_id>282</mmCIF:label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_site_gen> <mmCIF:struct_site_gen id="8" site_id="2"> <mmCIF:details xsi:nil="true" /> <mmCIF:label_asym_id>B</mmCIF:label_asym_id> <mmCIF:label_comp_id>ILE</mmCIF:label_comp_id> <mmCIF:label_seq_id>284</mmCIF:label_seq_id> <mmCIF:symmetry>1_555</mmCIF:symmetry> </mmCIF:struct_site_gen> </mmCIF:struct_site_genCategory> A component of the identifier for participants in the site. This data item is a pointer to attribute auth_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for participants in the site. This data item is a pointer to attribute auth_atom_id in category atom_site in the ATOM_SITE category. A component of the identifier for participants in the site. This data item is a pointer to attribute auth_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for participants in the site. This data item is a pointer to attribute auth_seq_id in category atom_site in the ATOM_SITE category. A description of special aspects of the symmetry generation of this portion of the structural site. The zinc atom lies on a special position; application of symmetry elements to generate the insulin hexamer will generate excess zinc atoms, which must be removed by hand. A component of the identifier for participants in the site. This data item is a pointer to attribute id in category atom_sites_alt in the ATOM_SITES_ALT category. A component of the identifier for participants in the site. This data item is a pointer to attribute label_asym_id in category atom_site in the ATOM_SITE category. A component of the identifier for participants in the site. This data item is a pointer to attribute atom_id in category chem_comp_atom in the CHEM_COMP_ATOM category. A component of the identifier for participants in the site. This data item is a pointer to attribute label_comp_id in category atom_site in the ATOM_SITE category. A component of the identifier for participants in the site. This data item is a pointer to attribute label_seq_id in category atom_site in the ATOM_SITE category. Describes the symmetry operation that should be applied to the atom set specified by attribute label* in category struct_site_gen to generate a portion of the site. 4th symmetry operation applied 4 7th symm. posn.; +a on x; -b on y 7_645 The value of attribute id in category struct_site_gen must uniquely identify a record in the STRUCT_SITE_GEN list. Note that this item need not be a number; it can be any unique identifier. This data item is a pointer to attribute id in category struct_site in the STRUCT_SITE category. Data items in the STRUCT_SITE_KEYWORDS category record keywords describing the site. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:struct_site_keywordsCategory> <mmCIF:struct_site_keywords site_id="P2 site C" text="binding site"></mmCIF:struct_site_keywords> <mmCIF:struct_site_keywords site_id="P2 site C" text="binding pocket"></mmCIF:struct_site_keywords> <mmCIF:struct_site_keywords site_id="P2 site C" text="P2 site"></mmCIF:struct_site_keywords> <mmCIF:struct_site_keywords site_id="P2 site C" text="P2 pocket"></mmCIF:struct_site_keywords> <mmCIF:struct_site_keywords site_id="P2 site D" text="binding site"></mmCIF:struct_site_keywords> <mmCIF:struct_site_keywords site_id="P2 site D" text="binding pocket"></mmCIF:struct_site_keywords> <mmCIF:struct_site_keywords site_id="P2 site D" text="P2 site"></mmCIF:struct_site_keywords> <mmCIF:struct_site_keywords site_id="P2 site D" text="P2 pocket"></mmCIF:struct_site_keywords> </mmCIF:struct_site_keywordsCategory> This data item is a pointer to attribute id in category struct_site in the STRUCT_SITE category. Keywords describing this site. active site binding pocket Ca coordination Data items in the STRUCT_SITE_VIEW category record details about how to draw and annotate an informative view of the site. Example 1 - based on NDB structure GDL001 by Coll, Aymami, Van Der Marel, Van Boom, Rich & Wang [Biochemistry (1989), 28, 310-320]. <mmCIF:struct_site_viewCategory> <mmCIF:struct_site_view id="1"> <mmCIF:details> This view highlights the site of ATAT-Netropsin interaction.</mmCIF:details> <mmCIF:rot_matrix11>0.132</mmCIF:rot_matrix11> <mmCIF:rot_matrix12>0.922</mmCIF:rot_matrix12> <mmCIF:rot_matrix13>-0.363</mmCIF:rot_matrix13> <mmCIF:rot_matrix21>0.131</mmCIF:rot_matrix21> <mmCIF:rot_matrix22>-0.380</mmCIF:rot_matrix22> <mmCIF:rot_matrix23>-0.916</mmCIF:rot_matrix23> <mmCIF:rot_matrix31>-0.982</mmCIF:rot_matrix31> <mmCIF:rot_matrix32>0.073</mmCIF:rot_matrix32> <mmCIF:rot_matrix33>-0.172</mmCIF:rot_matrix33> </mmCIF:struct_site_view> </mmCIF:struct_site_viewCategory> A description of special aspects of this view of the site. This data item can be used as a figure legend. The active site has been oriented with the specificity pocket on the right and the active site machinery on the left. The [1][1] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in attribute details. in category struct_site_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [1][2] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in attribute details. in category struct_site_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [1][3] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in attribute details. in category struct_site_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [2][1] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in attribute details. in category struct_site_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [2][2] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in attribute details. in category struct_site_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [2][3] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in attribute details. in category struct_site_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [3][1] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in attribute details. in category struct_site_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [3][2] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category to an orientation useful for visualizing the site. The conventions used in the rotation are described in attribute details. in category struct_site_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| The [3][3] element of the matrix used to rotate the subset of the Cartesian coordinates in the ATOM_SITE category identified in the STRUCT_SITE_GEN category an orientation useful for visualizing the site. The conventions used in the rotation are described in attribute details. in category struct_site_view |x'| |11 12 13| |x| |y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~ |z'| |31 32 33| |z| This data item is a pointer to attribute id in category struct_site in the STRUCT_SITE category. The value of attribute id in category struct_site_view must uniquely identify a record in the STRUCT_SITE_VIEW list. Note that this item need not be a number; it can be any unique identifier. Figure 1 unliganded enzyme view down enzyme active site Data items in the SYMMETRY category record details about the space-group symmetry. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:symmetryCategory> <mmCIF:symmetry entry_id="5HVP"> <mmCIF:Int_Tables_number>18</mmCIF:Int_Tables_number> <mmCIF:cell_setting>orthorhombic</mmCIF:cell_setting> <mmCIF:space_group_name_H-M>P 21 21 2</mmCIF:space_group_name_H-M> </mmCIF:symmetry> </mmCIF:symmetryCategory> Space-group number from International Tables for Crystallography Vol. A (2002). The cell settings for this space-group symmetry. Hermann-Mauguin space-group symbol. Note that the Hermann-Mauguin symbol does not necessarily contain complete information about the symmetry and the space-group origin. If used, always supply the FULL symbol from International Tables for Crystallography Vol. A (2002) and indicate the origin and the setting if it is not implicit. If there is any doubt that the equivalent positions can be uniquely deduced from this symbol, specify the attribute pos_as_xyz in category symmetry_equiv or attribute space_group_name_Hall in category symmetry data items as well. Leave spaces between symbols referring to different axes. P 1 21/m 1 P 2/n 2/n 2/n (origin at -1) R -3 2/m Space-group symbol as described by Hall (1981). This symbol gives the space-group setting explicitly. Leave spaces between the separate components of the symbol. Ref: Hall, S. R. (1981). Acta Cryst. A37, 517-525; erratum (1981) A37, 921. -P 2ac 2n -R 3 2" P 61 2 2 (0 0 -1) This data item is a pointer to attribute id in category entry in the ENTRY category. Data items in the SYMMETRY_EQUIV category list the symmetry-equivalent positions for the space group. Example 1 - based on PDB entry 5HVP and laboratory records for the structure corresponding to PDB entry 5HVP. <mmCIF:symmetry_equivCategory> <mmCIF:symmetry_equiv id="1"> <mmCIF:pos_as_xyz>+x,+y,+z</mmCIF:pos_as_xyz> </mmCIF:symmetry_equiv> <mmCIF:symmetry_equiv id="2"> <mmCIF:pos_as_xyz>-x,-y,z</mmCIF:pos_as_xyz> </mmCIF:symmetry_equiv> <mmCIF:symmetry_equiv id="3"> <mmCIF:pos_as_xyz>1/2+x,1/2-y,-z</mmCIF:pos_as_xyz> </mmCIF:symmetry_equiv> <mmCIF:symmetry_equiv id="4"> <mmCIF:pos_as_xyz>1/2-x,1/2+y,-z</mmCIF:pos_as_xyz> </mmCIF:symmetry_equiv> </mmCIF:symmetry_equivCategory> Symmetry-equivalent position in the 'xyz' representation. Except for the space group P1, these data will be repeated in a loop. The format of the data item is as per International Tables for Crystallography Vol. A (2002). All equivalent positions should be entered, including those for lattice centring and a centre of symmetry, if present. -y+x,-y,1/3+z The value of attribute id in category symmetry_equiv must uniquely identify a record in the SYMMETRY_EQUIV category. Note that this item need not be a number; it can be any unique identifier. Data items in the VALENCE_PARAM category define the parameters used for calculating bond valences from bond lengths. In addition to the parameters, a pointer is given to the reference (in VALENCE_REF) from which the bond-valence parameters were taken. Example 1 - a bond-valence parameter list with accompanying references. <mmCIF:valence_paramCategory> <mmCIF:valence_param atom_1="Cu" atom_1_valence="2" atom_2="O" atom_2_valence="-2"> <mmCIF:B>0.37</mmCIF:B> <mmCIF:Ro>1.679</mmCIF:Ro> <mmCIF:details xsi:nil="true" /> <mmCIF:ref_id>a</mmCIF:ref_id> </mmCIF:valence_param> <mmCIF:valence_param atom_1="Cu" atom_1_valence="2" atom_2="O" atom_2_valence="-2"> <mmCIF:B>0.37</mmCIF:B> <mmCIF:Ro>1.649</mmCIF:Ro> <mmCIF:details xsi:nil="true" /> <mmCIF:ref_id>j</mmCIF:ref_id> </mmCIF:valence_param> <mmCIF:valence_param atom_1="Cu" atom_1_valence="2" atom_2="N" atom_2_valence="-3"> <mmCIF:B>0.37</mmCIF:B> <mmCIF:Ro>1.64</mmCIF:Ro> <mmCIF:details>2-coordinate N</mmCIF:details> <mmCIF:ref_id>m</mmCIF:ref_id> </mmCIF:valence_param> <mmCIF:valence_param atom_1="Cu" atom_1_valence="2" atom_2="N" atom_2_valence="-3"> <mmCIF:B>0.37</mmCIF:B> <mmCIF:Ro>1.76</mmCIF:Ro> <mmCIF:details>3-coordinate N</mmCIF:details> <mmCIF:ref_id>m</mmCIF:ref_id> </mmCIF:valence_param> </mmCIF:valence_paramCategory> <mmCIF:valence_refCategory> <mmCIF:valence_ref id="a"> <mmCIF:reference>Brown &amp; Altermatt (1985), Acta Cryst. B41, 244-247</mmCIF:reference> </mmCIF:valence_ref> <mmCIF:valence_ref id="j"> <mmCIF:reference>Liu &amp; Thorp (1993), Inorg. Chem. 32, 4102-4205</mmCIF:reference> </mmCIF:valence_ref> <mmCIF:valence_ref id="m"> <mmCIF:reference>See, Krause &amp; Strub (1998), Inorg. Chem. 37, 5369-5375</mmCIF:reference> </mmCIF:valence_ref> </mmCIF:valence_refCategory> The bond-valence parameter B used in the expression s = exp[(Ro - R)/B] where s is the valence of a bond of length R. The bond-valence parameter Ro used in the expression s = exp[(Ro - R)/B] where s is the valence of a bond of length R. Details of or comments on the bond-valence parameters. An identifier for the valence parameters of a bond between the given atoms. An identifier which links to the reference to the source from which the bond-valence parameters are taken. A child of attribute id in category valence_ref which it must match. The element symbol of the first atom forming the bond whose bond-valence parameters are given in this category. The valence (formal charge) of the first atom whose bond-valence parameters are given in this category. The element symbol of the second atom forming the bond whose bond-valence parameters are given in this category. The valence (formal charge) of the second atom whose bond-valence parameters are given in this category. Data items in the VALENCE_REF category list the references from which the bond-valence parameters have been taken. Literature reference from which the valence parameters identified by attribute id in category valence_param were taken. An identifier for items in this category. Parent of attribute ref_id in category valence_param, which must have the same value.