Data items in the ATOM_SITE category record details about
the atom sites in a macromolecular crystal structure, such as
the positional coordinates, atomic displacement parameters,
magnetic moments and directions.
The data items for describing anisotropic atomic
displacement factors are only used if the corresponding items
are not given in the ATOM_SITE_ANISOTROP category.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:atom_siteCategory>
<mmCIF:atom_site id="1">
<mmCIF:B_iso_or_equiv>17.93</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>25.369</mmCIF:Cartn_x>
<mmCIF:Cartn_y>30.691</mmCIF:Cartn_y>
<mmCIF:Cartn_z>11.795</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>11</mmCIF:auth_seq_id>
<mmCIF:footnote_id xsi:nil="true" />
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>N</mmCIF:label_atom_id>
<mmCIF:label_comp_id>VAL</mmCIF:label_comp_id>
<mmCIF:label_seq_id>11</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>N</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="2">
<mmCIF:B_iso_or_equiv>17.75</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>25.970</mmCIF:Cartn_x>
<mmCIF:Cartn_y>31.965</mmCIF:Cartn_y>
<mmCIF:Cartn_z>12.332</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>11</mmCIF:auth_seq_id>
<mmCIF:footnote_id xsi:nil="true" />
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>CA</mmCIF:label_atom_id>
<mmCIF:label_comp_id>VAL</mmCIF:label_comp_id>
<mmCIF:label_seq_id>11</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="3">
<mmCIF:B_iso_or_equiv>17.83</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>25.569</mmCIF:Cartn_x>
<mmCIF:Cartn_y>32.010</mmCIF:Cartn_y>
<mmCIF:Cartn_z>13.808</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>11</mmCIF:auth_seq_id>
<mmCIF:footnote_id xsi:nil="true" />
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>C</mmCIF:label_atom_id>
<mmCIF:label_comp_id>VAL</mmCIF:label_comp_id>
<mmCIF:label_seq_id>11</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="4">
<mmCIF:B_iso_or_equiv>17.53</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>24.735</mmCIF:Cartn_x>
<mmCIF:Cartn_y>31.190</mmCIF:Cartn_y>
<mmCIF:Cartn_z>14.167</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>11</mmCIF:auth_seq_id>
<mmCIF:footnote_id xsi:nil="true" />
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>O</mmCIF:label_atom_id>
<mmCIF:label_comp_id>VAL</mmCIF:label_comp_id>
<mmCIF:label_seq_id>11</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>O</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="5">
<mmCIF:B_iso_or_equiv>17.66</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>25.379</mmCIF:Cartn_x>
<mmCIF:Cartn_y>33.146</mmCIF:Cartn_y>
<mmCIF:Cartn_z>11.540</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>11</mmCIF:auth_seq_id>
<mmCIF:footnote_id xsi:nil="true" />
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>CB</mmCIF:label_atom_id>
<mmCIF:label_comp_id>VAL</mmCIF:label_comp_id>
<mmCIF:label_seq_id>11</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="6">
<mmCIF:B_iso_or_equiv>18.86</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>25.584</mmCIF:Cartn_x>
<mmCIF:Cartn_y>33.034</mmCIF:Cartn_y>
<mmCIF:Cartn_z>10.030</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>11</mmCIF:auth_seq_id>
<mmCIF:footnote_id xsi:nil="true" />
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>CG1</mmCIF:label_atom_id>
<mmCIF:label_comp_id>VAL</mmCIF:label_comp_id>
<mmCIF:label_seq_id>11</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="7">
<mmCIF:B_iso_or_equiv>17.12</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>23.933</mmCIF:Cartn_x>
<mmCIF:Cartn_y>33.309</mmCIF:Cartn_y>
<mmCIF:Cartn_z>11.872</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>11</mmCIF:auth_seq_id>
<mmCIF:footnote_id xsi:nil="true" />
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>CG2</mmCIF:label_atom_id>
<mmCIF:label_comp_id>VAL</mmCIF:label_comp_id>
<mmCIF:label_seq_id>11</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="8">
<mmCIF:B_iso_or_equiv>18.97</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>26.095</mmCIF:Cartn_x>
<mmCIF:Cartn_y>32.930</mmCIF:Cartn_y>
<mmCIF:Cartn_z>14.590</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>12</mmCIF:auth_seq_id>
<mmCIF:footnote_id>4</mmCIF:footnote_id>
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>N</mmCIF:label_atom_id>
<mmCIF:label_comp_id>THR</mmCIF:label_comp_id>
<mmCIF:label_seq_id>12</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>N</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="9">
<mmCIF:B_iso_or_equiv>19.80</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>25.734</mmCIF:Cartn_x>
<mmCIF:Cartn_y>32.995</mmCIF:Cartn_y>
<mmCIF:Cartn_z>16.032</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>12</mmCIF:auth_seq_id>
<mmCIF:footnote_id>4</mmCIF:footnote_id>
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>CA</mmCIF:label_atom_id>
<mmCIF:label_comp_id>THR</mmCIF:label_comp_id>
<mmCIF:label_seq_id>12</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="10">
<mmCIF:B_iso_or_equiv>20.92</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>24.695</mmCIF:Cartn_x>
<mmCIF:Cartn_y>34.106</mmCIF:Cartn_y>
<mmCIF:Cartn_z>16.113</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>12</mmCIF:auth_seq_id>
<mmCIF:footnote_id>4</mmCIF:footnote_id>
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>C</mmCIF:label_atom_id>
<mmCIF:label_comp_id>THR</mmCIF:label_comp_id>
<mmCIF:label_seq_id>12</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="11">
<mmCIF:B_iso_or_equiv>21.84</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>24.869</mmCIF:Cartn_x>
<mmCIF:Cartn_y>35.118</mmCIF:Cartn_y>
<mmCIF:Cartn_z>15.421</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>12</mmCIF:auth_seq_id>
<mmCIF:footnote_id>4</mmCIF:footnote_id>
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>O</mmCIF:label_atom_id>
<mmCIF:label_comp_id>THR</mmCIF:label_comp_id>
<mmCIF:label_seq_id>12</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>O</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="12">
<mmCIF:B_iso_or_equiv>20.51</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>26.911</mmCIF:Cartn_x>
<mmCIF:Cartn_y>33.346</mmCIF:Cartn_y>
<mmCIF:Cartn_z>17.018</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>12</mmCIF:auth_seq_id>
<mmCIF:footnote_id>4</mmCIF:footnote_id>
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>CB</mmCIF:label_atom_id>
<mmCIF:label_comp_id>THR</mmCIF:label_comp_id>
<mmCIF:label_seq_id>12</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="13">
<mmCIF:B_iso_or_equiv>20.29</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>27.946</mmCIF:Cartn_x>
<mmCIF:Cartn_y>33.921</mmCIF:Cartn_y>
<mmCIF:Cartn_z>16.183</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>12</mmCIF:auth_seq_id>
<mmCIF:footnote_id>4</mmCIF:footnote_id>
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id>3</mmCIF:label_alt_id>
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>OG1</mmCIF:label_atom_id>
<mmCIF:label_comp_id>THR</mmCIF:label_comp_id>
<mmCIF:label_seq_id>12</mmCIF:label_seq_id>
<mmCIF:occupancy>0.50</mmCIF:occupancy>
<mmCIF:type_symbol>O</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="14">
<mmCIF:B_iso_or_equiv>20.59</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>27.769</mmCIF:Cartn_x>
<mmCIF:Cartn_y>32.142</mmCIF:Cartn_y>
<mmCIF:Cartn_z>17.103</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>12</mmCIF:auth_seq_id>
<mmCIF:footnote_id>4</mmCIF:footnote_id>
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id>4</mmCIF:label_alt_id>
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>OG1</mmCIF:label_atom_id>
<mmCIF:label_comp_id>THR</mmCIF:label_comp_id>
<mmCIF:label_seq_id>12</mmCIF:label_seq_id>
<mmCIF:occupancy>0.50</mmCIF:occupancy>
<mmCIF:type_symbol>O</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="15">
<mmCIF:B_iso_or_equiv>20.47</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>27.418</mmCIF:Cartn_x>
<mmCIF:Cartn_y>32.181</mmCIF:Cartn_y>
<mmCIF:Cartn_z>17.878</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>12</mmCIF:auth_seq_id>
<mmCIF:footnote_id>4</mmCIF:footnote_id>
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id>3</mmCIF:label_alt_id>
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>CG2</mmCIF:label_atom_id>
<mmCIF:label_comp_id>THR</mmCIF:label_comp_id>
<mmCIF:label_seq_id>12</mmCIF:label_seq_id>
<mmCIF:occupancy>0.50</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="16">
<mmCIF:B_iso_or_equiv>20.00</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>26.489</mmCIF:Cartn_x>
<mmCIF:Cartn_y>33.778</mmCIF:Cartn_y>
<mmCIF:Cartn_z>18.426</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>12</mmCIF:auth_seq_id>
<mmCIF:footnote_id>4</mmCIF:footnote_id>
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id>4</mmCIF:label_alt_id>
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>CG2</mmCIF:label_atom_id>
<mmCIF:label_comp_id>THR</mmCIF:label_comp_id>
<mmCIF:label_seq_id>12</mmCIF:label_seq_id>
<mmCIF:occupancy>0.50</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="17">
<mmCIF:B_iso_or_equiv>22.08</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>23.664</mmCIF:Cartn_x>
<mmCIF:Cartn_y>33.855</mmCIF:Cartn_y>
<mmCIF:Cartn_z>16.884</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>13</mmCIF:auth_seq_id>
<mmCIF:footnote_id xsi:nil="true" />
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>N</mmCIF:label_atom_id>
<mmCIF:label_comp_id>ILE</mmCIF:label_comp_id>
<mmCIF:label_seq_id>13</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>N</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="18">
<mmCIF:B_iso_or_equiv>23.44</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>22.623</mmCIF:Cartn_x>
<mmCIF:Cartn_y>34.850</mmCIF:Cartn_y>
<mmCIF:Cartn_z>17.093</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>13</mmCIF:auth_seq_id>
<mmCIF:footnote_id xsi:nil="true" />
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>CA</mmCIF:label_atom_id>
<mmCIF:label_comp_id>ILE</mmCIF:label_comp_id>
<mmCIF:label_seq_id>13</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="19">
<mmCIF:B_iso_or_equiv>25.77</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>22.657</mmCIF:Cartn_x>
<mmCIF:Cartn_y>35.113</mmCIF:Cartn_y>
<mmCIF:Cartn_z>18.610</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>13</mmCIF:auth_seq_id>
<mmCIF:footnote_id xsi:nil="true" />
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>C</mmCIF:label_atom_id>
<mmCIF:label_comp_id>ILE</mmCIF:label_comp_id>
<mmCIF:label_seq_id>13</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="20">
<mmCIF:B_iso_or_equiv>26.28</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>23.123</mmCIF:Cartn_x>
<mmCIF:Cartn_y>34.250</mmCIF:Cartn_y>
<mmCIF:Cartn_z>19.406</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>13</mmCIF:auth_seq_id>
<mmCIF:footnote_id xsi:nil="true" />
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>O</mmCIF:label_atom_id>
<mmCIF:label_comp_id>ILE</mmCIF:label_comp_id>
<mmCIF:label_seq_id>13</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>O</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="21">
<mmCIF:B_iso_or_equiv>22.67</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>21.236</mmCIF:Cartn_x>
<mmCIF:Cartn_y>34.463</mmCIF:Cartn_y>
<mmCIF:Cartn_z>16.492</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>13</mmCIF:auth_seq_id>
<mmCIF:footnote_id xsi:nil="true" />
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>CB</mmCIF:label_atom_id>
<mmCIF:label_comp_id>ILE</mmCIF:label_comp_id>
<mmCIF:label_seq_id>13</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="22">
<mmCIF:B_iso_or_equiv>22.14</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>20.478</mmCIF:Cartn_x>
<mmCIF:Cartn_y>33.469</mmCIF:Cartn_y>
<mmCIF:Cartn_z>17.371</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>13</mmCIF:auth_seq_id>
<mmCIF:footnote_id xsi:nil="true" />
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>CG1</mmCIF:label_atom_id>
<mmCIF:label_comp_id>ILE</mmCIF:label_comp_id>
<mmCIF:label_seq_id>13</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="23">
<mmCIF:B_iso_or_equiv>21.75</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>21.357</mmCIF:Cartn_x>
<mmCIF:Cartn_y>33.986</mmCIF:Cartn_y>
<mmCIF:Cartn_z>15.016</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>13</mmCIF:auth_seq_id>
<mmCIF:footnote_id xsi:nil="true" />
<mmCIF:group_PDB>ATOM</mmCIF:group_PDB>
<mmCIF:label_alt_id xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_atom_id>CG2</mmCIF:label_atom_id>
<mmCIF:label_comp_id>ILE</mmCIF:label_comp_id>
<mmCIF:label_seq_id>13</mmCIF:label_seq_id>
<mmCIF:occupancy>1.00</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="101">
<mmCIF:B_iso_or_equiv>17.27</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>4.171</mmCIF:Cartn_x>
<mmCIF:Cartn_y>29.012</mmCIF:Cartn_y>
<mmCIF:Cartn_z>7.116</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>300</mmCIF:auth_seq_id>
<mmCIF:footnote_id>1</mmCIF:footnote_id>
<mmCIF:group_PDB>HETATM</mmCIF:group_PDB>
<mmCIF:label_alt_id>1</mmCIF:label_alt_id>
<mmCIF:label_asym_id>C</mmCIF:label_asym_id>
<mmCIF:label_atom_id>C1</mmCIF:label_atom_id>
<mmCIF:label_comp_id>APS</mmCIF:label_comp_id>
<mmCIF:label_seq_id xsi:nil="true" />
<mmCIF:occupancy>0.58</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="102">
<mmCIF:B_iso_or_equiv>16.95</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>4.949</mmCIF:Cartn_x>
<mmCIF:Cartn_y>27.758</mmCIF:Cartn_y>
<mmCIF:Cartn_z>6.793</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>300</mmCIF:auth_seq_id>
<mmCIF:footnote_id>1</mmCIF:footnote_id>
<mmCIF:group_PDB>HETATM</mmCIF:group_PDB>
<mmCIF:label_alt_id>1</mmCIF:label_alt_id>
<mmCIF:label_asym_id>C</mmCIF:label_asym_id>
<mmCIF:label_atom_id>C2</mmCIF:label_atom_id>
<mmCIF:label_comp_id>APS</mmCIF:label_comp_id>
<mmCIF:label_seq_id xsi:nil="true" />
<mmCIF:occupancy>0.58</mmCIF:occupancy>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="103">
<mmCIF:B_iso_or_equiv>16.85</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>4.800</mmCIF:Cartn_x>
<mmCIF:Cartn_y>26.678</mmCIF:Cartn_y>
<mmCIF:Cartn_z>7.393</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>300</mmCIF:auth_seq_id>
<mmCIF:footnote_id>1</mmCIF:footnote_id>
<mmCIF:group_PDB>HETATM</mmCIF:group_PDB>
<mmCIF:label_alt_id>1</mmCIF:label_alt_id>
<mmCIF:label_asym_id>C</mmCIF:label_asym_id>
<mmCIF:label_atom_id>O3</mmCIF:label_atom_id>
<mmCIF:label_comp_id>APS</mmCIF:label_comp_id>
<mmCIF:label_seq_id xsi:nil="true" />
<mmCIF:occupancy>0.58</mmCIF:occupancy>
<mmCIF:type_symbol>O</mmCIF:type_symbol>
</mmCIF:atom_site>
<mmCIF:atom_site id="104">
<mmCIF:B_iso_or_equiv>16.43</mmCIF:B_iso_or_equiv>
<mmCIF:Cartn_x>5.930</mmCIF:Cartn_x>
<mmCIF:Cartn_y>27.841</mmCIF:Cartn_y>
<mmCIF:Cartn_z>5.869</mmCIF:Cartn_z>
<mmCIF:auth_seq_id>300</mmCIF:auth_seq_id>
<mmCIF:footnote_id>1</mmCIF:footnote_id>
<mmCIF:group_PDB>HETATM</mmCIF:group_PDB>
<mmCIF:label_alt_id>1</mmCIF:label_alt_id>
<mmCIF:label_asym_id>C</mmCIF:label_asym_id>
<mmCIF:label_atom_id>N4</mmCIF:label_atom_id>
<mmCIF:label_comp_id>APS</mmCIF:label_comp_id>
<mmCIF:label_seq_id xsi:nil="true" />
<mmCIF:occupancy>0.58</mmCIF:occupancy>
<mmCIF:type_symbol>N</mmCIF:type_symbol>
</mmCIF:atom_site>
</mmCIF:atom_siteCategory>
Equivalent isotropic atomic displacement parameter, B~eq~,
in angstroms squared, calculated as the geometric mean of
the anisotropic atomic displacement parameters.
B~eq~ = (B~i~ B~j~ B~k~)^1/3^
B~n~ = the principal components of the orthogonalized B^ij^
The IUCr Commission on Nomenclature recommends against the use
of B for reporting atomic displacement parameters. U, being
directly proportional to B, is preferred.
The standard uncertainty (estimated standard deviation)
of attribute B_equiv_geom_mean in category atom_site.
Isotropic atomic displacement parameter, or equivalent isotropic
atomic displacement parameter, B~eq~, calculated from the
anisotropic displacement parameters.
B~eq~ = (1/3) sum~i~[sum~j~(B^ij^ A~i~ A~j~ a*~i~ a*~j~)]
A = the real space cell lengths
a* = the reciprocal space cell lengths
B^ij^ = 8 pi^2^ U^ij^
Ref: Fischer, R. X. & Tillmanns, E. (1988). Acta Cryst. C44,
775-776.
The IUCr Commission on Nomenclature recommends against the use
of B for reporting atomic displacement parameters. U, being
directly proportional to B, is preferred.
The standard uncertainty (estimated standard deviation)
of attribute B_iso_or_equiv in category atom_site.
The x atom-site coordinate in angstroms specified according to
a set of orthogonal Cartesian axes related to the cell axes as
specified by the description given in
attribute Cartn_transform_axes in category atom_sites.
The standard uncertainty (estimated standard deviation)
of attribute Cartn_x in category atom_site.
The y atom-site coordinate in angstroms specified according to
a set of orthogonal Cartesian axes related to the cell axes as
specified by the description given in
attribute Cartn_transform_axes in category atom_sites.
The standard uncertainty (estimated standard deviation)
of attribute Cartn_y in category atom_site.
The z atom-site coordinate in angstroms specified according to
a set of orthogonal Cartesian axes related to the cell axes as
specified by the description given in
attribute Cartn_transform_axes in category atom_sites.
The standard uncertainty (estimated standard deviation)
of attribute Cartn_z in category atom_site.
Equivalent isotropic atomic displacement parameter, U~eq~,
in angstroms squared, calculated as the geometric mean of
the anisotropic atomic displacement parameters.
U~eq~ = (U~i~ U~j~ U~k~)^1/3^
U~n~ = the principal components of the orthogonalized U^ij^
The standard uncertainty (estimated standard deviation)
of attribute U_equiv_geom_mean in category atom_site.
Isotropic atomic displacement parameter, or equivalent isotropic
atomic displacement parameter, U~eq~, calculated from
anisotropic atomic displacement parameters.
U~eq~ = (1/3) sum~i~[sum~j~(U^ij^ A~i~ A~j~ a*~i~ a*~j~)]
A = the real space cell lengths
a* = the reciprocal space cell lengths
Ref: Fischer, R. X. & Tillmanns, E. (1988). Acta Cryst. C44,
775-776.
The standard uncertainty (estimated standard deviation)
of attribute U_iso_or_equiv in category atom_site.
The Wyckoff symbol (letter) as listed in the space-group tables
of International Tables for Crystallography, Vol. A (2002).
A standard code used to describe the type of atomic displacement
parameters used for the site.
The [1][1] element of the anisotropic atomic displacement
matrix B, which appears in the structure-factor term as:
T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The IUCr Commission on Nomenclature recommends against the use
of B for reporting atomic displacement parameters. U, being
directly proportional to B, is preferred.
The standard uncertainty (estimated standard deviation)
of attribute aniso_B[1][1] in category atom_site.
The [1][2] element of the anisotropic atomic displacement
matrix B, which appears in the structure-factor term as:
T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The IUCr Commission on Nomenclature recommends against the use
of B for reporting atomic displacement parameters. U, being
directly proportional to B, is preferred.
The standard uncertainty (estimated standard deviation)
of attribute aniso_B[1][2] in category atom_site.
The [1][3] element of the anisotropic atomic displacement
matrix B, which appears in the structure-factor term as:
T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The IUCr Commission on Nomenclature recommends against the use
of B for reporting atomic displacement parameters. U, being
directly proportional to B, is preferred.
The standard uncertainty (estimated standard deviation)
of attribute aniso_B[1][3] in category atom_site.
The [2][2] element of the anisotropic atomic displacement
matrix B, which appears in the structure-factor term as:
T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The IUCr Commission on Nomenclature recommends against the use
of B for reporting atomic displacement parameters. U, being
directly proportional to B, is preferred.
The standard uncertainty (estimated standard deviation)
of attribute aniso_B[2][2] in category atom_site.
The [2][3] element of the anisotropic atomic displacement
matrix B, which appears in the structure-factor term as:
T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The IUCr Commission on Nomenclature recommends against the use
of B for reporting atomic displacement parameters. U, being
directly proportional to B, is preferred.
The standard uncertainty (estimated standard deviation)
of attribute aniso_B[2][3] in category atom_site.
The [3][3] element of the anisotropic atomic displacement
matrix B, which appears in the structure-factor term as:
T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The IUCr Commission on Nomenclature recommends against the use
of B for reporting atomic displacement parameters. U, being
directly proportional to B, is preferred.
The standard uncertainty (estimated standard deviation)
of attribute aniso_B[3][3] in category atom_site.
The [1][1] element of the standard anisotropic atomic
displacement matrix U, which appears in the structure-factor
term as:
T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The standard uncertainty (estimated standard deviation)
of attribute aniso_U[1][1] in category atom_site.
The [1][2] element of the standard anisotropic atomic
displacement matrix U, which appears in the structure-factor
term as:
T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The standard uncertainty (estimated standard deviation)
of attribute aniso_U[1][2] in category atom_site.
The [1][3] element of the standard anisotropic atomic
displacement matrix U, which appears in the structure-factor
term as:
T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The standard uncertainty (estimated standard deviation)
of attribute aniso_U[1][3] in category atom_site.
The [2][2] element of the standard anisotropic atomic
displacement matrix U, which appears in the structure-factor
term as:
T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The standard uncertainty (estimated standard deviation)
of attribute aniso_U[2][2] in category atom_site.
The [2][3] element of the standard anisotropic atomic
displacement matrix U, which appears in the structure-factor
term as:
T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The standard uncertainty (estimated standard deviation)
of attribute aniso_U[2][3] in category atom_site.
The [3][3] element of the standard anisotropic atomic
displacement matrix U, which appears in the structure-factor
term as:
T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The standard uncertainty (estimated standard deviation)
of attribute aniso_U[3][3] in category atom_site.
Ratio of the maximum to minimum principal axes of
displacement (thermal) ellipsoids.
The number of hydrogen atoms attached to the atom at this site
excluding any hydrogen atoms for which coordinates (measured or
calculated) are given.
water oxygen
2
hydroxyl oxygen
1
ammonium nitrogen
4
An alternative identifier for attribute label_asym_id in category atom_site that
may be provided by an author in order to match the identification
used in the publication that describes the structure.
An alternative identifier for attribute label_atom_id in category atom_site that
may be provided by an author in order to match the identification
used in the publication that describes the structure.
An alternative identifier for attribute label_comp_id in category atom_site that
may be provided by an author in order to match the identification
used in the publication that describes the structure.
An alternative identifier for attribute label_seq_id in category atom_site that
may be provided by an author in order to match the identification
used in the publication that describes the structure.
Note that this is not necessarily a number, that the values do
not have to be positive, and that the value does not have to
correspond to the value of attribute label_seq_id in category atom_site. The value
of attribute label_seq_id in category atom_site is required to be a sequential list
of positive integers.
The author may assign values to attribute auth_seq_id in category atom_site in any
desired way. For instance, the values may be used to relate
this structure to a numbering scheme in a homologous structure,
including sequence gaps or insertion codes. Alternatively, a
scheme may be used for a truncated polymer that maintains the
numbering scheme of the full length polymer. In all cases, the
scheme used here must match the scheme used in the publication
that describes the structure.
The attribute id in category atom_site of the atom site to which the
'geometry-calculated' atom site is attached.
A standard code to signal whether the site coordinates have been
determined from the intensities or calculated from the geometry
of surrounding sites, or have been assigned dummy values. The
abbreviation 'c' may be used in place of 'calc'.
This data item is a pointer to attribute number in category chemical_conn_atom in the
CHEMICAL_CONN_ATOM category.
A description of the constraints applied to parameters at this
site during refinement. See also attribute refinement_flags
in category atom_site and attribute ls_number_constraints in category refine.
pop=1.0-pop(Zn3)
A description of special aspects of this site. See also
attribute refinement_flags in category atom_site.
Ag/Si disordered
A code which identifies a cluster of atoms that show long-range
positional disorder but are locally ordered. Within each such
cluster of atoms, attribute disorder_group in category atom_site is used to identify
the sites that are simultaneously occupied. This field is only
needed if there is more than one cluster of disordered atoms
showing independent local order.
*** This data item would not in general be used in a
macromolecular data block. ***
A code which identifies a group of positionally disordered atom
sites that are locally simultaneously occupied. Atoms that are
positionally disordered over two or more sites (e.g. the hydrogen
atoms of a methyl group that exists in two orientations) can
be assigned to two or more groups. Sites belonging to the same
group are simultaneously occupied, but those belonging to
different groups are not. A minus prefix (e.g. '-1') is used to
indicate sites disordered about a special position.
*** This data item would not in general be used in a
macromolecular data block. ***
The value of attribute footnote_id in category atom_site must match an ID
specified by attribute id in category atom_sites_footnote in the
ATOM_SITES_FOOTNOTE list.
The x coordinate of the atom-site position specified as a
fraction of attribute length_a in category cell.
The standard uncertainty (estimated standard deviation)
of attribute fract_x in category atom_site.
The y coordinate of the atom-site position specified as a
fraction of attribute length_b in category cell.
The standard uncertainty (estimated standard deviation)
of attribute fract_y in category atom_site.
The z coordinate of the atom-site position specified as a
fraction of attribute length_c in category cell.
The standard uncertainty (estimated standard deviation)
of attribute fract_z in category atom_site.
The group of atoms to which the atom site belongs. This data
item is provided for compatibility with the original Protein
Data Bank format, and only for that purpose.
A component of the identifier for this atom site.
For further details, see the definition of the ATOM_SITE_ALT
category.
This data item is a pointer to attribute id in category atom_sites_alt in the
ATOM_SITES_ALT category.
A component of the identifier for this atom site.
For further details, see the definition of the STRUCT_ASYM
category.
This data item is a pointer to attribute id in category struct_asym in the
STRUCT_ASYM category.
A component of the identifier for this atom site.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
A component of the identifier for this atom site.
This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP
category.
This data item is a pointer to attribute id in category entity in the ENTITY category.
This data item is a pointer to attribute num in category entity_poly_seq in the
ENTITY_POLY_SEQ category.
The fraction of the atom type present at this site.
The sum of the occupancies of all the atom types at this site
may not significantly exceed 1.0 unless it is a dummy site.
The standard uncertainty (estimated standard deviation)
of attribute occupancy in category atom_site.
A concatenated series of single-letter codes which indicate the
refinement restraints or constraints applied to this site. This
item should not be used. It has been replaced by
attribute refinement_flags_posn in category atom_site, *_adp and *_occupancy. It is
retained in this dictionary only to provide compatibility with
old CIFs.
A code which indicates the refinement restraints or constraints
applied to the atomic displacement parameters of this site.
A code which indicates that refinement restraints or
constraints were applied to the occupancy of this site.
A code which indicates the refinement restraints or constraints
applied to the positional coordinates of this site.
A description of restraints applied to specific parameters at
this site during refinement. See also attribute refinement_flags
in category atom_site and attribute ls_number_restraints in category refine.
restrained to planar ring
The multiplicity of a site due to the space-group symmetry as is
given in International Tables for Crystallography Vol. A (2002).
A standard code used to describe the type of atomic displacement
parameters used for the site.
This data item is a pointer to attribute symbol in category atom_type in the
ATOM_TYPE category.
The value of attribute id in category atom_site must uniquely identify a record in the
ATOM_SITE list.
Note that this item need not be a number; it can be any unique
identifier.
This data item was introduced to provide compatibility between
small-molecule and macromolecular CIFs. In a small-molecule
CIF, _atom_site_label is the identifier for the atom. In a
macromolecular CIF, the atom identifier is the aggregate of
_atom_site.label_alt_id, _atom_site.label_asym_id,
_atom_site.label_atom_id, _atom_site.label_comp_id and
attribute label_seq_id in category atom_site. For the two types of files to be
compatible, a formal identifier for the category had to be
introduced that was independent of the different modes of
identifying the atoms. For compatibility with older CIFs,
_atom_site_label is aliased to attribute id in category atom_site.
5
C12
Ca3g28
Fe3+17
H*251
boron2a
C_a_phe_83_a_0
Zn_Zn_301_A_0
Data items in the ATOM_SITE_ANISOTROP category record details
about anisotropic displacement parameters.
If the ATOM_SITE_ANISOTROP category is used for storing these
data, the corresponding ATOM_SITE data items are not used.
Example 1 - based on NDB structure BDL005 of Holbrook, Dickerson &
Kim [Acta Cryst. (1985), B41, 255-262].
<mmCIF:atom_site_anisotropCategory>
<mmCIF:atom_site_anisotrop id="1">
<mmCIF:U11>8642</mmCIF:U11>
<mmCIF:U12>4866</mmCIF:U12>
<mmCIF:U13>7299</mmCIF:U13>
<mmCIF:U22>-342</mmCIF:U22>
<mmCIF:U23>-258</mmCIF:U23>
<mmCIF:U33>-1427</mmCIF:U33>
<mmCIF:type_symbol>O</mmCIF:type_symbol>
</mmCIF:atom_site_anisotrop>
<mmCIF:atom_site_anisotrop id="2">
<mmCIF:U11>5174</mmCIF:U11>
<mmCIF:U12>4871</mmCIF:U12>
<mmCIF:U13>6243</mmCIF:U13>
<mmCIF:U22>-1885</mmCIF:U22>
<mmCIF:U23>-2051</mmCIF:U23>
<mmCIF:U33>-1377</mmCIF:U33>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site_anisotrop>
<mmCIF:atom_site_anisotrop id="3">
<mmCIF:U11>6202</mmCIF:U11>
<mmCIF:U12>5020</mmCIF:U12>
<mmCIF:U13>4395</mmCIF:U13>
<mmCIF:U22>-1130</mmCIF:U22>
<mmCIF:U23>-556</mmCIF:U23>
<mmCIF:U33>-632</mmCIF:U33>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site_anisotrop>
<mmCIF:atom_site_anisotrop id="4">
<mmCIF:U11>4224</mmCIF:U11>
<mmCIF:U12>4700</mmCIF:U12>
<mmCIF:U13>5046</mmCIF:U13>
<mmCIF:U22>1105</mmCIF:U22>
<mmCIF:U23>-161</mmCIF:U23>
<mmCIF:U33>345</mmCIF:U33>
<mmCIF:type_symbol>O</mmCIF:type_symbol>
</mmCIF:atom_site_anisotrop>
<mmCIF:atom_site_anisotrop id="5">
<mmCIF:U11>8684</mmCIF:U11>
<mmCIF:U12>4688</mmCIF:U12>
<mmCIF:U13>4171</mmCIF:U13>
<mmCIF:U22>-1850</mmCIF:U22>
<mmCIF:U23>-433</mmCIF:U23>
<mmCIF:U33>-292</mmCIF:U33>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site_anisotrop>
<mmCIF:atom_site_anisotrop id="6">
<mmCIF:U11>11226</mmCIF:U11>
<mmCIF:U12>5255</mmCIF:U12>
<mmCIF:U13>3532</mmCIF:U13>
<mmCIF:U22>-341</mmCIF:U22>
<mmCIF:U23>2685</mmCIF:U23>
<mmCIF:U33>1328</mmCIF:U33>
<mmCIF:type_symbol>O</mmCIF:type_symbol>
</mmCIF:atom_site_anisotrop>
<mmCIF:atom_site_anisotrop id="7">
<mmCIF:U11>10214</mmCIF:U11>
<mmCIF:U12>2428</mmCIF:U12>
<mmCIF:U13>5614</mmCIF:U13>
<mmCIF:U22>-2610</mmCIF:U22>
<mmCIF:U23>-1940</mmCIF:U23>
<mmCIF:U33>902</mmCIF:U33>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site_anisotrop>
<mmCIF:atom_site_anisotrop id="8">
<mmCIF:U11>4590</mmCIF:U11>
<mmCIF:U12>3488</mmCIF:U12>
<mmCIF:U13>5827</mmCIF:U13>
<mmCIF:U22>751</mmCIF:U22>
<mmCIF:U23>-770</mmCIF:U23>
<mmCIF:U33>986</mmCIF:U33>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:atom_site_anisotrop>
<mmCIF:atom_site_anisotrop id="9">
<mmCIF:U11>5014</mmCIF:U11>
<mmCIF:U12>4434</mmCIF:U12>
<mmCIF:U13>3447</mmCIF:U13>
<mmCIF:U22>-17</mmCIF:U22>
<mmCIF:U23>-1593</mmCIF:U23>
<mmCIF:U33>539</mmCIF:U33>
<mmCIF:type_symbol>N</mmCIF:type_symbol>
</mmCIF:atom_site_anisotrop>
</mmCIF:atom_site_anisotropCategory>
The [1][1] element of the anisotropic atomic displacement
matrix B, which appears in the structure-factor term as:
T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The IUCr Commission on Nomenclature recommends against the use
of B for reporting atomic displacement parameters. U, being
directly proportional to B, is preferred.
The standard uncertainty (estimated standard deviation)
of attribute B[1][1] in category atom_site_anisotrop.
The [1][2] element of the anisotropic atomic displacement
matrix B, which appears in the structure-factor term as:
T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The IUCr Commission on Nomenclature recommends against the use
of B for reporting atomic displacement parameters. U, being
directly proportional to B, is preferred.
The standard uncertainty (estimated standard deviation)
of attribute B[1][2] in category atom_site_anisotrop.
The [1][3] element of the anisotropic atomic displacement
matrix B, which appears in the structure-factor term as:
T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The IUCr Commission on Nomenclature recommends against the use
of B for reporting atomic displacement parameters. U, being
directly proportional to B, is preferred.
The standard uncertainty (estimated standard deviation)
of attribute B[1][3] in category atom_site_anisotrop.
The [2][2] element of the anisotropic atomic displacement
matrix B, which appears in the structure-factor term as:
T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The IUCr Commission on Nomenclature recommends against the use
of B for reporting atomic displacement parameters. U, being
directly proportional to B, is preferred.
The standard uncertainty (estimated standard deviation)
of attribute B[2][2] in category atom_site_anisotrop.
The [2][3] element of the anisotropic atomic displacement
matrix B, which appears in the structure-factor term as:
T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The IUCr Commission on Nomenclature recommends against the use
of B for reporting atomic displacement parameters. U, being
directly proportional to B, is preferred.
The standard uncertainty (estimated standard deviation)
of attribute B[2][3] in category atom_site_anisotrop.
The [3][3] element of the anisotropic atomic displacement
matrix B, which appears in the structure-factor term as:
T = exp{-1/4 sum~i~[sum~j~(B^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The IUCr Commission on Nomenclature recommends against the use
of B for reporting atomic displacement parameters. U, being
directly proportional to B, is preferred.
The standard uncertainty (estimated standard deviation)
of attribute B[3][3] in category atom_site_anisotrop.
The [1][1] element of the standard anisotropic atomic
displacement matrix U, which appears in the structure-factor
term as:
T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The standard uncertainty (estimated standard deviation)
of attribute U[1][1] in category atom_site_anisotrop.
The [1][2] element of the standard anisotropic atomic
displacement matrix U, which appears in the structure-factor
term as:
T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The standard uncertainty (estimated standard deviation)
of attribute U[1][2] in category atom_site_anisotrop.
The [1][3] element of the standard anisotropic atomic
displacement matrix U, which appears in the structure-factor
term as:
T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The standard uncertainty (estimated standard deviation)
of attribute U[1][3] in category atom_site_anisotrop.
The [2][2] element of the standard anisotropic atomic
displacement matrix U, which appears in the structure-factor
term as:
T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The standard uncertainty (estimated standard deviation)
of attribute U[2][2] in category atom_site_anisotrop.
The [2][3] element of the standard anisotropic atomic
displacement matrix U, which appears in the structure-factor
term as:
T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The standard uncertainty (estimated standard deviation)
of attribute U[2][3] in category atom_site_anisotrop.
The [3][3] element of the standard anisotropic atomic
displacement matrix U, which appears in the structure-factor
term as:
T = exp{-2 pi^2^ sum~i~[sum~j~(U^ij^ h~i~ h~j~ a*~i~ a*~j~)]}
h = the Miller indices
a* = the reciprocal space cell lengths
These matrix elements may appear with atomic coordinates
in the ATOM_SITE category, or they may appear in the separate
ATOM_SITE_ANISOTROP category, but they may not appear in both
places. Similarly, anisotropic displacements may appear as
either B's or U's, but not as both.
The unique elements of the real symmetric matrix are
entered by row.
The standard uncertainty (estimated standard deviation)
of attribute U[3][3] in category atom_site_anisotrop.
Ratio of the maximum to minimum principal axes of
displacement (thermal) ellipsoids.
This data item is a pointer to attribute symbol in category atom_type in the
ATOM_TYPE category.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
Data items in the ATOM_SITES category record details about
the crystallographic cell and cell transformations, which are
common to all atom sites.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:atom_sitesCategory>
<mmCIF:atom_sites entry_id="5HVP">
<mmCIF:Cartn_transf_matrix11>58.39</mmCIF:Cartn_transf_matrix11>
<mmCIF:Cartn_transf_matrix12>0.00</mmCIF:Cartn_transf_matrix12>
<mmCIF:Cartn_transf_matrix13>0.00</mmCIF:Cartn_transf_matrix13>
<mmCIF:Cartn_transf_matrix21>0.00</mmCIF:Cartn_transf_matrix21>
<mmCIF:Cartn_transf_matrix22>86.70</mmCIF:Cartn_transf_matrix22>
<mmCIF:Cartn_transf_matrix23>0.00</mmCIF:Cartn_transf_matrix23>
<mmCIF:Cartn_transf_matrix31>0.00</mmCIF:Cartn_transf_matrix31>
<mmCIF:Cartn_transf_matrix32>0.00</mmCIF:Cartn_transf_matrix32>
<mmCIF:Cartn_transf_matrix33>46.27</mmCIF:Cartn_transf_matrix33>
<mmCIF:Cartn_transf_vector1>0.00</mmCIF:Cartn_transf_vector1>
<mmCIF:Cartn_transf_vector2>0.00</mmCIF:Cartn_transf_vector2>
<mmCIF:Cartn_transf_vector3>0.00</mmCIF:Cartn_transf_vector3>
<mmCIF:Cartn_transform_axes>c along z, astar along x, b along y</mmCIF:Cartn_transform_axes>
</mmCIF:atom_sites>
</mmCIF:atom_sitesCategory>
The [1][1] element of the 3x3 matrix used to transform
fractional coordinates in the ATOM_SITE category to Cartesian
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute Cartn_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2|
|z'| |31 32 33| |z| |3|
The [1][2] element of the 3x3 matrix used to transform
fractional coordinates in the ATOM_SITE category to Cartesian
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute Cartn_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2|
|z'| |31 32 33| |z| |3|
The [1][3] element of the 3x3 matrix used to transform
fractional coordinates in the ATOM_SITE category to Cartesian
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute Cartn_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2|
|z'| |31 32 33| |z| |3|
The [2][1] element of the 3x3 matrix used to transform
fractional coordinates in the ATOM_SITE category to Cartesian
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute Cartn_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2|
|z'| |31 32 33| |z| |3|
The [2][2] element of the 3x3 matrix used to transform
fractional coordinates in the ATOM_SITE category to Cartesian
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute Cartn_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2|
|z'| |31 32 33| |z| |3|
The [2][3] element of the 3x3 matrix used to transform
fractional coordinates in the ATOM_SITE category to Cartesian
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute Cartn_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2|
|z'| |31 32 33| |z| |3|
The [3][1] element of the 3x3 matrix used to transform
fractional coordinates in the ATOM_SITE category to Cartesian
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute Cartn_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2|
|z'| |31 32 33| |z| |3|
The [3][2] element of the 3x3 matrix used to transform
fractional coordinates in the ATOM_SITE category to Cartesian
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute Cartn_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2|
|z'| |31 32 33| |z| |3|
The [3][3] element of the 3x3 matrix used to transform
fractional coordinates in the ATOM_SITE category to Cartesian
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute Cartn_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2|
|z'| |31 32 33| |z| |3|
The [1] element of the three-element vector used to transform
fractional coordinates in the ATOM_SITE category to Cartesian
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The rotation matrix is defined in
attribute Cartn_transf_matrix[][].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2|
|z'| |31 32 33| |z| |3|
The [2] element of the three-element vector used to transform
fractional coordinates in the ATOM_SITE category to Cartesian
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The rotation matrix is defined in
attribute Cartn_transf_matrix[][].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2|
|z'| |31 32 33| |z| |3|
The [3] element of the three-element vector used to transform
fractional coordinates in the ATOM_SITE category to Cartesian
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The rotation matrix is defined in
attribute Cartn_transf_matrix[][].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~Cartesian~ = |21 22 23| |y|~fractional~ + |2|
|z'| |31 32 33| |z| |3|
A description of the relative alignment of the crystal cell
axes to the Cartesian orthogonal axes as applied in the
transformation matrix attribute Cartn_transf_matrix[][] in category atom_sites.
a parallel to x; b in the plane of y and z
The [1][1] element of the 3x3 matrix used to transform Cartesian
coordinates in the ATOM_SITE category to fractional coordinates
in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute fract_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2|
|z'| |31 32 33| |z| |3|
The [1][2] element of the 3x3 matrix used to transform Cartesian
coordinates in the ATOM_SITE category to fractional coordinates
in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute fract_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2|
|z'| |31 32 33| |z| |3|
The [1][3] element of the 3x3 matrix used to transform Cartesian
coordinates in the ATOM_SITE category to fractional coordinates
in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute fract_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2|
|z'| |31 32 33| |z| |3|
The [2][1] element of the 3x3 matrix used to transform Cartesian
coordinates in the ATOM_SITE category to fractional coordinates
in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute fract_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2|
|z'| |31 32 33| |z| |3|
The [2][2] element of the 3x3 matrix used to transform Cartesian
coordinates in the ATOM_SITE category to fractional coordinates
in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute fract_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2|
|z'| |31 32 33| |z| |3|
The [2][3] element of the 3x3 matrix used to transform Cartesian
coordinates in the ATOM_SITE category to fractional coordinates
in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute fract_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2|
|z'| |31 32 33| |z| |3|
The [3][1] element of the 3x3 matrix used to transform Cartesian
coordinates in the ATOM_SITE category to fractional coordinates
in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute fract_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2|
|z'| |31 32 33| |z| |3|
The [3][2] element of the 3x3 matrix used to transform Cartesian
coordinates in the ATOM_SITE category to fractional coordinates
in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute fract_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2|
|z'| |31 32 33| |z| |3|
The [3][3] element of the 3x3 matrix used to transform Cartesian
coordinates in the ATOM_SITE category to fractional coordinates
in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x1 translation is defined in
attribute fract_transf_vector[].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2|
|z'| |31 32 33| |z| |3|
The [1] element of the three-element vector used to transform
Cartesian coordinates in the ATOM_SITE category to fractional
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x3 rotation is defined in
attribute fract_transf_matrix[][].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2|
|z'| |31 32 33| |z| |3|
The [2] element of the three-element vector used to transform
Cartesian coordinates in the ATOM_SITE category to fractional
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x3 rotation is defined in
attribute fract_transf_matrix[][].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2|
|z'| |31 32 33| |z| |3|
The [3] element of the three-element vector used to transform
Cartesian coordinates in the ATOM_SITE category to fractional
coordinates in the same category. The axial alignments of this
transformation are described in attribute Cartn_transform_axes.
in category atom_sites The 3x3 rotation is defined in
attribute fract_transf_matrix[][].
in category atom_sites
|x'| |11 12 13| |x| |1|
|y'|~fractional~ = |21 22 23| |y|~Cartesian~ + |2|
|z'| |31 32 33| |z| |3|
This code identifies the method used to locate the
hydrogen atoms.
*** This data item would not in general be used in a
macromolecular data block. ***
This code identifies the method used to locate the initial
atom sites.
*** This data item would not in general be used in a
macromolecular data block. ***
This code identifies the method used to locate the
non-hydrogen-atom sites not found by
attribute solution_primary.
in category atom_sites
*** This data item would not in general be used in a
macromolecular data block. ***
Additional information about the atomic coordinates not coded
elsewhere in the CIF.
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the ATOM_SITES_ALT category record details
about the structural ensembles that should be generated from
atom sites or groups of atom sites that are modelled in
alternative conformations in this data block.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:atom_sites_altCategory>
<mmCIF:atom_sites_alt id="1">
<mmCIF:details> Atom sites with the alternative ID set to 1 have been
modeled in alternative conformations with respect to atom
sites marked with alternative ID 2. The conformations of
amino-acid side chains and solvent atoms with alternative
ID set to 1 correlate with the conformation of the
inhibitor marked with alternative ID 1. They have been
given an occupancy of 0.58 to match the occupancy assigned
to the inhibitor.</mmCIF:details>
</mmCIF:atom_sites_alt>
<mmCIF:atom_sites_alt id="2">
<mmCIF:details> Atom sites with the alternative ID set to 2 have been
modeled in alternative conformations with respect to atom
sites marked with alternative ID 1. The conformations of
amino-acid side chains and solvent atoms with alternative
ID set to 2 correlate with the conformation of the
inhibitor marked with alternative ID 2. They have been
given an occupancy of 0.42 to match the occupancy assigned
to the inhibitor.</mmCIF:details>
</mmCIF:atom_sites_alt>
<mmCIF:atom_sites_alt id="3">
<mmCIF:details> Atom sites with the alternative ID set to 3 have been
modeled in alternative conformations with respect to
atoms marked with alternative ID 4. The conformations of
amino-acid side chains and solvent atoms with alternative
ID set to 3 do not correlate with the conformation of the
inhibitor. These atom sites have arbitrarily been given
an occupancy of 0.50.</mmCIF:details>
</mmCIF:atom_sites_alt>
<mmCIF:atom_sites_alt id="4">
<mmCIF:details> Atom sites with the alternative ID set to 4 have been
modeled in alternative conformations with respect to
atoms marked with alternative ID 3. The conformations of
amino-acid side chains and solvent atoms with alternative
ID set to 4 do not correlate with the conformation of the
inhibitor. These atom sites have arbitrarily been given
an occupancy of 0.50.</mmCIF:details>
</mmCIF:atom_sites_alt>
</mmCIF:atom_sites_altCategory>
A description of special aspects of the modelling of atoms in
alternative conformations.
The value of attribute id in category atom_sites_alt must uniquely identify
a record in the ATOM_SITES_ALT list.
Note that this item need not be a number; it can be any unique
identifier.
orientation 1
molecule abc
Data items in the ATOM_SITES_ALT_ENS category record details
about the ensemble structure generated from atoms with various
alternative conformation IDs.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:atom_sites_alt_ensCategory>
<mmCIF:atom_sites_alt_ens id="Ensemble 1-A">
<mmCIF:details> The inhibitor binds to the enzyme in two, roughly twofold
symmetric alternative conformations.
This conformational ensemble includes the more populated
conformation of the inhibitor (ID=1) and the amino-acid
side chains and solvent structure that correlate with this
inhibitor conformation.
Also included are one set (ID=3) of side chains with
alternative conformations when the conformations are not
correlated with the inhibitor conformation.</mmCIF:details>
</mmCIF:atom_sites_alt_ens>
<mmCIF:atom_sites_alt_ens id="Ensemble 1-B">
<mmCIF:details> The inhibitor binds to the enzyme in two, roughly twofold
symmetric alternative conformations.
This conformational ensemble includes the more populated
conformation of the inhibitor (ID=1) and the amino-acid
side chains and solvent structure that correlate with
this inhibitor conformation.
Also included are one set (ID=4) of side chains with
alternative conformations when the conformations are not
correlated with the inhibitor conformation.</mmCIF:details>
</mmCIF:atom_sites_alt_ens>
<mmCIF:atom_sites_alt_ens id="Ensemble 2-A">
<mmCIF:details> The inhibitor binds to the enzyme in two, roughly twofold
symmetric alternative conformations.
This conformational ensemble includes the less populated
conformation of the inhibitor (ID=2) and the amino-acid
side chains and solvent structure that correlate with this
inhibitor conformation.
Also included are one set (ID=3) of side chains with
alternative conformations when the conformations are not
correlated with the inhibitor conformation.</mmCIF:details>
</mmCIF:atom_sites_alt_ens>
<mmCIF:atom_sites_alt_ens id="Ensemble 2-B">
<mmCIF:details> The inhibitor binds to the enzyme in two, roughly twofold
symmetric alternative conformations.
This conformational ensemble includes the less populated
conformation of the inhibitor (ID=2) and the amino-acid
side chains and solvent structure that correlate with this
inhibitor conformation.
Also included are one set (ID=4) of side chains with
alternative conformations when the conformations are not
correlated with the inhibitor conformation.</mmCIF:details>
</mmCIF:atom_sites_alt_ens>
</mmCIF:atom_sites_alt_ensCategory>
A description of special aspects of the ensemble structure
generated from atoms with various alternative IDs.
The value of attribute id in category atom_sites_alt_ens must uniquely identify a
record in the ATOM_SITES_ALT_ENS list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the ATOM_SITES_ALT_GEN category record details
about the interpretation of multiple conformations in the
structure.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:atom_sites_alt_genCategory>
<mmCIF:atom_sites_alt_gen alt_id="1" ens_id="Ensemble 1-A"></mmCIF:atom_sites_alt_gen>
<mmCIF:atom_sites_alt_gen alt_id="3" ens_id="Ensemble 1-A"></mmCIF:atom_sites_alt_gen>
<mmCIF:atom_sites_alt_gen alt_id="1" ens_id="Ensemble 1-B"></mmCIF:atom_sites_alt_gen>
<mmCIF:atom_sites_alt_gen alt_id="4" ens_id="Ensemble 1-B"></mmCIF:atom_sites_alt_gen>
<mmCIF:atom_sites_alt_gen alt_id="2" ens_id="Ensemble 2-A"></mmCIF:atom_sites_alt_gen>
<mmCIF:atom_sites_alt_gen alt_id="3" ens_id="Ensemble 2-A"></mmCIF:atom_sites_alt_gen>
<mmCIF:atom_sites_alt_gen alt_id="2" ens_id="Ensemble 2-B"></mmCIF:atom_sites_alt_gen>
<mmCIF:atom_sites_alt_gen alt_id="4" ens_id="Ensemble 2-B"></mmCIF:atom_sites_alt_gen>
</mmCIF:atom_sites_alt_genCategory>
This data item is a pointer to attribute id in category atom_sites_alt in the
ATOM_SITES_ALT category.
This data item is a pointer to attribute id in category atom_sites_alt_ens in the
ATOM_SITES_ALT_ENS category.
Data items in the ATOM_SITES_FOOTNOTE category record detailed
comments about an atom site or a group of atom sites.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:atom_sites_footnoteCategory>
<mmCIF:atom_sites_footnote id="1">
<mmCIF:text> The inhibitor binds to the enzyme in two alternative
orientations. The two orientations have been assigned
alternative IDs *1* and *2*.</mmCIF:text>
</mmCIF:atom_sites_footnote>
<mmCIF:atom_sites_footnote id="2">
<mmCIF:text> Side chains of these residues adopt alternative
orientations that correlate with the alternative
orientations of the inhibitor.
Side chains with alternative ID *1* and occupancy 0.58
correlate with inhibitor orientation *1*.
Side chains with alternative ID *2* and occupancy 0.42
correlate with inhibitor orientation *2*.</mmCIF:text>
</mmCIF:atom_sites_footnote>
<mmCIF:atom_sites_footnote id="3">
<mmCIF:text> The positions of these water molecules correlate with
the alternative orientations of the inhibitor.
Water molecules with alternative ID *1* and occupancy 0.58
correlate with inhibitor orientation *1*.
Water molecules with alternative ID *2* and occupancy 0.42
correlate with inhibitor orientation *2*.</mmCIF:text>
</mmCIF:atom_sites_footnote>
<mmCIF:atom_sites_footnote id="4">
<mmCIF:text> Side chains of these residues adopt alternative
orientations that do not correlate with the alternative
orientation of the inhibitor.</mmCIF:text>
</mmCIF:atom_sites_footnote>
<mmCIF:atom_sites_footnote id="5">
<mmCIF:text> The positions of these water molecules correlate with
alternative orientations of amino-acid side chains that
do not correlate with alternative orientations of the
inhibitor.</mmCIF:text>
</mmCIF:atom_sites_footnote>
</mmCIF:atom_sites_footnoteCategory>
The text of the footnote. Footnotes are used to describe
an atom site or a group of atom sites in the ATOM_SITE list.
For example, footnotes may be used to indicate atoms for which
the electron density is very weak, or atoms for which static
disorder has been modelled.
A code that identifies the footnote.
a
b
1
2
Data items in the ATOM_TYPE category record details about the
properties of the atoms that occupy the atom sites, such as the
atomic scattering factors.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:atom_typeCategory>
<mmCIF:atom_type symbol="C">
<mmCIF:oxidation_number>0</mmCIF:oxidation_number>
<mmCIF:scat_Cromer_Mann_a1>2.31000</mmCIF:scat_Cromer_Mann_a1>
<mmCIF:scat_Cromer_Mann_a2>20.8439</mmCIF:scat_Cromer_Mann_a2>
<mmCIF:scat_Cromer_Mann_a3>1.02000</mmCIF:scat_Cromer_Mann_a3>
<mmCIF:scat_Cromer_Mann_a4>10.2075</mmCIF:scat_Cromer_Mann_a4>
<mmCIF:scat_Cromer_Mann_b1>1.58860</mmCIF:scat_Cromer_Mann_b1>
<mmCIF:scat_Cromer_Mann_b2>0.568700</mmCIF:scat_Cromer_Mann_b2>
<mmCIF:scat_Cromer_Mann_b3>0.865000</mmCIF:scat_Cromer_Mann_b3>
<mmCIF:scat_Cromer_Mann_b4>51.6512</mmCIF:scat_Cromer_Mann_b4>
<mmCIF:scat_Cromer_Mann_c>0.21560</mmCIF:scat_Cromer_Mann_c>
</mmCIF:atom_type>
<mmCIF:atom_type symbol="N">
<mmCIF:oxidation_number>0</mmCIF:oxidation_number>
<mmCIF:scat_Cromer_Mann_a1>12.2126</mmCIF:scat_Cromer_Mann_a1>
<mmCIF:scat_Cromer_Mann_a2>0.005700</mmCIF:scat_Cromer_Mann_a2>
<mmCIF:scat_Cromer_Mann_a3>3.13220</mmCIF:scat_Cromer_Mann_a3>
<mmCIF:scat_Cromer_Mann_a4>9.89330</mmCIF:scat_Cromer_Mann_a4>
<mmCIF:scat_Cromer_Mann_b1>2.01250</mmCIF:scat_Cromer_Mann_b1>
<mmCIF:scat_Cromer_Mann_b2>28.9975</mmCIF:scat_Cromer_Mann_b2>
<mmCIF:scat_Cromer_Mann_b3>1.16630</mmCIF:scat_Cromer_Mann_b3>
<mmCIF:scat_Cromer_Mann_b4>0.582600</mmCIF:scat_Cromer_Mann_b4>
<mmCIF:scat_Cromer_Mann_c>-11.529</mmCIF:scat_Cromer_Mann_c>
</mmCIF:atom_type>
<mmCIF:atom_type symbol="O">
<mmCIF:oxidation_number>0</mmCIF:oxidation_number>
<mmCIF:scat_Cromer_Mann_a1>3.04850</mmCIF:scat_Cromer_Mann_a1>
<mmCIF:scat_Cromer_Mann_a2>13.2771</mmCIF:scat_Cromer_Mann_a2>
<mmCIF:scat_Cromer_Mann_a3>2.28680</mmCIF:scat_Cromer_Mann_a3>
<mmCIF:scat_Cromer_Mann_a4>5.70110</mmCIF:scat_Cromer_Mann_a4>
<mmCIF:scat_Cromer_Mann_b1>1.54630</mmCIF:scat_Cromer_Mann_b1>
<mmCIF:scat_Cromer_Mann_b2>0.323900</mmCIF:scat_Cromer_Mann_b2>
<mmCIF:scat_Cromer_Mann_b3>0.867000</mmCIF:scat_Cromer_Mann_b3>
<mmCIF:scat_Cromer_Mann_b4>32.9089</mmCIF:scat_Cromer_Mann_b4>
<mmCIF:scat_Cromer_Mann_c>0.250800</mmCIF:scat_Cromer_Mann_c>
</mmCIF:atom_type>
<mmCIF:atom_type symbol="S">
<mmCIF:oxidation_number>0</mmCIF:oxidation_number>
<mmCIF:scat_Cromer_Mann_a1>6.90530</mmCIF:scat_Cromer_Mann_a1>
<mmCIF:scat_Cromer_Mann_a2>1.46790</mmCIF:scat_Cromer_Mann_a2>
<mmCIF:scat_Cromer_Mann_a3>5.20340</mmCIF:scat_Cromer_Mann_a3>
<mmCIF:scat_Cromer_Mann_a4>22.2151</mmCIF:scat_Cromer_Mann_a4>
<mmCIF:scat_Cromer_Mann_b1>1.43790</mmCIF:scat_Cromer_Mann_b1>
<mmCIF:scat_Cromer_Mann_b2>0.253600</mmCIF:scat_Cromer_Mann_b2>
<mmCIF:scat_Cromer_Mann_b3>1.58630</mmCIF:scat_Cromer_Mann_b3>
<mmCIF:scat_Cromer_Mann_b4>56.1720</mmCIF:scat_Cromer_Mann_b4>
<mmCIF:scat_Cromer_Mann_c>0.866900</mmCIF:scat_Cromer_Mann_c>
</mmCIF:atom_type>
<mmCIF:atom_type symbol="CL">
<mmCIF:oxidation_number>-1</mmCIF:oxidation_number>
<mmCIF:scat_Cromer_Mann_a1>18.2915</mmCIF:scat_Cromer_Mann_a1>
<mmCIF:scat_Cromer_Mann_a2>0.006600</mmCIF:scat_Cromer_Mann_a2>
<mmCIF:scat_Cromer_Mann_a3>7.20840</mmCIF:scat_Cromer_Mann_a3>
<mmCIF:scat_Cromer_Mann_a4>1.17170</mmCIF:scat_Cromer_Mann_a4>
<mmCIF:scat_Cromer_Mann_b1>6.53370</mmCIF:scat_Cromer_Mann_b1>
<mmCIF:scat_Cromer_Mann_b2>19.5424</mmCIF:scat_Cromer_Mann_b2>
<mmCIF:scat_Cromer_Mann_b3>2.33860</mmCIF:scat_Cromer_Mann_b3>
<mmCIF:scat_Cromer_Mann_b4>60.4486</mmCIF:scat_Cromer_Mann_b4>
<mmCIF:scat_Cromer_Mann_c>-16.378</mmCIF:scat_Cromer_Mann_c>
</mmCIF:atom_type>
</mmCIF:atom_typeCategory>
Example 2 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
<mmCIF:atom_typeCategory>
<mmCIF:atom_type symbol="C">
<mmCIF:number_in_cell>72</mmCIF:number_in_cell>
<mmCIF:oxidation_number>0</mmCIF:oxidation_number>
<mmCIF:scat_dispersion_imag>.009</mmCIF:scat_dispersion_imag>
<mmCIF:scat_dispersion_real>.017</mmCIF:scat_dispersion_real>
<mmCIF:scat_source>International_Tables_Vol_IV_Table_2.2B</mmCIF:scat_source>
</mmCIF:atom_type>
<mmCIF:atom_type symbol="H">
<mmCIF:number_in_cell>100</mmCIF:number_in_cell>
<mmCIF:oxidation_number>0</mmCIF:oxidation_number>
<mmCIF:scat_dispersion_imag>0</mmCIF:scat_dispersion_imag>
<mmCIF:scat_dispersion_real>0</mmCIF:scat_dispersion_real>
<mmCIF:scat_source>International_Tables_Vol_IV_Table_2.2B</mmCIF:scat_source>
</mmCIF:atom_type>
<mmCIF:atom_type symbol="O">
<mmCIF:number_in_cell>12</mmCIF:number_in_cell>
<mmCIF:oxidation_number>0</mmCIF:oxidation_number>
<mmCIF:scat_dispersion_imag>.032</mmCIF:scat_dispersion_imag>
<mmCIF:scat_dispersion_real>.047</mmCIF:scat_dispersion_real>
<mmCIF:scat_source>International_Tables_Vol_IV_Table_2.2B</mmCIF:scat_source>
</mmCIF:atom_type>
<mmCIF:atom_type symbol="N">
<mmCIF:number_in_cell>4</mmCIF:number_in_cell>
<mmCIF:oxidation_number>0</mmCIF:oxidation_number>
<mmCIF:scat_dispersion_imag>.018</mmCIF:scat_dispersion_imag>
<mmCIF:scat_dispersion_real>.029</mmCIF:scat_dispersion_real>
<mmCIF:scat_source>International_Tables_Vol_IV_Table_2.2B</mmCIF:scat_source>
</mmCIF:atom_type>
</mmCIF:atom_typeCategory>
Mass percentage of this atom type derived from chemical analysis.
A description of the atom(s) designated by this atom type. In
most cases, this is the element name and oxidation state of
a single atom species. For disordered or nonstoichiometric
structures it will describe a combination of atom species.
deuterium
0.34Fe+0.66Ni
Total number of atoms of this atom type in the unit cell.
Formal oxidation state of this atom type in the structure.
The effective intramolecular bonding radius in angstroms
of this atom type.
The effective intermolecular bonding radius in angstroms
of this atom type.
The Cromer-Mann scattering-factor coefficient a1 used to
calculate the scattering factors for this atom type.
Ref: International Tables for X-ray Crystallography (1974).
Vol. IV, Table 2.2B
or: International Tables for Crystallography (2004). Vol. C,
Tables 6.1.1.4 and 6.1.1.5.
The Cromer-Mann scattering-factor coefficient a2 used to
calculate the scattering factors for this atom type.
Ref: International Tables for X-ray Crystallography (1974).
Vol. IV, Table 2.2B
or: International Tables for Crystallography (2004). Vol. C,
Tables 6.1.1.4 and 6.1.1.5.
The Cromer-Mann scattering-factor coefficient a3 used to
calculate the scattering factors for this atom type.
Ref: International Tables for X-ray Crystallography (1974).
Vol. IV, Table 2.2B
or: International Tables for Crystallography (2004). Vol. C,
Tables 6.1.1.4 and 6.1.1.5.
The Cromer-Mann scattering-factor coefficient a4 used to
calculate the scattering factors for this atom type.
Ref: International Tables for X-ray Crystallography (1974).
Vol. IV, Table 2.2B
or: International Tables for Crystallography (2004). Vol. C,
Tables 6.1.1.4 and 6.1.1.5.
The Cromer-Mann scattering-factor coefficient b1 used to
calculate the scattering factors for this atom type.
Ref: International Tables for X-ray Crystallography (1974).
Vol. IV, Table 2.2B
or: International Tables for Crystallography (2004). Vol. C,
Tables 6.1.1.4 and 6.1.1.5.
The Cromer-Mann scattering-factor coefficient b2 used to
calculate the scattering factors for this atom type.
Ref: International Tables for X-ray Crystallography (1974).
Vol. IV, Table 2.2B
or: International Tables for Crystallography (2004). Vol. C,
Tables 6.1.1.4 and 6.1.1.5.
The Cromer-Mann scattering-factor coefficient b3 used to
calculate the scattering factors for this atom type.
Ref: International Tables for X-ray Crystallography (1974).
Vol. IV, Table 2.2B
or: International Tables for Crystallography (2004). Vol. C,
Tables 6.1.1.4 and 6.1.1.5.
The Cromer-Mann scattering-factor coefficient b4 used to
calculate the scattering factors for this atom type.
Ref: International Tables for X-ray Crystallography (1974).
Vol. IV, Table 2.2B
or: International Tables for Crystallography (2004). Vol. C,
Tables 6.1.1.4 and 6.1.1.5.
The Cromer-Mann scattering-factor coefficient c used to
calculate the scattering factors for this atom type.
Ref: International Tables for X-ray Crystallography (1974).
Vol. IV, Table 2.2B
or: International Tables for Crystallography (2004). Vol. C,
Tables 6.1.1.4 and 6.1.1.5.
The imaginary component of the anomalous-dispersion
scattering factor, f'', in electrons for this atom type and
the radiation identified by attribute id in category diffrn_radiation_wavelength.
The real component of the anomalous-dispersion
scattering factor, f', in electrons for this atom type and
the radiation identified by attribute id in category diffrn_radiation_wavelength.
Reference to the source of the real and imaginary dispersion
corrections for scattering factors used for this atom type.
International Tables Vol. IV Table 2.3.1
The bound coherent scattering length in femtometres for the
atom type at the isotopic composition used for the diffraction
experiment.
Reference to the source of the scattering factors or scattering
lengths used for this atom type.
International Tables Vol. IV Table 2.4.6B
A table of scattering factors as a function of sin theta over
lambda. This table should be well commented to indicate the
items present. Regularly formatted lists are strongly
recommended.
The code used to identify the atom species (singular or plural)
representing this atom type. Normally this code is the element
symbol. The code may be composed of any character except
an underscore with the additional proviso that digits designate
an oxidation state and must be followed by a + or - character.
C
Cu2+
H(SDS)
dummy
FeNi
Data items in the AUDIT category record details about the
creation and subsequent updating of the data block.
Note that these items apply only to the creation and updating of
the data block, and should not be confused with the data items
in the JOURNAL category that record different stages in the
publication of the material in the data block.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:auditCategory>
<mmCIF:audit revision_id="1">
<mmCIF:creation_date>1992-12-08</mmCIF:creation_date>
<mmCIF:creation_method> Created by hand from PDB entry 5HVP, from the J. Biol.
Chem. paper describing this structure and from
laboratory records</mmCIF:creation_method>
<mmCIF:update_record> 1992-12-09 adjusted to reflect comments from B. McKeever
1992-12-10 adjusted to reflect comments from H. Berman
1992-12-12 adjusted to reflect comments from K. Watenpaugh</mmCIF:update_record>
</mmCIF:audit>
</mmCIF:auditCategory>
Example 2 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
A date that the data block was created. The date format is
yyyy-mm-dd.
1990-07-12
A description of how data were entered into the data block.
spawned by the program QBEE
A record of any changes to the data block. The update format is
a date (yyyy-mm-dd) followed by a description of the changes.
The latest update entry is added to the bottom of this record.
1990-07-15 Updated by the Co-editor
The value of attribute revision_id in category audit must uniquely identify a record
in the AUDIT list.
rev1
Data items in the AUDIT_AUTHOR category record details about
the author(s) of the data block.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:audit_authorCategory>
<mmCIF:audit_author name="Fitzgerald, Paula M.D.">
<mmCIF:address> Department of Biophysical Chemistry
Merck Research Laboratories
P. O. Box 2000, Ry80M203
Rahway, New Jersey 07065
USA</mmCIF:address>
</mmCIF:audit_author>
<mmCIF:audit_author name="McKeever, Brian M.">
<mmCIF:address> Department of Biophysical Chemistry
Merck Research Laboratories
P. O. Box 2000, Ry80M203
Rahway, New Jersey 07065
USA</mmCIF:address>
</mmCIF:audit_author>
<mmCIF:audit_author name="Van Middlesworth, J.F.">
<mmCIF:address> Department of Biophysical Chemistry
Merck Research Laboratories
P. O. Box 2000, Ry80M203
Rahway, New Jersey 07065
USA</mmCIF:address>
</mmCIF:audit_author>
<mmCIF:audit_author name="Springer, James P.">
<mmCIF:address> Department of Biophysical Chemistry
Merck Research Laboratories
P. O. Box 2000, Ry80M203
Rahway, New Jersey 07065
USA</mmCIF:address>
</mmCIF:audit_author>
</mmCIF:audit_authorCategory>
The address of an author of this data block. If there are
multiple authors, attribute address in category audit_author is looped with
attribute name in category audit_author.
Department
Institute
Street
City and postcode
COUNTRY
The name of an author of this data block. If there are multiple
authors, _audit_author.name is looped with _audit_author.address.
The family name(s), followed by a comma and including any
dynastic components, precedes the first name(s) or initial(s).
Bleary, Percival R.
O'Neil, F.K.
Van den Bossche, G.
Yang, D.-L.
Simonov, Yu.A
Data items in the AUDIT_CONFORM category describe the
dictionary versions against which the data names appearing in
the current data block are conformant.
Example 1 - any file conforming to the current CIF core dictionary.
<mmCIF:audit_conformCategory>
<mmCIF:audit_conform dict_name="cif_core.dic" dict_version="2.3.1">
<mmCIF:dict_location>ftp://ftp.iucr.org/pub/cif_core.2.3.1.dic</mmCIF:dict_location>
</mmCIF:audit_conform>
</mmCIF:audit_conformCategory>
A file name or uniform resource locator (URL) for the
dictionary to which the current data block conforms.
The string identifying the highest-level dictionary defining
data names used in this file.
The version number of the dictionary to which the current
data block conforms.
Data items in the AUDIT_CONTACT_AUTHOR category record details
about the name and address of the author to be contacted
concerning the content of this data block.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:audit_contact_authorCategory>
<mmCIF:audit_contact_author name="Fitzgerald, Paula M.D.">
<mmCIF:address> Department of Biophysical Chemistry
Merck Research Laboratories
PO Box 2000, Ry80M203
Rahway, New Jersey 07065
USA</mmCIF:address>
<mmCIF:email>paula_fitzgerald@merck.com</mmCIF:email>
<mmCIF:fax>1(908)5946645</mmCIF:fax>
<mmCIF:phone>1(908)5945510</mmCIF:phone>
</mmCIF:audit_contact_author>
</mmCIF:audit_contact_authorCategory>
The mailing address of the author of the data block to whom
correspondence should be addressed.
Department
Institute
Street
City and postcode
COUNTRY
The electronic mail address of the author of the data block to
whom correspondence should be addressed, in a form recognizable
to international networks. The format of e-mail
addresses is given in Section 3.4, Address Specification, of
Internet Message Format, RFC 2822, P. Resnick (Editor),
Network Standards Group, April 2001.
name@host.domain.country
bm@iucr.org
The facsimile telephone number of the author of the data
block to whom correspondence should be addressed.
The recommended style starts with the international dialing
prefix, followed by the area code in parentheses, followed by the
local number with no spaces.
12(34)9477334
12()349477334
The telephone number of the author of the data block to whom
correspondence should be addressed.
The recommended style starts with the international dialing
prefix, followed by the area code in parentheses, followed by the
local number and any extension number prefixed by 'x',
with no spaces.
12(34)9477330
12()349477330
12(34)9477330x5543
The name of the author of the data block to whom correspondence
should be addressed.
The family name(s), followed by a comma and including any
dynastic components, precedes the first name(s) or initial(s).
Bleary, Percival R.
O'Neil, F.K.
Van den Bossche, G.
Yang, D.-L.
Simonov, Yu.A
Data items in the AUDIT_LINK category record details about the
relationships between data blocks in the current CIF.
Example 1 - multiple structure paper, as illustrated
in A Guide to CIF for Authors (1995). IUCr: Chester.
<mmCIF:audit_linkCategory>
<mmCIF:audit_link block_code="morA_pub" block_description="discursive text of paper with two structures"></mmCIF:audit_link>
<mmCIF:audit_link block_code="morA_(1)" block_description="structure 1 of 2"></mmCIF:audit_link>
<mmCIF:audit_link block_code="morA_(2)" block_description="structure 2 of 2"></mmCIF:audit_link>
</mmCIF:audit_linkCategory>
Example 2 - example file for the one-dimensional incommensurately
modulated structure of K~2~SeO~4~.
<mmCIF:audit_linkCategory>
<mmCIF:audit_link block_code="KSE_PUB" block_description="publication details"></mmCIF:audit_link>
<mmCIF:audit_link block_code="KSE_COM" block_description="experimental data common to ref./mod. structures"></mmCIF:audit_link>
<mmCIF:audit_link block_code="KSE_REF" block_description="reference structure"></mmCIF:audit_link>
<mmCIF:audit_link block_code="KSE_MOD" block_description="modulated structure"></mmCIF:audit_link>
</mmCIF:audit_linkCategory>
The value of attribute code in category audit_block associated with a data block
in the current file related to the current data block. The
special value '.' may be used to refer to the current data
block for completeness.
A textual description of the relationship of the referenced
data block to the current one.
Data items in the CELL category record details about the
crystallographic cell parameters.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:cellCategory>
<mmCIF:cell entry_id="5HVP">
<mmCIF:angle_alpha>90.00</mmCIF:angle_alpha>
<mmCIF:angle_beta>90.00</mmCIF:angle_beta>
<mmCIF:angle_gamma>90.00</mmCIF:angle_gamma>
<mmCIF:details> The cell parameters were refined every twenty frames during
data integration. The cell lengths given are the mean of
55 such refinements; the esds given are the root mean
square deviations of these 55 observations from that mean.</mmCIF:details>
<mmCIF:length_a>58.39</mmCIF:length_a>
<mmCIF:length_a_esd>0.05</mmCIF:length_a_esd>
<mmCIF:length_b>86.70</mmCIF:length_b>
<mmCIF:length_b_esd>0.12</mmCIF:length_b_esd>
<mmCIF:length_c>46.27</mmCIF:length_c>
<mmCIF:length_c_esd>0.06</mmCIF:length_c_esd>
<mmCIF:volume>234237</mmCIF:volume>
</mmCIF:cell>
</mmCIF:cellCategory>
Example 2 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
The number of the polymeric chains in a unit cell. In the case
of heteropolymers, Z is the number of occurrences of the most
populous chain.
This data item is provided for compatibility with the original
Protein Data Bank format, and only for that purpose.
Unit-cell angle alpha of the reported structure in degrees.
The standard uncertainty (estimated standard deviation)
of attribute angle_alpha in category cell.
Unit-cell angle beta of the reported structure in degrees.
The standard uncertainty (estimated standard deviation)
of attribute angle_beta in category cell.
Unit-cell angle gamma of the reported structure in degrees.
The standard uncertainty (estimated standard deviation)
of attribute angle_gamma in category cell.
A description of special aspects of the cell choice, noting
possible alternative settings.
pseudo-orthorhombic
standard setting from 45 deg rotation around c
The number of the formula units in the unit cell as specified
by _chemical_formula.structural, _chemical_formula.moiety or
attribute sum in category chemical_formula.
Unit-cell length a corresponding to the structure reported in
angstroms.
The standard uncertainty (estimated standard deviation)
of attribute length_a in category cell.
Unit-cell length b corresponding to the structure reported in
angstroms.
The standard uncertainty (estimated standard deviation)
of attribute length_b in category cell.
Unit-cell length c corresponding to the structure reported in
angstroms.
The standard uncertainty (estimated standard deviation)
of attribute length_c in category cell.
The angle (recip-alpha) defining the reciprocal cell in degrees.
(recip-alpha), (recip-alpha) and (recip-alpha) related to the
angles in the real cell by:
cos(recip-alpha)
= [cos(beta)*cos(gamma) - cos(alpha)]/[sin(beta)*sin(gamma)]
cos(recip-beta)
= [cos(gamma)*cos(alpha) - cos(beta)]/[sin(gamma)*sin(alpha)]
cos(recip-gamma)
= [cos(alpha)*cos(beta) - cos(gamma)]/[sin(alpha)*sin(beta)]
Ref: Buerger, M. J. (1942). X-ray Crystallography, p. 360.
New York: John Wiley & Sons Inc.
The estimated standard deviation of attribute reciprocal_angle_alpha in category cell.
The angle (recip-beta) defining the reciprocal cell in degrees.
(recip-alpha), (recip-alpha) and (recip-alpha) related to the
angles in the real cell by:
cos(recip-alpha)
= [cos(beta)*cos(gamma) - cos(alpha)]/[sin(beta)*sin(gamma)]
cos(recip-beta)
= [cos(gamma)*cos(alpha) - cos(beta)]/[sin(gamma)*sin(alpha)]
cos(recip-gamma)
= [cos(alpha)*cos(beta) - cos(gamma)]/[sin(alpha)*sin(beta)]
Ref: Buerger, M. J. (1942). X-ray Crystallography, p. 360.
New York: John Wiley & Sons Inc.
The estimated standard deviation of attribute reciprocal_angle_beta in category cell.
The angle (recip-gamma) defining the reciprocal cell in degrees.
(recip-alpha), (recip-alpha) and (recip-alpha) related to the
angles in the real cell by:
cos(recip-alpha)
= [cos(beta)*cos(gamma) - cos(alpha)]/[sin(beta)*sin(gamma)]
cos(recip-beta)
= [cos(gamma)*cos(alpha) - cos(beta)]/[sin(gamma)*sin(alpha)]
cos(recip-gamma)
= [cos(alpha)*cos(beta) - cos(gamma)]/[sin(alpha)*sin(beta)]
Ref: Buerger, M. J. (1942). X-ray Crystallography, p. 360.
New York: John Wiley & Sons Inc.
The estimated standard deviation of attribute reciprocal_angle_gamma in category cell.
The reciprocal cell length (recip-a) in inverse Angstroms.
(recip-a), (recip-b) and (recip-c) are related to the real cell
by the following equation:
recip-a = b*c*sin(alpha)/V
recip-b = c*a*sin(beta)/V
recip-c = a*b*sin(gamma)/V
where V is the cell volume.
Ref: Buerger, M. J. (1942). X-ray Crystallography, p. 360.
New York: John Wiley & Sons Inc.
The estimated standard deviation of attribute reciprocal_length_a in category cell.
The reciprocal cell length (recip-b) in inverse Angstroms.
(recip-a), (recip-b) and (recip-c) are related to the real cell
by the following equation:
recip-a = b*c*sin(alpha)/V
recip-b = c*a*sin(beta)/V
recip-c = a*b*sin(gamma)/V
where V is the cell volume.
Ref: Buerger, M. J. (1942). X-ray Crystallography, p. 360.
New York: John Wiley & Sons Inc.
The estimated standard deviation of attribute reciprocal_length_b in category cell.
The reciprocal cell length (recip-c) in inverse Angstroms.
(recip-a), (recip-b) and (recip-c) are related to the real cell
by the following equation:
recip-a = b*c*sin(alpha)/V
recip-b = c*a*sin(beta)/V
recip-c = a*b*sin(gamma)/V
where V is the cell volume.
Ref: Buerger, M. J. (1942). X-ray Crystallography, p. 360.
New York: John Wiley & Sons Inc.
The estimated standard deviation of attribute reciprocal_length_c in category cell.
Cell volume V in angstroms cubed.
V = a b c (1 - cos^2^~alpha~ - cos^2^~beta~ - cos^2^~gamma~
+ 2 cos~alpha~ cos~beta~ cos~gamma~)^1/2^
a = attribute length_a
in category cell b = attribute length_b
in category cell c = attribute length_c
in category cell alpha = attribute angle_alpha
in category cell beta = attribute angle_beta
in category cell gamma = attribute angle_gamma in category cell
The standard uncertainty (estimated standard deviation)
of attribute volume in category cell.
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the CELL_MEASUREMENT category record details
about the measurement of the crystallographic cell parameters.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:cell_measurementCategory>
<mmCIF:cell_measurement entry_id="5HVP">
<mmCIF:temp>293</mmCIF:temp>
<mmCIF:temp_esd>3</mmCIF:temp_esd>
<mmCIF:theta_max>31</mmCIF:theta_max>
<mmCIF:theta_min>11</mmCIF:theta_min>
<mmCIF:wavelength>1.54</mmCIF:wavelength>
</mmCIF:cell_measurement>
</mmCIF:cell_measurementCategory>
Example 2 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
The pressure in kilopascals at which the unit-cell parameters
were measured (not the pressure at which the sample was
synthesized).
The standard uncertainty (estimated standard deviation)
of attribute pressure in category cell_measurement.
Description of the radiation used to measure the unit-cell data.
See also attribute wavelength in category cell_measurement.
neutron
Cu K\a
synchrotron
The total number of reflections used to determine the unit cell.
These reflections may be specified as CELL_MEASUREMENT_REFLN
data items.
The temperature in kelvins at which the unit-cell parameters
were measured (not the temperature of synthesis).
The standard uncertainty (estimated standard deviation)
of attribute temp in category cell_measurement.
The maximum theta angle of reflections used to measure
the unit cell in degrees.
The minimum theta angle of reflections used to measure
the unit cell in degrees.
The wavelength in angstroms of the radiation used to measure
the unit cell. If this is not specified, the wavelength is
assumed to be that specified in the category
DIFFRN_RADIATION_WAVELENGTH.
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the CELL_MEASUREMENT_REFLN category record
details about the reflections used to determine the
crystallographic cell parameters.
The CELL_MEASUREMENT_REFLN data items would in general be used
only for diffractometer data.
Example 1 - extracted from the CAD-4 listing of Rb~2~S~2~O~6~ at room
temperature (unpublished).
<mmCIF:cell_measurement_reflnCategory>
<mmCIF:cell_measurement_refln index_h="-2" index_k="4" index_l="1">
<mmCIF:theta>8.67</mmCIF:theta>
</mmCIF:cell_measurement_refln>
<mmCIF:cell_measurement_refln index_h="0" index_k="3" index_l="2">
<mmCIF:theta>9.45</mmCIF:theta>
</mmCIF:cell_measurement_refln>
<mmCIF:cell_measurement_refln index_h="3" index_k="0" index_l="2">
<mmCIF:theta>9.46</mmCIF:theta>
</mmCIF:cell_measurement_refln>
<mmCIF:cell_measurement_refln index_h="-3" index_k="4" index_l="1">
<mmCIF:theta>8.93</mmCIF:theta>
</mmCIF:cell_measurement_refln>
<mmCIF:cell_measurement_refln index_h="-2" index_k="1" index_l="-2">
<mmCIF:theta>7.53</mmCIF:theta>
</mmCIF:cell_measurement_refln>
<mmCIF:cell_measurement_refln index_h="10" index_k="0" index_l="0">
<mmCIF:theta>23.77</mmCIF:theta>
</mmCIF:cell_measurement_refln>
<mmCIF:cell_measurement_refln index_h="0" index_k="10" index_l="0">
<mmCIF:theta>23.78</mmCIF:theta>
</mmCIF:cell_measurement_refln>
<mmCIF:cell_measurement_refln index_h="-5" index_k="4" index_l="1">
<mmCIF:theta>11.14</mmCIF:theta>
</mmCIF:cell_measurement_refln>
</mmCIF:cell_measurement_reflnCategory>
Theta angle for a reflection used for measurement of
the unit cell in degrees.
Miller index h of a reflection used for measurement of the unit
cell.
Miller index k of a reflection used for measurement of the unit
cell.
Miller index l of a reflection used for measurement of the unit
cell.
Data items in the CHEM_COMP category give details about each
of the chemical components from which the relevant chemical
structures can be constructed, such as name, mass or charge.
The related categories CHEM_COMP_ATOM, CHEM_COMP_BOND,
CHEM_COMP_ANGLE etc. describe the detailed geometry of these
chemical components.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:chem_compCategory>
<mmCIF:chem_comp id="phe">
<mmCIF:model_source>1987 Protin/Prolsq Ideals file</mmCIF:model_source>
<mmCIF:name>phenylalanine</mmCIF:name>
</mmCIF:chem_comp>
<mmCIF:chem_comp id="val">
<mmCIF:model_source>1987 Protin/Prolsq Ideals file</mmCIF:model_source>
<mmCIF:name>alanine</mmCIF:name>
</mmCIF:chem_comp>
</mmCIF:chem_compCategory>
The formula for the chemical component. Formulae are written
according to the following rules:
(1) Only recognized element symbols may be used.
(2) Each element symbol is followed by a 'count' number. A count
of '1' may be omitted.
(3) A space or parenthesis must separate each cluster of
(element symbol + count), but in general parentheses are
not used.
(4) The order of elements depends on whether carbon is
present or not. If carbon is present, the order should be:
C, then H, then the other elements in alphabetical order
of their symbol. If carbon is not present, the elements
are listed purely in alphabetic order of their symbol. This
is the 'Hill' system used by Chemical Abstracts.
C18 H19 N7 O8 S
Formula mass in daltons of the chemical component.
A description of special aspects of the generation of the
coordinates for the model of the component.
geometry idealized but not minimized
A pointer to an external reference file from which the atomic
description of the component is taken.
The source of the coordinates for the model of the component.
CSD entry ABCDEF
built using Quanta/Charmm
A description of the class of a nonstandard monomer if the
nonstandard monomer represents a modification of a
standard monomer.
iodinated base
phosphorylated amino acid
brominated base
modified amino acid
glycosylated amino acid
A description of special details of a nonstandard monomer.
'yes' indicates that this is a 'standard' monomer, 'no'
indicates that it is 'nonstandard'. Nonstandard monomers
should be described in more detail using the
_chem_comp.mon_nstd_parent, _chem_comp.mon_nstd_class and
attribute mon_nstd_details in category chem_comp data items.
The name of the parent monomer of the nonstandard monomer,
if the nonstandard monomer represents a modification of a
standard monomer.
tyrosine
cytosine
The identifier for the parent component of the nonstandard
component.
This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP
category.
The full name of the component.
alanine
valine
adenine
cytosine
The total number of atoms in the component.
The number of non-hydrogen atoms in the component.
For standard polymer components, the one-letter code for
the component. If there is not a standard one-letter code
for this component, or if this is a non-polymer
component, the one-letter code should be given as 'X'.
This code may be preceded by a '+' character to indicate
that the component is a modification of a standard
component.
alanine or adenine
A
ambiguous asparagine/aspartic acid
B
arginine
R
asparagine
N
aspartic acid
D
cysteine or cystine or cytosine
C
glutamine
Q
glutamic acid
E
ambiguous glutamine/glutamic acid
Z
glycine or guanine
G
histidine
H
isoleucine
I
leucine
L
lysine
K
methionine
M
phenylalanine
F
proline
P
serine
S
threonine or thymine
T
tryptophan
W
tyrosine
Y
valine
V
uracil
U
water
O
other
X
For standard polymer components, the three-letter code for
the component. If there is not a standard three-letter code
for this component, or if this is a non-polymer
component, the three-letter code should be given as 'UNK'.
This code may be preceded by a '+' character to indicate
that the component is a modification of a standard
component.
alanine
ALA
arginine
ARG
asparagine
ASN
aspartic acid
ASP
ambiguous asparagine/aspartic acid
ASX
cysteine
CYS
glutamine
GLN
glutamic acid
GLU
glycine
GLY
ambiguous glutamine/glutamic acid
GLX
histidine
HIS
isoleucine
ILE
leucine
LEU
lysine
LYS
methionine
MET
phenylalanine
PHE
proline
PRO
serine
SER
threonine
THR
tryptophan
TRP
tyrosine
TRY
valine
VAL
1-methyladenosine
1MA
5-methylcytosine
5MC
2(prime)-O-methylcytodine
OMC
1-methylguanosine
1MG
N(2)-methylguanosine
2MG
N(2)-dimethylguanosine
M2G
7-methylguanosine
7MG
2(prime)-O-methylguanosine
0MG
dihydrouridine
H2U
ribosylthymidine
5MU
pseudouridine
PSU
acetic acid
ACE
formic acid
FOR
water
HOH
other
UNK
For standard polymer components, the type of the monomer.
Note that monomers that will form polymers are of three types:
linking monomers, monomers with some type of N-terminal (or 5')
cap and monomers with some type of C-terminal (or 3') cap.
The value of attribute id in category chem_comp must uniquely identify each item in
the CHEM_COMP list.
For protein polymer entities, this is the three-letter code for
the amino acid.
For nucleic acid polymer entities, this is the one-letter code
for the base.
ala
val
A
C
Data items in the CHEM_COMP_ANGLE category record details about
angles in a chemical component. Angles are designated by three
atoms, with the second atom forming the vertex of the angle.
Target values may be specified as angles in degrees, as a
distance between the first and third atoms, or both.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:chem_comp_angleCategory>
<mmCIF:chem_comp_angle atom_id_1="N" atom_id_2="CA" atom_id_3="C" comp_id="phe">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CA" atom_id_2="C" atom_id_3="O" comp_id="phe">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CB" atom_id_2="CA" atom_id_3="C" comp_id="phe">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CB" atom_id_2="CA" atom_id_3="N" comp_id="phe">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CA" atom_id_2="CB" atom_id_3="CG" comp_id="phe">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CB" atom_id_2="CG" atom_id_3="CD1" comp_id="phe">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CB" atom_id_2="CG" atom_id_3="CD2" comp_id="phe">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CD1" atom_id_2="CG" atom_id_3="CD2" comp_id="phe">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CG" atom_id_2="CD1" atom_id_3="CE1" comp_id="phe">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CD1" atom_id_2="CE1" atom_id_3="CZ" comp_id="phe">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CE1" atom_id_2="CZ" atom_id_3="CE2" comp_id="phe">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CZ" atom_id_2="CE2" atom_id_3="CD2" comp_id="phe">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CG" atom_id_2="CD2" atom_id_3="CE2" comp_id="phe">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="N" atom_id_2="CA" atom_id_3="C" comp_id="val">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CA" atom_id_2="C" atom_id_3="O" comp_id="val">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CB" atom_id_2="CA" atom_id_3="C" comp_id="val">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CB" atom_id_2="CA" atom_id_3="N" comp_id="val">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CA" atom_id_2="CB" atom_id_3="CG1" comp_id="val">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CA" atom_id_2="CB" atom_id_3="CG2" comp_id="val">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
<mmCIF:chem_comp_angle atom_id_1="CG1" atom_id_2="CB" atom_id_3="CG2" comp_id="val">
<mmCIF:value_angle>xxx.xx</mmCIF:value_angle>
<mmCIF:value_dist>x.xx</mmCIF:value_dist>
</mmCIF:chem_comp_angle>
</mmCIF:chem_comp_angleCategory>
The value that should be taken as the target value for the angle
associated with the specified atoms, expressed in degrees.
The standard uncertainty (estimated standard deviation)
of attribute value_angle in category chem_comp_angle.
The value that should be taken as the target value for the angle
associated with the specified atoms, expressed as the distance
between the atoms specified by attribute atom_id_1 in category chem_comp_angle and
attribute atom_id_3 in category chem_comp_angle.
The standard uncertainty (estimated standard deviation)
of attribute value_dist in category chem_comp_angle.
The ID of the first of the three atoms that define the angle.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
The ID of the second of the three atoms that define the angle.
The second atom is taken to be the apex of the angle.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
The ID of the third of the three atoms that define the angle.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP
category.
Data items in the CHEM_COMP_ATOM category record details about
the atoms in a chemical component. Specifying the atomic
coordinates for the components in this category is an
alternative to specifying the structure of the component
via bonds, angles, planes etc. in the appropriate
CHEM_COMP subcategories.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:chem_comp_atomCategory>
<mmCIF:chem_comp_atom atom_id="N" comp_id="phe">
<mmCIF:model_Cartn_x>1.20134</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>0.84658</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>0.00000</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>main</mmCIF:substruct_code>
<mmCIF:type_symbol>N</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="CA" comp_id="phe">
<mmCIF:model_Cartn_x>0.00000</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>0.00000</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>0.00000</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>main</mmCIF:substruct_code>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="C" comp_id="phe">
<mmCIF:model_Cartn_x>-1.25029</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>0.88107</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>0.00000</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>main</mmCIF:substruct_code>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="O" comp_id="phe">
<mmCIF:model_Cartn_x>-2.18525</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>0.66029</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>-0.78409</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>main</mmCIF:substruct_code>
<mmCIF:type_symbol>O</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="CB" comp_id="phe">
<mmCIF:model_Cartn_x>0.00662</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>-1.03603</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>1.11081</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>side</mmCIF:substruct_code>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="CG" comp_id="phe">
<mmCIF:model_Cartn_x>0.03254</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>-0.49711</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>2.50951</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>side</mmCIF:substruct_code>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="CD1" comp_id="phe">
<mmCIF:model_Cartn_x>-1.15813</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>-0.12084</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>3.13467</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>side</mmCIF:substruct_code>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="CE1" comp_id="phe">
<mmCIF:model_Cartn_x>-1.15720</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>0.38038</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>4.42732</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>side</mmCIF:substruct_code>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="CZ" comp_id="phe">
<mmCIF:model_Cartn_x>0.05385</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>0.51332</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>5.11032</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>side</mmCIF:substruct_code>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="CE2" comp_id="phe">
<mmCIF:model_Cartn_x>1.26137</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>0.11613</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>4.50975</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>side</mmCIF:substruct_code>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="CD2" comp_id="phe">
<mmCIF:model_Cartn_x>1.23668</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>-0.38351</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>3.20288</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>side</mmCIF:substruct_code>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="N" comp_id="val">
<mmCIF:model_Cartn_x>1.20134</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>0.84658</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>0.00000</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>main</mmCIF:substruct_code>
<mmCIF:type_symbol>N</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="CA" comp_id="val">
<mmCIF:model_Cartn_x>0.00000</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>0.00000</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>0.00000</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>main</mmCIF:substruct_code>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="C" comp_id="val">
<mmCIF:model_Cartn_x>-1.25029</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>0.88107</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>0.00000</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>main</mmCIF:substruct_code>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="O" comp_id="val">
<mmCIF:model_Cartn_x>-2.18525</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>0.66029</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>-0.78409</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>main</mmCIF:substruct_code>
<mmCIF:type_symbol>O</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="CB" comp_id="val">
<mmCIF:model_Cartn_x>0.05260</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>-0.99339</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>1.17429</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>side</mmCIF:substruct_code>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="CG1" comp_id="val">
<mmCIF:model_Cartn_x>-0.13288</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>-0.31545</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>2.52668</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>side</mmCIF:substruct_code>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
<mmCIF:chem_comp_atom atom_id="CG2" comp_id="val">
<mmCIF:model_Cartn_x>-0.94265</mmCIF:model_Cartn_x>
<mmCIF:model_Cartn_y>-2.12930</mmCIF:model_Cartn_y>
<mmCIF:model_Cartn_z>0.99811</mmCIF:model_Cartn_z>
<mmCIF:substruct_code>side</mmCIF:substruct_code>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chem_comp_atom>
</mmCIF:chem_comp_atomCategory>
An alternative identifier for the atom. This data item would be
used in cases where alternative nomenclatures exist for labelling
atoms in a group.
The net integer charge assigned to this atom. This is the
formal charge assignment normally found in chemical diagrams.
for an ammonium nitrogen
1
for a chloride ion
-1
The x component of the coordinates for this atom in this
component specified as orthogonal angstroms. The choice of
reference axis frame for the coordinates is arbitrary.
The set of coordinates input for the entity here is intended to
correspond to the atomic model used to generate restraints for
structure refinement, not to atom sites in the ATOM_SITE
list.
The standard uncertainty (estimated standard deviation)
of attribute model_Cartn_x in category chem_comp_atom.
The y component of the coordinates for this atom in this
component specified as orthogonal angstroms. The choice of
reference axis frame for the coordinates is arbitrary.
The set of coordinates input for the entity here is intended to
correspond to the atomic model used to generate restraints for
structure refinement, not to atom sites in the ATOM_SITE
list.
The standard uncertainty (estimated standard deviation)
of attribute model_Cartn_y in category chem_comp_atom.
The z component of the coordinates for this atom in this
component specified as orthogonal angstroms. The choice of
reference axis frame for the coordinates is arbitrary.
The set of coordinates input for the entity here is intended to
correspond to the atomic model used to generate restraints for
structure refinement, not to atom sites in the ATOM_SITE
list.
The standard uncertainty (estimated standard deviation)
of attribute model_Cartn_z in category chem_comp_atom.
The partial charge assigned to this atom.
This data item assigns the atom to a substructure of the
component, if appropriate.
This data item is a pointer to attribute symbol in category atom_type in the
ATOM_TYPE category.
The value of attribute atom_id in category chem_comp_atom must uniquely identify
each atom in each monomer in the CHEM_COMP_ATOM list.
The atom identifiers need not be unique over all atoms in the
data block; they need only be unique for each atom in a
component.
Note that this item need not be a number; it can be any unique
identifier.
This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP
category.
Data items in the CHEM_COMP_BOND category record details about
the bonds between atoms in a chemical component. Target values
may be specified as bond orders, as a distance between the two
atoms, or both.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:chem_comp_bondCategory>
<mmCIF:chem_comp_bond atom_id_1="N" atom_id_2="CA" comp_id="phe">
<mmCIF:value_order>sing</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="CA" atom_id_2="C" comp_id="phe">
<mmCIF:value_order>sing</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="C" atom_id_2="O" comp_id="phe">
<mmCIF:value_order>doub</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="CB" atom_id_2="CA" comp_id="phe">
<mmCIF:value_order>sing</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="CB" atom_id_2="CG" comp_id="phe">
<mmCIF:value_order>sing</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="CG" atom_id_2="CD1" comp_id="phe">
<mmCIF:value_order>arom</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="CD1" atom_id_2="CE1" comp_id="phe">
<mmCIF:value_order>arom</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="CE1" atom_id_2="CZ" comp_id="phe">
<mmCIF:value_order>arom</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="CZ" atom_id_2="CE2" comp_id="phe">
<mmCIF:value_order>arom</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="CE2" atom_id_2="CD2" comp_id="phe">
<mmCIF:value_order>arom</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="CD2" atom_id_2="CG" comp_id="phe">
<mmCIF:value_order>arom</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="N" atom_id_2="CA" comp_id="val">
<mmCIF:value_order>sing</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="CA" atom_id_2="C" comp_id="val">
<mmCIF:value_order>sing</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="C" atom_id_2="O" comp_id="val">
<mmCIF:value_order>doub</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="CB" atom_id_2="CA" comp_id="val">
<mmCIF:value_order>sing</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="CB" atom_id_2="CG1" comp_id="val">
<mmCIF:value_order>sing</mmCIF:value_order>
</mmCIF:chem_comp_bond>
<mmCIF:chem_comp_bond atom_id_1="CB" atom_id_2="CG2" comp_id="val">
<mmCIF:value_order>sing</mmCIF:value_order>
</mmCIF:chem_comp_bond>
</mmCIF:chem_comp_bondCategory>
The value that should be taken as the target for the chemical
bond associated with the specified atoms, expressed as a
distance.
The standard uncertainty (estimated standard deviation)
of attribute value_dist in category chem_comp_bond.
The value that should be taken as the target for the chemical
bond associated with the specified atoms, expressed as a bond
order.
The ID of the first of the two atoms that define the bond.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
The ID of the second of the two atoms that define the bond.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP
category.
Data items in the CHEM_COMP_CHIR category provide details about
the chiral centres in a chemical component. The atoms bonded
to the chiral atom are specified in the CHEM_COMP_CHIR_ATOM
category.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:chem_comp_chirCategory>
<mmCIF:chem_comp_chir comp_id="phe" id="phe1">
<mmCIF:atom_id>CA</mmCIF:atom_id>
</mmCIF:chem_comp_chir>
<mmCIF:chem_comp_chir comp_id="val" id="val1">
<mmCIF:atom_id>CA</mmCIF:atom_id>
</mmCIF:chem_comp_chir>
</mmCIF:chem_comp_chirCategory>
The chiral configuration of the atom that is a chiral centre.
The ID of the atom that is a chiral centre.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
The total number of atoms bonded to the atom specified by
attribute atom_id in category chem_comp_chir.
The number of non-hydrogen atoms bonded to the atom specified by
attribute atom_id in category chem_comp_chir.
A flag to indicate whether a chiral volume should match the
standard value in both magnitude and sign, or in magnitude only.
The chiral volume, V~c~, for chiral centres that involve a chiral
atom bonded to three non-hydrogen atoms and one hydrogen atom.
V~c~ = V1 * (V2 X V3)
V1 = the vector distance from the atom specified by
attribute atom_id in category chem_comp_chir to the first atom in the
CHEM_COMP_CHIR_ATOM list
V2 = the vector distance from the atom specified by
attribute atom_id in category chem_comp_chir to the second atom in the
CHEM_COMP_CHIR_ATOM list
V3 = the vector distance from the atom specified by
attribute atom_id in category chem_comp_chir to the third atom in the
CHEM_COMP_CHIR_ATOM list
* = the vector dot product
X = the vector cross product
The standard uncertainty (estimated standard deviation)
of attribute volume_three in category chem_comp_chir.
This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP
category.
The value of attribute id in category chem_comp_chir must uniquely identify a record
in the CHEM_COMP_CHIR list.
Data items in the CHEM_COMP_CHIR_ATOM category enumerate the
atoms bonded to a chiral atom within a chemical component.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:chem_comp_chir_atomCategory>
<mmCIF:chem_comp_chir_atom atom_id="N" chir_id="1" comp_id="phe"></mmCIF:chem_comp_chir_atom>
<mmCIF:chem_comp_chir_atom atom_id="C" chir_id="1" comp_id="phe"></mmCIF:chem_comp_chir_atom>
<mmCIF:chem_comp_chir_atom atom_id="CB" chir_id="1" comp_id="phe"></mmCIF:chem_comp_chir_atom>
<mmCIF:chem_comp_chir_atom atom_id="N" chir_id="1" comp_id="val"></mmCIF:chem_comp_chir_atom>
<mmCIF:chem_comp_chir_atom atom_id="C" chir_id="1" comp_id="val"></mmCIF:chem_comp_chir_atom>
<mmCIF:chem_comp_chir_atom atom_id="CB" chir_id="1" comp_id="val"></mmCIF:chem_comp_chir_atom>
</mmCIF:chem_comp_chir_atomCategory>
The standard uncertainty (estimated standard deviation)
of the position of this atom from the plane defined by
all of the atoms in the plane.
The ID of an atom bonded to the chiral atom.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
This data item is a pointer to attribute id in category chem_comp_chir in the
CHEM_COMP_CHIR category.
This data item is a pointer to attribute id in category chem_comp in the
CHEM_COMP category.
Data items in the CHEM_COMP_LINK category give details about
the links between chemical components.
A description of special aspects of a link between
chemical components in the structure.
The type of the first of the two components joined by the
link.
This data item is a pointer to attribute type in category chem_comp in the CHEM_COMP
category.
The type of the second of the two components joined by the
link.
This data item is a pointer to attribute type in category chem_comp in the CHEM_COMP
category.
This data item is a pointer to attribute id in category chem_link in the
CHEM_LINK category.
Data items in the CHEM_COMP_PLANE category provide identifiers
for the planes in a chemical component. The atoms in the plane
are specified in the CHEM_COMP_PLANE_ATOM category.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:chem_comp_planeCategory>
<mmCIF:chem_comp_plane comp_id="phe" id="phe1"></mmCIF:chem_comp_plane>
</mmCIF:chem_comp_planeCategory>
The total number of atoms in the plane.
The number of non-hydrogen atoms in the plane.
This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP
category.
The value of attribute id in category chem_comp_plane must uniquely identify a record
in the CHEM_COMP_PLANE list.
Data items in the CHEM_COMP_PLANE_ATOM category enumerate the
atoms in a plane within a chemical component.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:chem_comp_plane_atomCategory>
<mmCIF:chem_comp_plane_atom atom_id="CB" comp_id="phe" plane_id="phe1"></mmCIF:chem_comp_plane_atom>
<mmCIF:chem_comp_plane_atom atom_id="CG" comp_id="phe" plane_id="phe1"></mmCIF:chem_comp_plane_atom>
<mmCIF:chem_comp_plane_atom atom_id="CD1" comp_id="phe" plane_id="phe1"></mmCIF:chem_comp_plane_atom>
<mmCIF:chem_comp_plane_atom atom_id="CE1" comp_id="phe" plane_id="phe1"></mmCIF:chem_comp_plane_atom>
<mmCIF:chem_comp_plane_atom atom_id="CZ" comp_id="phe" plane_id="phe1"></mmCIF:chem_comp_plane_atom>
<mmCIF:chem_comp_plane_atom atom_id="CE2" comp_id="phe" plane_id="phe1"></mmCIF:chem_comp_plane_atom>
<mmCIF:chem_comp_plane_atom atom_id="CD2" comp_id="phe" plane_id="phe1"></mmCIF:chem_comp_plane_atom>
</mmCIF:chem_comp_plane_atomCategory>
This data item is the standard deviation of the
out-of-plane distance for this atom.
The ID of an atom involved in the plane.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP
category.
This data item is a pointer to attribute id in category chem_comp_plane in the
CHEM_COMP_PLANE category.
Data items in the CHEM_COMP_TOR category record details about
the torsion angles in a chemical component. As torsion angles
can have more than one target value, the target values are
specified in the CHEM_COMP_TOR_VALUE category.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:chem_comp_torCategory>
<mmCIF:chem_comp_tor comp_id="phe" id="phe_chi1">
<mmCIF:atom_id_1>N</mmCIF:atom_id_1>
<mmCIF:atom_id_2>CA</mmCIF:atom_id_2>
<mmCIF:atom_id_3>CB</mmCIF:atom_id_3>
<mmCIF:atom_id_4>CG</mmCIF:atom_id_4>
</mmCIF:chem_comp_tor>
<mmCIF:chem_comp_tor comp_id="phe" id="phe_chi2">
<mmCIF:atom_id_1>CA</mmCIF:atom_id_1>
<mmCIF:atom_id_2>CB</mmCIF:atom_id_2>
<mmCIF:atom_id_3>CG</mmCIF:atom_id_3>
<mmCIF:atom_id_4>CD1</mmCIF:atom_id_4>
</mmCIF:chem_comp_tor>
<mmCIF:chem_comp_tor comp_id="phe" id="phe_ring1">
<mmCIF:atom_id_1>CB</mmCIF:atom_id_1>
<mmCIF:atom_id_2>CG</mmCIF:atom_id_2>
<mmCIF:atom_id_3>CD1</mmCIF:atom_id_3>
<mmCIF:atom_id_4>CE1</mmCIF:atom_id_4>
</mmCIF:chem_comp_tor>
<mmCIF:chem_comp_tor comp_id="phe" id="phe_ring2">
<mmCIF:atom_id_1>CB</mmCIF:atom_id_1>
<mmCIF:atom_id_2>CG</mmCIF:atom_id_2>
<mmCIF:atom_id_3>CD2</mmCIF:atom_id_3>
<mmCIF:atom_id_4>CE2</mmCIF:atom_id_4>
</mmCIF:chem_comp_tor>
<mmCIF:chem_comp_tor comp_id="phe" id="phe_ring3">
<mmCIF:atom_id_1>CG</mmCIF:atom_id_1>
<mmCIF:atom_id_2>CD1</mmCIF:atom_id_2>
<mmCIF:atom_id_3>CE1</mmCIF:atom_id_3>
<mmCIF:atom_id_4>CZ</mmCIF:atom_id_4>
</mmCIF:chem_comp_tor>
<mmCIF:chem_comp_tor comp_id="phe" id="phe_ring4">
<mmCIF:atom_id_1>CD1</mmCIF:atom_id_1>
<mmCIF:atom_id_2>CE1</mmCIF:atom_id_2>
<mmCIF:atom_id_3>CZ</mmCIF:atom_id_3>
<mmCIF:atom_id_4>CE2</mmCIF:atom_id_4>
</mmCIF:chem_comp_tor>
<mmCIF:chem_comp_tor comp_id="phe" id="phe_ring5">
<mmCIF:atom_id_1>CE1</mmCIF:atom_id_1>
<mmCIF:atom_id_2>CZ</mmCIF:atom_id_2>
<mmCIF:atom_id_3>CE2</mmCIF:atom_id_3>
<mmCIF:atom_id_4>CD2</mmCIF:atom_id_4>
</mmCIF:chem_comp_tor>
</mmCIF:chem_comp_torCategory>
The ID of the first of the four atoms that define the torsion
angle.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
The ID of the second of the four atoms that define the torsion
angle.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
The ID of the third of the four atoms that define the torsion
angle.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
The ID of the fourth of the four atoms that define the torsion
angle.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP
category.
The value of attribute id in category chem_comp_tor must uniquely identify a
record in the CHEM_COMP_TOR list.
Data items in the CHEM_COMP_TOR_VALUE category record details
about the target values for the torsion angles enumerated in the
CHEM_COMP_TOR list. Target values may be specified as angles
in degrees, as a distance between the first and fourth atoms, or
both.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:chem_comp_tor_valueCategory>
<mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_chi1">
<mmCIF:angle>-60.0</mmCIF:angle>
<mmCIF:dist>2.88</mmCIF:dist>
</mmCIF:chem_comp_tor_value>
<mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_chi1">
<mmCIF:angle>180.0</mmCIF:angle>
<mmCIF:dist>3.72</mmCIF:dist>
</mmCIF:chem_comp_tor_value>
<mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_chi1">
<mmCIF:angle>60.0</mmCIF:angle>
<mmCIF:dist>2.88</mmCIF:dist>
</mmCIF:chem_comp_tor_value>
<mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_chi2">
<mmCIF:angle>90.0</mmCIF:angle>
<mmCIF:dist>3.34</mmCIF:dist>
</mmCIF:chem_comp_tor_value>
<mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_chi2">
<mmCIF:angle>-90.0</mmCIF:angle>
<mmCIF:dist>3.34</mmCIF:dist>
</mmCIF:chem_comp_tor_value>
<mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_ring1">
<mmCIF:angle>180.0</mmCIF:angle>
<mmCIF:dist>3.75</mmCIF:dist>
</mmCIF:chem_comp_tor_value>
<mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_ring2">
<mmCIF:angle>180.0</mmCIF:angle>
<mmCIF:dist>3.75</mmCIF:dist>
</mmCIF:chem_comp_tor_value>
<mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_ring3">
<mmCIF:angle>0.0</mmCIF:angle>
<mmCIF:dist>2.80</mmCIF:dist>
</mmCIF:chem_comp_tor_value>
<mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_ring4">
<mmCIF:angle>0.0</mmCIF:angle>
<mmCIF:dist>2.80</mmCIF:dist>
</mmCIF:chem_comp_tor_value>
<mmCIF:chem_comp_tor_value comp_id="phe" tor_id="phe_ring5">
<mmCIF:angle>0.0</mmCIF:angle>
<mmCIF:dist>2.80</mmCIF:dist>
</mmCIF:chem_comp_tor_value>
</mmCIF:chem_comp_tor_valueCategory>
A value that should be taken as a potential target value for the
torsion angle associated with the specified atoms, expressed in
degrees.
The standard uncertainty (estimated standard deviation)
of attribute angle in category chem_comp_tor_value.
A value that should be taken as a potential target value for the
torsion angle associated with the specified atoms, expressed as
the distance between the atoms specified by
_chem_comp_tor.atom_id_1 and _chem_comp_tor.atom_id_4 in the
referenced record in the CHEM_COMP_TOR list. Note that the
torsion angle cannot be fully specified by a distance (for
instance, a torsion angle of -60 degree will yield the same
distance as a 60 degree angle). However, the distance
specification can be useful for refinement in situations
in which the angle is already close to the desired value.
The standard uncertainty (estimated standard deviation)
of attribute dist in category chem_comp_tor_value.
This data item is a pointer to attribute comp_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
This data item is a pointer to attribute id in category chem_comp_tor in the
CHEM_COMP_TOR category.
Data items in the CHEM_LINK category give details about
the links between chemical components.
A description of special aspects of a link between
chemical components in the structure.
The value of attribute id in category chem_link must uniquely identify each
item in the CHEM_LINK list.
peptide
oligosaccharide 1,4
DNA
Data items in the CHEM_LINK_ANGLE category record details
about angles in a link between chemical components.
Example 1 - Engh & Huber parameters [Acta Cryst. (1991), A47,
392-400] as interpreted by J. P. Priestle (1995). Consistent
Stereochemical Dictionaries for Refinement and Model
Building. CCP4 Daresbury Study Weekend,
DL-CONF-95-001, ISSN 1358-6254. Warrington: Daresbury
Laboratory.
<mmCIF:chem_link_angleCategory>
<mmCIF:chem_link_angle atom_id_1="N" atom_id_2="CA" atom_id_3="C" link_id="PEPTIDE">
<mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id>
<mmCIF:atom_2_comp_id>1</mmCIF:atom_2_comp_id>
<mmCIF:atom_3_comp_id>1</mmCIF:atom_3_comp_id>
<mmCIF:value_angle>111.2</mmCIF:value_angle>
<mmCIF:value_angle_esd>2.8</mmCIF:value_angle_esd>
</mmCIF:chem_link_angle>
<mmCIF:chem_link_angle atom_id_1="CA" atom_id_2="C" atom_id_3="O" link_id="PEPTIDE">
<mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id>
<mmCIF:atom_2_comp_id>1</mmCIF:atom_2_comp_id>
<mmCIF:atom_3_comp_id>1</mmCIF:atom_3_comp_id>
<mmCIF:value_angle>120.8</mmCIF:value_angle>
<mmCIF:value_angle_esd>1.7</mmCIF:value_angle_esd>
</mmCIF:chem_link_angle>
<mmCIF:chem_link_angle atom_id_1="CA" atom_id_2="C" atom_id_3="N" link_id="PEPTIDE">
<mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id>
<mmCIF:atom_2_comp_id>1</mmCIF:atom_2_comp_id>
<mmCIF:atom_3_comp_id>2</mmCIF:atom_3_comp_id>
<mmCIF:value_angle>116.2</mmCIF:value_angle>
<mmCIF:value_angle_esd>2.0</mmCIF:value_angle_esd>
</mmCIF:chem_link_angle>
<mmCIF:chem_link_angle atom_id_1="O" atom_id_2="C" atom_id_3="N" link_id="PEPTIDE">
<mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id>
<mmCIF:atom_2_comp_id>1</mmCIF:atom_2_comp_id>
<mmCIF:atom_3_comp_id>2</mmCIF:atom_3_comp_id>
<mmCIF:value_angle>123.0</mmCIF:value_angle>
<mmCIF:value_angle_esd>1.6</mmCIF:value_angle_esd>
</mmCIF:chem_link_angle>
<mmCIF:chem_link_angle atom_id_1="C" atom_id_2="N" atom_id_3="CA" link_id="PEPTIDE">
<mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id>
<mmCIF:atom_2_comp_id>2</mmCIF:atom_2_comp_id>
<mmCIF:atom_3_comp_id>2</mmCIF:atom_3_comp_id>
<mmCIF:value_angle>121.7</mmCIF:value_angle>
<mmCIF:value_angle_esd>1.8</mmCIF:value_angle_esd>
</mmCIF:chem_link_angle>
</mmCIF:chem_link_angleCategory>
This data item indicates whether atom 1 is found in the first
or the second of the two components connected by the link.
This data item indicates whether atom 2 is found in the first
or the second of the two components connected by the link.
This data item indicates whether atom 3 is found in the first
or the second of the two components connected by the link.
The value that should be taken as the target value for the angle
associated with the specified atoms, expressed in degrees.
The standard uncertainty (estimated standard deviation)
of attribute value_angle in category chem_link_angle.
The value that should be taken as the target value for the angle
associated with the specified atoms, expressed as the distance
between the atoms specified by attribute atom_id_1 in category chem_comp_angle and
attribute atom_id_3 in category chem_comp_angle.
The standard uncertainty (estimated standard deviation)
of attribute value_dist in category chem_comp_angle.
The ID of the first of the three atoms that define the angle.
An atom with this ID must exist in the component of the type
specified by attribute type_comp_1 in category chem_comp_link (or
attribute type_comp_2 in category chem_comp_link, where the appropriate data item
is indicated by the value of attribute atom_1_comp_id) in category chem_comp_angle.
The ID of the second of the three atoms that define the angle.
The second atom is taken to be the apex of the angle.
An atom with this ID must exist in the component of the type
specified by attribute type_comp_1 in category chem_comp_link (or
attribute type_comp_2 in category chem_comp_link, where the appropriate data item
is indicated by the value of attribute atom_2_comp_id) in category chem_comp_angle.
The ID of the third of the three atoms that define the angle.
An atom with this ID must exist in the component of the type
specified by attribute type_comp_1 in category chem_comp_link (or
attribute type_comp_2 in category chem_comp_link, where the appropriate data item
is indicated by the value of attribute atom_3_comp_id) in category chem_comp_angle.
This data item is a pointer to attribute id in category chem_link in the CHEM_LINK
category.
Data items in the CHEM_LINK_BOND category record details about
bonds in a link between components in the chemical structure.
Example 1 - Engh & Huber parameters [Acta Cryst. (1991), A47,
392-400] as interpreted by J. P. Priestle (1995). Consistent
Stereochemical Dictionaries for Refinement and Model
Building. CCP4 Daresbury Study Weekend,
DL-CONF-95-001, ISSN 1358-6254. Warrington: Daresbury
Laboratory.
<mmCIF:chem_link_bondCategory>
<mmCIF:chem_link_bond atom_id_1="N" atom_id_2="CA" link_id="PEPTIDE">
<mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id>
<mmCIF:atom_2_comp_id>1</mmCIF:atom_2_comp_id>
<mmCIF:value_dist>1.458</mmCIF:value_dist>
<mmCIF:value_dist_esd>0.019</mmCIF:value_dist_esd>
</mmCIF:chem_link_bond>
<mmCIF:chem_link_bond atom_id_1="CA" atom_id_2="C" link_id="PEPTIDE">
<mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id>
<mmCIF:atom_2_comp_id>1</mmCIF:atom_2_comp_id>
<mmCIF:value_dist>1.525</mmCIF:value_dist>
<mmCIF:value_dist_esd>0.021</mmCIF:value_dist_esd>
</mmCIF:chem_link_bond>
<mmCIF:chem_link_bond atom_id_1="C" atom_id_2="N" link_id="PEPTIDE">
<mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id>
<mmCIF:atom_2_comp_id>2</mmCIF:atom_2_comp_id>
<mmCIF:value_dist>1.329</mmCIF:value_dist>
<mmCIF:value_dist_esd>0.014</mmCIF:value_dist_esd>
</mmCIF:chem_link_bond>
<mmCIF:chem_link_bond atom_id_1="C" atom_id_2="O" link_id="PEPTIDE">
<mmCIF:atom_1_comp_id>1</mmCIF:atom_1_comp_id>
<mmCIF:atom_2_comp_id>1</mmCIF:atom_2_comp_id>
<mmCIF:value_dist>1.231</mmCIF:value_dist>
<mmCIF:value_dist_esd>0.020</mmCIF:value_dist_esd>
</mmCIF:chem_link_bond>
</mmCIF:chem_link_bondCategory>
This data item indicates whether atom 1 is found in the first
or the second of the two components connected by the link.
This data item indicates whether atom 2 is found in the first
or the second of the two chemical components connected by
the link.
The value that should be taken as the target for the chemical
bond associated with the specified atoms, expressed as a
distance.
The standard uncertainty (estimated standard deviation)
of attribute value_dist in category chem_link_bond.
The value that should be taken as the target for the chemical
bond associated with the specified atoms, expressed as a bond
order.
The ID of the first of the two atoms that define the bond.
As this data item does not point to a specific atom in a
specific chemical component, it is not a child in the
linkage sense.
The ID of the second of the two atoms that define the bond.
As this data item does not point to a specific atom in a
specific component, it is not a child in the linkage sense.
This data item is a pointer to attribute id in category chem_link in the CHEM_LINK
category.
Data items in the CHEM_LINK_CHIR category provide details about
the chiral centres in a link between two chemical components.
The atoms bonded to the chiral atom are specified in the
CHEM_LINK_CHIR_ATOM category.
This data item indicates whether the chiral atom is found in the
first or the second of the two components connected by the
link.
The chiral configuration of the atom that is a chiral centre.
The ID of the atom that is a chiral centre.
As this data item does not point to a specific atom in a
specific chemical component, it is not a child in the linkage
sense.
The total number of atoms bonded to the atom specified by
attribute atom_id in category chem_link_chir.
The number of non-hydrogen atoms bonded to the atom specified by
attribute atom_id in category chem_link_chir.
A flag to indicate whether a chiral volume should match the
standard value in both magnitude and sign, or in magnitude only.
The chiral volume, V(c), for chiral centres that involve a chiral
atom bonded to three non-hydrogen atoms and one hydrogen atom.
V~c~ = V1 * (V2 X V3)
V1 = the vector distance from the atom specified by
attribute atom_id in category chem_link_chir to the first atom in the
CHEM_LINK_CHIR_ATOM list
V2 = the vector distance from the atom specified by
attribute atom_id in category chem_link_chir to the second atom in the
CHEM_LINK_CHIR_ATOM list
V3 = the vector distance from the atom specified by
attribute atom_id in category chem_link_chir to the third atom in the
CHEM_LINK_CHIR_ATOM list
* = the vector dot product
X = the vector cross product
The standard uncertainty (estimated standard deviation)
of attribute volume_three in category chem_link_chir.
The value of attribute id in category chem_link_chir must uniquely identify a record
in the CHEM_LINK_CHIR list.
This data item is a pointer to attribute id in category chem_link in the CHEM_LINK
category.
Data items in the CHEM_LINK_CHIR_ATOM category enumerate the
atoms bonded to a chiral atom in a link between two
chemical components.
This data item indicates whether the atom bonded to a chiral
atom is found in the first or the second of the two components
connected by the link.
The standard uncertainty (estimated standard deviation)
of the position of this atom from the plane defined by
all of the atoms in the plane.
The ID of an atom bonded to the chiral atom.
As this data item does not point to a specific atom in a
specific chemical component, it is not a child in the linkage
sense.
This data item is a pointer to attribute id in category chem_link_chir in the
CHEM_LINK_CHIR category.
Data items in the CHEM_LINK_PLANE category provide identifiers
for the planes in a link between two chemical components.
The atoms in the plane are specified in the CHEM_LINK_PLANE_ATOM
category.
The total number of atoms in the plane.
The number of non-hydrogen atoms in the plane.
The value of attribute id in category chem_link_plane must uniquely identify a record
in the CHEM_LINK_PLANE list.
This data item is a pointer to attribute id in category chem_link in the CHEM_LINK
category.
Data items in the CHEM_LINK_PLANE_ATOM category enumerate the
atoms in a plane in a link between two chemical components.
This data item indicates whether the atom in a plane is found in
the first or the second of the two components connected by the
link.
The ID of an atom involved in the plane.
As this data item does not point to a specific atom in a
specific chemical component, it is not a child in the linkage
sense.
This data item is a pointer to attribute id in category chem_link_plane in the
CHEM_LINK_PLANE category.
Data items in the CHEM_LINK_TOR category record details about
the torsion angles in a link between two chemical components.
As torsion angles can have more than one target value, the
target values are specified in the CHEM_LINK_TOR_VALUE category.
This data item indicates whether atom 1 is found in the first
or the second of the two components connected by the link.
This data item indicates whether atom 2 is found in the first
or the second of the two components connected by the link.
This data item indicates whether atom 3 is found in the first
or the second of the two components connected by the link.
This data item indicates whether atom 4 is found in the first
or the second of the two components connected by the link.
The ID of the first of the four atoms that define the torsion
angle.
As this data item does not point to a specific atom in a
specific chemical component, it is not a child in the linkage
sense.
The ID of the second of the four atoms that define the torsion
angle.
As this data item does not point to a specific atom in a
specific chemical component, it is not a child in the linkage
sense.
The ID of the third of the four atoms that define the torsion
angle.
As this data item does not point to a specific atom in a
specific chemical component, it is not a child in the linkage
sense.
The ID of the fourth of the four atoms that define the torsion
angle.
As this data item does not point to a specific atom in a
specific chemical component, it is not a child in the linkage
sense.
The value of attribute id in category chem_link_tor must uniquely identify a
record in the CHEM_LINK_TOR list.
This data item is a pointer to attribute id in category chem_link in the CHEM_LINK
category.
Data items in the CHEM_LINK_TOR_VALUE category record details
about the target values for the torsion angles enumerated in the
CHEM_LINK_TOR list. Target values may be specified as angles
in degrees, as a distance between the first and fourth atoms, or
both.
A value that should be taken as a potential target value for the
torsion angle associated with the specified atoms, expressed in
degrees.
The standard uncertainty (estimated standard deviation)
of attribute angle in category chem_link_tor_value.
A value that should be taken as a potential target value for the
torsion angle associated with the specified atoms, expressed as
the distance between the atoms specified by
_chem_link_tor.atom_id_1 and _chem_link_tor.atom_id_4 in the
referenced record in the CHEM_LINK_TOR list. Note that the
torsion angle cannot be fully specified by a distance (for
instance, a torsion angle of -60 degree will yield the same
distance as a 60 degree angle). However, the distance
specification can be useful for refinement in situations in
which the angle is already close to the desired value.
The standard uncertainty (estimated standard deviation)
of attribute dist in category chem_link_tor_value.
This data item is a pointer to attribute id in category chem_link_tor in the
CHEM_LINK_TOR category.
Data items in the CHEMICAL category would not in general be
used in a macromolecular CIF. See instead the ENTITY data
items.
Data items in the CHEMICAL category record details about the
composition and chemical properties of the compounds. The
formula data items must agree with those that specify the
density, unit-cell and Z values.
Example 1 - based on data set 9597gaus of Alyea, Ferguson & Kannan
[Acta Cryst. (1996), C52, 765-767].
<mmCIF:chemicalCategory>
<mmCIF:chemical entry_id="9597gaus">
<mmCIF:name_systematic>trans-bis(tricyclohexylphosphine)tetracarbonylmolybdenum(0)</mmCIF:name_systematic>
</mmCIF:chemical>
</mmCIF:chemicalCategory>
Necessary conditions for the assignment of
attribute absolute_configuration in category chemical are given by H. D. Flack and
G. Bernardinelli (1999, 2000).
Ref: Flack, H. D. & Bernardinelli, G. (1999). Acta Cryst. A55,
908-915. (http://www.iucr.org/paper?sh0129)
Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst.
33, 1143-1148. (http://www.iucr.org/paper?ks0021)
Description of the source of the compound under study, or of the
parent molecule if a simple derivative is studied. This includes
the place of discovery for minerals or the actual source of a
natural product.
From Norilsk (USSR)
Extracted from the bark of Cinchona Naturalis
The temperature in kelvins at which the crystalline solid changes
to a liquid.
A temperature in kelvins above
which the melting point (the temperature at which the
crystalline solid changes to a liquid) lies.
_chemical.melting_point_gt and _chemical.melting_point_lt
allow a range of temperatures to be given.
attribute melting_point in category chemical should always be used in preference
to these two items whenever possible.
A temperature in kelvins below which the melting point (the
temperature at which the crystalline solid changes to a liquid)
lies. _chemical.melting_point_gt and _chemical.melting_point_lt
allow a range of temperatures to be given.
attribute melting_point in category chemical should always be used in preference
to these two items whenever possible.
Trivial name by which the compound is commonly known.
1-bromoestradiol
Mineral name accepted by the International Mineralogical
Association. Use only for natural minerals. See also
attribute compound_source in category chemical.
chalcopyrite
Commonly used structure-type name. Usually only applied to
minerals or inorganic compounds.
perovskite
sphalerite
A15
IUPAC or Chemical Abstracts full name of the compound.
1-bromoestra-1,3,5(10)-triene-3,17\b-diol
The optical rotation in solution of the compound is
specified in the following format:
'[\a]^TEMP^~WAVE~ = SORT (c = CONC, SOLV)'
where:
TEMP is the temperature of the measurement in degrees
Celsius,
WAVE is an indication of the wavelength of the light
used for the measurement,
CONC is the concentration of the solution given as the
mass of the substance in g in 100 ml of solution,
SORT is the signed value (preceded by a + or a - sign)
of 100.\a/(l.c), where \a is the signed optical
rotation in degrees measured in a cell of length l in
dm and c is the value of CONC as defined above, and
SOLV is the chemical formula of the solvent.
[\a]^25^~D~ = +108 (c = 3.42, CHCl~3~)
A free-text description of the biological properties of the
material.
diverse biological activities including use as a
laxative and strong antibacterial activity against
S. aureus and weak activity against
cyclooxygenase-1 (COX-1)
antibiotic activity against Bacillus subtilis
(ATCC 6051) but no significant activity against
Candida albicans (ATCC 14053), Aspergillus flavus
(NRRL 6541) and Fusarium verticillioides (NRRL
25457)
weakly potent lipoxygenase nonredox inhibitor
no influenza A virus sialidase inhibitory and
plaque reduction activities
low toxicity against Drosophila melanogaster
A free-text description of the physical properties of the material.
air-sensitive
moisture-sensitive
hygroscopic
deliquescent
oxygen-sensitive
photo-sensitive
pyrophoric
semiconductor
ferromagnetic at low temperature
paramagnetic and thermochromic
The temperature in kelvins at which the solid decomposes.
350
The estimated standard deviation of
attribute temperature_decomposition in category chemical.
A temperature in kelvins above which the solid is known to
decompose. attribute temperature_decomposition_gt in category chemical and
attribute temperature_decomposition_lt in category chemical allow
a range of temperatures to be given.
attribute temperature_decomposition in category chemical should always be used in
preference to these two items whenever possible.
350
A temperature in kelvins below which the solid is known to
decompose. attribute temperature_decomposition_gt in category chemical and
attribute temperature_decomposition_lt in category chemical allow
a range of temperatures to be given.
attribute temperature_decomposition in category chemical should always be used in
preference to these two items whenever possible.
350
The temperature in kelvins at which the solid sublimes.
350
The estimated standard deviation of
attribute temperature_sublimation in category chemical.
A temperature in kelvins above which the solid is known to
sublime. attribute temperature_sublimation_gt in category chemical and
attribute temperature_sublimation_lt in category chemical allow a
range of temperatures to be given.
attribute temperature_sublimation in category chemical should always be used in
preference to these two items whenever possible.
350
A temperature in kelvins below which the solid is known to
sublime. attribute temperature_sublimation_gt in category chemical and
attribute temperature_sublimation_lt in category chemical allow a
range of temperatures to be given.
attribute temperature_sublimation in category chemical should always be used in
preference to these two items whenever possible.
350
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the CHEMICAL_CONN_ATOM category would not, in
general, be used in a macromolecular CIF. See instead the
ENTITY data items.
Data items in the CHEMICAL_CONN_ATOM and CHEMICAL_CONN_BOND
categories record details about the two-dimensional (2D)
chemical structure of the molecular species. They allow
a 2D chemical diagram to be reconstructed for use in a
publication or in a database search for structural and
substructural relationships.
The CHEMICAL_CONN_ATOM data items provide information about the
chemical properties of the atoms in the structure. In cases
where crystallographic and molecular symmetry elements coincide,
they must also contain symmetry-generated atoms, so that the
CHEMICAL_CONN_ATOM and CHEMICAL_CONN_BOND data items will always
describe a complete chemical entity.
Example 1 - based on data set DPTD of Yamin, Suwandi, Fun, Sivakumar &
bin Shawkataly [Acta Cryst. (1996), C52, 951-953].
<mmCIF:chemical_conn_atomCategory>
<mmCIF:chemical_conn_atom number="1">
<mmCIF:NCA>1</mmCIF:NCA>
<mmCIF:NH>0</mmCIF:NH>
<mmCIF:display_x>.39</mmCIF:display_x>
<mmCIF:display_y>.81</mmCIF:display_y>
<mmCIF:type_symbol>S</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="2">
<mmCIF:NCA>2</mmCIF:NCA>
<mmCIF:NH>0</mmCIF:NH>
<mmCIF:display_x>.39</mmCIF:display_x>
<mmCIF:display_y>.96</mmCIF:display_y>
<mmCIF:type_symbol>S</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="3">
<mmCIF:NCA>3</mmCIF:NCA>
<mmCIF:NH>0</mmCIF:NH>
<mmCIF:display_x>.14</mmCIF:display_x>
<mmCIF:display_y>.88</mmCIF:display_y>
<mmCIF:type_symbol>N</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="4">
<mmCIF:NCA>3</mmCIF:NCA>
<mmCIF:NH>0</mmCIF:NH>
<mmCIF:display_x>.33</mmCIF:display_x>
<mmCIF:display_y>.88</mmCIF:display_y>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="5">
<mmCIF:NCA>2</mmCIF:NCA>
<mmCIF:NH>2</mmCIF:NH>
<mmCIF:display_x>.11</mmCIF:display_x>
<mmCIF:display_y>.96</mmCIF:display_y>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="6">
<mmCIF:NCA>2</mmCIF:NCA>
<mmCIF:NH>2</mmCIF:NH>
<mmCIF:display_x>.03</mmCIF:display_x>
<mmCIF:display_y>.96</mmCIF:display_y>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="7">
<mmCIF:NCA>2</mmCIF:NCA>
<mmCIF:NH>2</mmCIF:NH>
<mmCIF:display_x>.03</mmCIF:display_x>
<mmCIF:display_y>.80</mmCIF:display_y>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="8">
<mmCIF:NCA>2</mmCIF:NCA>
<mmCIF:NH>2</mmCIF:NH>
<mmCIF:display_x>.11</mmCIF:display_x>
<mmCIF:display_y>.80</mmCIF:display_y>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="9">
<mmCIF:NCA>1</mmCIF:NCA>
<mmCIF:NH>0</mmCIF:NH>
<mmCIF:display_x>.54</mmCIF:display_x>
<mmCIF:display_y>.81</mmCIF:display_y>
<mmCIF:type_symbol>S</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="10">
<mmCIF:NCA>2</mmCIF:NCA>
<mmCIF:NH>0</mmCIF:NH>
<mmCIF:display_x>.54</mmCIF:display_x>
<mmCIF:display_y>.96</mmCIF:display_y>
<mmCIF:type_symbol>S</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="11">
<mmCIF:NCA>3</mmCIF:NCA>
<mmCIF:NH>0</mmCIF:NH>
<mmCIF:display_x>.80</mmCIF:display_x>
<mmCIF:display_y>.88</mmCIF:display_y>
<mmCIF:type_symbol>N</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="12">
<mmCIF:NCA>3</mmCIF:NCA>
<mmCIF:NH>0</mmCIF:NH>
<mmCIF:display_x>.60</mmCIF:display_x>
<mmCIF:display_y>.88</mmCIF:display_y>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="13">
<mmCIF:NCA>2</mmCIF:NCA>
<mmCIF:NH>2</mmCIF:NH>
<mmCIF:display_x>.84</mmCIF:display_x>
<mmCIF:display_y>.96</mmCIF:display_y>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="14">
<mmCIF:NCA>2</mmCIF:NCA>
<mmCIF:NH>2</mmCIF:NH>
<mmCIF:display_x>.91</mmCIF:display_x>
<mmCIF:display_y>.96</mmCIF:display_y>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="15">
<mmCIF:NCA>2</mmCIF:NCA>
<mmCIF:NH>2</mmCIF:NH>
<mmCIF:display_x>.91</mmCIF:display_x>
<mmCIF:display_y>.80</mmCIF:display_y>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
<mmCIF:chemical_conn_atom number="16">
<mmCIF:NCA>2</mmCIF:NCA>
<mmCIF:NH>2</mmCIF:NH>
<mmCIF:display_x>.84</mmCIF:display_x>
<mmCIF:display_y>.80</mmCIF:display_y>
<mmCIF:type_symbol>C</mmCIF:type_symbol>
</mmCIF:chemical_conn_atom>
</mmCIF:chemical_conn_atomCategory>
The number of connected atoms excluding terminal hydrogen atoms.
The total number of hydrogen atoms attached to this atom,
regardless of whether they are included in the refinement or
the ATOM_SITE list. This number is the same as
attribute attached_hydrogens in category atom_site only if none of the hydrogen
atoms appear in the ATOM_SITE list.
The net integer charge assigned to this atom. This is the
formal charge assignment normally found in chemical diagrams.
for an ammonium nitrogen
1
for a chloride ion
-1
The 2D Cartesian x coordinate of the position of this atom in a
recognizable chemical diagram. The coordinate origin is at the
lower left corner, the x axis is horizontal and the y axis
is vertical. The coordinates must lie in the range 0.0 to 1.0.
These coordinates can be obtained from projections of a suitable
uncluttered view of the molecular structure.
The 2D Cartesian y coordinate of the position of this atom in a
recognizable chemical diagram. The coordinate origin is at the
lower left corner, the x axis is horizontal and the y axis
is vertical. The coordinates must lie in the range 0.0 to 1.0.
These coordinates can be obtained from projections of a suitable
uncluttered view of the molecular structure.
This data item is a pointer to attribute symbol in category atom_type in the
ATOM_TYPE category.
The chemical sequence number to be associated with this atom.
Within an ATOM_SITE list, this number must match one of
the attribute chemical_conn_number in category atom_site values.
Data items in the CHEMICAL_CONN_BOND category would not, in
general, be used in a macromolecular CIF. See instead the
ENTITY data items.
Data items in the CHEMICAL_CONN_ATOM and CHEMICAL_CONN_BOND
categories record details about the two-dimensional (2D)
chemical structure of the molecular species. They allow a
2D chemical diagram to be reconstructed for use in a
publication or in a database search for structural and
substructural relationships.
The CHEMICAL_CONN_BOND data items specify the connections
between the atoms in the CHEMICAL_CONN_ATOM list and the nature
of the chemical bond between these atoms.
Example 1 - based on data set DPTD of Yamin, Suwandi, Fun, Sivakumar &
bin Shawkataly [Acta Cryst. (1996), C52, 951-953].
<mmCIF:chemical_conn_bondCategory>
<mmCIF:chemical_conn_bond atom_1="4" atom_2="1">
<mmCIF:type>doub</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="4" atom_2="3">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="4" atom_2="2">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="5" atom_2="3">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="6" atom_2="5">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="7" atom_2="6">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="8" atom_2="7">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="8" atom_2="3">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="10" atom_2="2">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="12" atom_2="9">
<mmCIF:type>doub</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="12" atom_2="11">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="12" atom_2="10">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="13" atom_2="11">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="14" atom_2="13">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="15" atom_2="14">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="16" atom_2="15">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="16" atom_2="11">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="17" atom_2="5">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="18" atom_2="5">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="19" atom_2="6">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="20" atom_2="6">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="21" atom_2="7">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="22" atom_2="7">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="23" atom_2="8">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="24" atom_2="8">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="25" atom_2="13">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="26" atom_2="13">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="27" atom_2="14">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="28" atom_2="14">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="29" atom_2="15">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="30" atom_2="15">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="31" atom_2="16">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
<mmCIF:chemical_conn_bond atom_1="32" atom_2="16">
<mmCIF:type>sing</mmCIF:type>
</mmCIF:chemical_conn_bond>
</mmCIF:chemical_conn_bondCategory>
The chemical bond type associated with the connection between
the two sites attribute atom_1 in category chemical_conn_bond and
attribute atom_2 in category chemical_conn_bond.
This data item is a pointer to attribute number in category chemical_conn_atom in the
CHEMICAL_CONN_ATOM category.
This data item is a pointer to attribute number in category chemical_conn_atom in the
CHEMICAL_CONN_ATOM category.
Data items in the CHEMICAL_FORMULA category would not, in
general, be used in a macromolecular CIF. See instead the
ENTITY data items.
Data items in the CHEMICAL_FORMULA category specify the
composition and chemical properties of the compound. The formula
data items must agree with those that specify the density,
unit-cell and Z values.
The following rules apply to the construction of the data items
_chemical_formula.analytical, _chemical_formula.structural and
attribute sum in category chemical_formula. For the data item
attribute moiety in category chemical_formula, the formula construction is broken up
into residues or moieties, i.e. groups of atoms that form a
molecular unit or molecular ion. The rules given below apply
within each moiety but different requirements apply to the way
that moieties are connected (see attribute moiety).
in category chemical_formula
(1) Only recognized element symbols may be used.
(2) Each element symbol is followed by a 'count' number. A count
of '1' may be omitted.
(3) A space or parenthesis must separate each cluster of (element
symbol + count).
(4) Where a group of elements is enclosed in parentheses, the
multiplier for the group must follow the closing parenthesis.
That is, all element and group multipliers are assumed to be
printed as subscripted numbers. (An exception to this rule
exists for attribute moiety in category chemical_formula formulae where pre- and
post-multipliers are permitted for molecular units.)
(5) Unless the elements are ordered in a manner that corresponds
to their chemical structure, as in
attribute structural in category chemical_formula, the order of the elements within
any group or moiety should be: C, then H, then the other
elements in alphabetical order of their symbol. This is the
'Hill' system used by Chemical Abstracts. This ordering is
used in _chemical_formula.moiety and _chemical_formula.sum.
Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [(1991).
Acta Cryst. C47, 2276-2277].
<mmCIF:chemical_formulaCategory>
<mmCIF:chemical_formula entry_id="TOZ">
<mmCIF:moiety>C18 H25 N O3</mmCIF:moiety>
<mmCIF:sum>C18 H25 N O3</mmCIF:sum>
<mmCIF:weight>303.40</mmCIF:weight>
</mmCIF:chemical_formula>
</mmCIF:chemical_formulaCategory>
Formula determined by standard chemical analysis including trace
elements. See the CHEMICAL_FORMULA category description for
rules for writing chemical formulae. Parentheses are used only
for standard uncertainties (estimated standard deviations).
Fe2.45(2) Ni1.60(3) S4
Formula expressed in conformance with IUPAC rules for inorganic
and metal-organic compounds where these conflict with the rules
for any other CHEMICAL_FORMULA entries. Typically used for
formatting a formula in accordance with journal rules. This
should appear in the data block in addition to the most
appropriate of the other CHEMICAL_FORMULA data names.
Ref: IUPAC (1990). Nomenclature of Inorganic Chemistry.
Oxford: Blackwell Scientific Publications.
[Co Re (C12 H22 P)2 (C O)6].0.5C H3 O H
Formula with each discrete bonded residue or ion shown as a
separate moiety. See the CHEMICAL_FORMULA category description
for rules for writing chemical formulae. In addition to the
general formulae requirements, the following rules apply:
(1) Moieties are separated by commas ','.
(2) The order of elements within a moiety follows general rule
(5) in the CHEMICAL_FORMULA category description.
(3) Parentheses are not used within moieties but may surround
a moiety. Parentheses may not be nested.
(4) Charges should be placed at the end of the moiety. The
charge '+' or '-' may be preceded by a numerical multiplier
and should be separated from the last (element symbol +
count) by a space. Pre- or post-multipliers may be used for
individual moieties.
C7 H4 Cl Hg N O3 S
C12 H17 N4 O S 1+, C6 H2 N3 O7 1-
C12 H16 N2 O6, 5(H2 O1)
(Cd 2+)3, (C6 N6 Cr 3-)2, 2(H2 O)
See the CHEMICAL_FORMULA category description for the rules for
writing chemical formulae for inorganics, organometallics, metal
complexes etc., in which bonded groups are preserved as
discrete entities within parentheses, with post-multipliers as
required. The order of the elements should give as much
information as possible about the chemical structure.
Parentheses may be used and nested as required. This formula
should correspond to the structure as actually reported, i.e.
trace elements not included in atom-type and atom-site data
should not be included in this formula (see also
attribute analytical) in category chemical_formula.
Ca ((Cl O3)2 O)2 (H2 O)6
(Pt (N H3)2 (C5 H7 N3 O)2) (Cl O4)2
See the CHEMICAL_FORMULA category description for the rules
for writing chemical formulae in which all discrete bonded
residues and ions are summed over the constituent elements,
following the ordering given in general rule (5) in the
CHEMICAL_FORMULA category description. Parentheses are not
normally used.
C18 H19 N7 O8 S
Formula mass in daltons. This mass should correspond to the
formulae given under attribute structural,
in category chemical_formula _chemical_formula.moiety or _chemical_formula.sum and,
together with the Z value and cell parameters, should
yield the density given as attribute density_diffrn in category exptl_crystal.
Formula mass in daltons measured by a non-diffraction experiment.
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the CITATION category record details about the
literature cited as being relevant to the contents of the data
block.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:citationCategory>
<mmCIF:citation id="primary">
<mmCIF:book_id_ISBN xsi:nil="true" />
<mmCIF:book_publisher xsi:nil="true" />
<mmCIF:book_title xsi:nil="true" />
<mmCIF:coordinate_linkage>yes</mmCIF:coordinate_linkage>
<mmCIF:country>US</mmCIF:country>
<mmCIF:details> The publication that directly relates to this coordinate
set.</mmCIF:details>
<mmCIF:journal_abbrev>J. Biol. Chem.</mmCIF:journal_abbrev>
<mmCIF:journal_id_ASTM>HBCHA3</mmCIF:journal_id_ASTM>
<mmCIF:journal_id_CSD>071</mmCIF:journal_id_CSD>
<mmCIF:journal_id_ISSN>0021-9258</mmCIF:journal_id_ISSN>
<mmCIF:journal_issue xsi:nil="true" />
<mmCIF:journal_volume>265</mmCIF:journal_volume>
<mmCIF:page_first>14209</mmCIF:page_first>
<mmCIF:page_last>14219</mmCIF:page_last>
<mmCIF:title> Crystallographic analysis of a complex between human
immunodeficiency virus type 1 protease and acetyl-pepstatin
at 2.0-Angstroms resolution.</mmCIF:title>
<mmCIF:year>1990</mmCIF:year>
</mmCIF:citation>
<mmCIF:citation id="2">
<mmCIF:book_id_ISBN xsi:nil="true" />
<mmCIF:book_publisher xsi:nil="true" />
<mmCIF:book_title xsi:nil="true" />
<mmCIF:coordinate_linkage>no</mmCIF:coordinate_linkage>
<mmCIF:country>UK</mmCIF:country>
<mmCIF:details> Determination of the structure of the unliganded enzyme.</mmCIF:details>
<mmCIF:journal_abbrev>Nature</mmCIF:journal_abbrev>
<mmCIF:journal_id_ASTM>NATUAS</mmCIF:journal_id_ASTM>
<mmCIF:journal_id_CSD>006</mmCIF:journal_id_CSD>
<mmCIF:journal_id_ISSN>0028-0836</mmCIF:journal_id_ISSN>
<mmCIF:journal_issue xsi:nil="true" />
<mmCIF:journal_volume>337</mmCIF:journal_volume>
<mmCIF:page_first>615</mmCIF:page_first>
<mmCIF:page_last>619</mmCIF:page_last>
<mmCIF:title> Three-dimensional structure of aspartyl-protease from human
immunodeficiency virus HIV-1.</mmCIF:title>
<mmCIF:year>1989</mmCIF:year>
</mmCIF:citation>
<mmCIF:citation id="3">
<mmCIF:book_id_ISBN xsi:nil="true" />
<mmCIF:book_publisher xsi:nil="true" />
<mmCIF:book_title xsi:nil="true" />
<mmCIF:coordinate_linkage>no</mmCIF:coordinate_linkage>
<mmCIF:country>US</mmCIF:country>
<mmCIF:details> Crystallization of the unliganded enzyme.</mmCIF:details>
<mmCIF:journal_abbrev>J. Biol. Chem.</mmCIF:journal_abbrev>
<mmCIF:journal_id_ASTM>HBCHA3</mmCIF:journal_id_ASTM>
<mmCIF:journal_id_CSD>071</mmCIF:journal_id_CSD>
<mmCIF:journal_id_ISSN>0021-9258</mmCIF:journal_id_ISSN>
<mmCIF:journal_issue xsi:nil="true" />
<mmCIF:journal_volume>264</mmCIF:journal_volume>
<mmCIF:page_first>1919</mmCIF:page_first>
<mmCIF:page_last>1921</mmCIF:page_last>
<mmCIF:title> Crystallization of the aspartylprotease from human
immunodeficiency virus, HIV-1.</mmCIF:title>
<mmCIF:year>1989</mmCIF:year>
</mmCIF:citation>
<mmCIF:citation id="4">
<mmCIF:book_id_ISBN xsi:nil="true" />
<mmCIF:book_publisher xsi:nil="true" />
<mmCIF:book_title xsi:nil="true" />
<mmCIF:coordinate_linkage>no</mmCIF:coordinate_linkage>
<mmCIF:country>US</mmCIF:country>
<mmCIF:details> Expression and purification of the enzyme.</mmCIF:details>
<mmCIF:journal_abbrev>J. Biol. Chem.</mmCIF:journal_abbrev>
<mmCIF:journal_id_ASTM>HBCHA3</mmCIF:journal_id_ASTM>
<mmCIF:journal_id_CSD>071</mmCIF:journal_id_CSD>
<mmCIF:journal_id_ISSN>0021-9258</mmCIF:journal_id_ISSN>
<mmCIF:journal_issue xsi:nil="true" />
<mmCIF:journal_volume>264</mmCIF:journal_volume>
<mmCIF:page_first>2307</mmCIF:page_first>
<mmCIF:page_last>2312</mmCIF:page_last>
<mmCIF:title> Human immunodeficiency virus protease. Bacterial expression
and characterization of the purified aspartic protease.</mmCIF:title>
<mmCIF:year>1989</mmCIF:year>
</mmCIF:citation>
</mmCIF:citationCategory>
Abstract for the citation. This is used most when the
citation is extracted from a bibliographic database that
contains full text or abstract information.
The Chemical Abstracts Service (CAS) abstract identifier;
relevant for journal articles.
The International Standard Book Number (ISBN) code assigned to
the book cited; relevant for books or book chapters.
The name of the publisher of the citation; relevant
for books or book chapters.
John Wiley and Sons
The location of the publisher of the citation; relevant
for books or book chapters.
London
The title of the book in which the citation appeared; relevant
for books or book chapters.
attribute coordinate_linkage in category citation states whether this citation
is concerned with precisely the set of coordinates given in the
data block. If, for instance, the publication described the same
structure, but the coordinates had undergone further refinement
prior to the creation of the data block, the value of this data
item would be 'no'.
The country of publication; relevant for books
and book chapters.
Identifier ('refcode') of the database record in the Cambridge
Structural Database that contains details of the cited structure.
LEKKUH
Accession number used by Medline to categorize a specific
bibliographic entry.
89064067
A description of special aspects of the relationship
of the contents of the data block to the literature item cited.
citation relates to this precise
coordinate set
citation relates to earlier low-resolution
structure
citation relates to further refinement of
structure reported in citation 2
Abbreviated name of the cited journal as given in the
Chemical Abstracts Service Source Index.
J. Mol. Biol.
Full name of the cited journal; relevant for journal articles.
Journal of Molecular Biology
The American Society for Testing and Materials (ASTM) code
assigned to the journal cited (also referred to as the CODEN
designator of the Chemical Abstracts Service); relevant for
journal articles.
The Cambridge Structural Database (CSD) code assigned to the
journal cited; relevant for journal articles. This is also the
system used at the Protein Data Bank (PDB).
0070
The International Standard Serial Number (ISSN) code assigned to
the journal cited; relevant for journal articles.
Issue number of the journal cited; relevant for journal
articles.
2
Volume number of the journal cited; relevant for journal
articles.
174
Language in which the cited article is written.
German
The first page of the citation; relevant for journal
articles, books and book chapters.
The last page of the citation; relevant for journal
articles, books and book chapters.
The title of the citation; relevant for journal articles, books
and book chapters.
Structure of diferric duck ovotransferrin
at 2.35 \%A resolution.
The year of the citation; relevant for journal articles, books
and book chapters.
1984
The value of attribute id in category citation must uniquely identify a record in the
CITATION list.
The attribute id in category citation 'primary' should be used to indicate the
citation that the author(s) consider to be the most pertinent to
the contents of the data block.
Note that this item need not be a number; it can be any unique
identifier.
primary
1
2
Data items in the CITATION_AUTHOR category record details
about the authors associated with the citations in the
CITATION list.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:citation_authorCategory>
<mmCIF:citation_author citation_id="primary" name="Fitzgerald, P.M.D.">
<mmCIF:ordinal>1</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="primary" name="McKeever, B.M.">
<mmCIF:ordinal>2</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="primary" name="Van Middlesworth, J.F.">
<mmCIF:ordinal>3</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="primary" name="Springer, J.P.">
<mmCIF:ordinal>4</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="primary" name="Heimbach, J.C.">
<mmCIF:ordinal>5</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="primary" name="Leu, C.-T.">
<mmCIF:ordinal>6</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="primary" name="Herber, W.K.">
<mmCIF:ordinal>7</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="primary" name="Dixon, R.A.F.">
<mmCIF:ordinal>8</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="primary" name="Darke, P.L.">
<mmCIF:ordinal>9</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="2" name="Navia, M.A.">
<mmCIF:ordinal>1</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="2" name="Fitzgerald, P.M.D.">
<mmCIF:ordinal>2</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="2" name="McKeever, B.M.">
<mmCIF:ordinal>3</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="2" name="Leu, C.-T.">
<mmCIF:ordinal>4</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="2" name="Heimbach, J.C.">
<mmCIF:ordinal>5</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="2" name="Herber, W.K.">
<mmCIF:ordinal>6</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="2" name="Sigal, I.S.">
<mmCIF:ordinal>7</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="2" name="Darke, P.L.">
<mmCIF:ordinal>8</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="2" name="Springer, J.P.">
<mmCIF:ordinal>9</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="3" name="McKeever, B.M.">
<mmCIF:ordinal>1</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="3" name="Navia, M.A.">
<mmCIF:ordinal>2</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="3" name="Fitzgerald, P.M.D.">
<mmCIF:ordinal>3</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="3" name="Springer, J.P.">
<mmCIF:ordinal>4</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="3" name="Leu, C.-T.">
<mmCIF:ordinal>5</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="3" name="Heimbach, J.C.">
<mmCIF:ordinal>6</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="3" name="Herber, W.K.">
<mmCIF:ordinal>7</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="3" name="Sigal, I.S.">
<mmCIF:ordinal>8</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="3" name="Darke, P.L.">
<mmCIF:ordinal>9</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="4" name="Darke, P.L.">
<mmCIF:ordinal>1</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="4" name="Leu, C.-T.">
<mmCIF:ordinal>2</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="4" name="Davis, L.J.">
<mmCIF:ordinal>3</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="4" name="Heimbach, J.C.">
<mmCIF:ordinal>4</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="4" name="Diehl, R.E.">
<mmCIF:ordinal>5</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="4" name="Hill, W.S.">
<mmCIF:ordinal>6</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="4" name="Dixon, R.A.F.">
<mmCIF:ordinal>7</mmCIF:ordinal>
</mmCIF:citation_author>
<mmCIF:citation_author citation_id="4" name="Sigal, I.S.">
<mmCIF:ordinal>8</mmCIF:ordinal>
</mmCIF:citation_author>
</mmCIF:citation_authorCategory>
This data item defines the order of the author's name in the
list of authors of a citation.
This data item is a pointer to attribute id in category citation in the CITATION
category.
Name of an author of the citation; relevant for journal
articles, books and book chapters.
The family name(s), followed by a comma and including any
dynastic components, precedes the first name(s) or initial(s).
Bleary, Percival R.
O'Neil, F.K.
Van den Bossche, G.
Yang, D.-L.
Simonov, Yu.A
Data items in the CITATION_EDITOR category record details
about the editors associated with the books or book chapters
cited in the CITATION list.
Example 1 - hypothetical example.
<mmCIF:citation_editorCategory>
<mmCIF:citation_editor citation_id="5" name="McKeever, B.M."></mmCIF:citation_editor>
<mmCIF:citation_editor citation_id="5" name="Navia, M.A."></mmCIF:citation_editor>
<mmCIF:citation_editor citation_id="5" name="Fitzgerald, P.M.D."></mmCIF:citation_editor>
<mmCIF:citation_editor citation_id="5" name="Springer, J.P."></mmCIF:citation_editor>
</mmCIF:citation_editorCategory>
This data item defines the order of the editor's name in the
list of editors of a citation.
This data item is a pointer to attribute id in category citation in the CITATION
category.
Names of an editor of the citation; relevant for books and
book chapters.
The family name(s), followed by a comma and including any
dynastic components, precedes the first name(s) or initial(s).
Bleary, Percival R.
O'Neil, F.K.
Van den Bossche, G.
Yang, D.-L.
Simonov, Yu.A
Data items in the COMPUTING category record details about the
computer programs used in the crystal structure analysis.
Data items in this category would not, in general, be used in
a macromolecular CIF. The category SOFTWARE, which allows
a more detailed description of computer programs and
their attributes to be given, would be used instead.
Example 1 - Rodr\'iguez-Romera, Ruiz-P\'erez & Solans [Acta
Cryst. (1996), C52, 1415-1417].
Software used for cell refinement.
Give the program or package name and a brief reference.
CAD4 (Enraf-Nonius, 1989)
Software used for data collection.
Give the program or package name and a brief reference.
CAD4 (Enraf-Nonius, 1989)
Software used for data reduction.
Give the program or package name and a brief reference.
DIFDAT, SORTRF, ADDREF (Hall & Stewart, 1990)
Software used for molecular graphics.
Give the program or package name and a brief reference.
FRODO (Jones, 1986), ORTEP (Johnson, 1965)
Software used for generating material for publication.
Give the program or package name and a brief reference.
Software used for refinement of the structure.
Give the program or package name and a brief reference.
SHELX85 (Sheldrick, 1985)
X-PLOR (Brunger, 1992)
Software used for solution of the structure.
Give the program or package name and a brief reference.
SHELX85 (Sheldrick, 1985)
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the DATABASE category have been superseded by
data items in the DATABASE_2 category. They are included
here only for compliance with older CIFs.
A history of changes made by the Cambridge Crystallographic Data
Centre and incorporated into the Cambridge Structural Database
(CSD).
The code assigned by Chemical Abstracts.
The code assigned by the Cambridge Structural Database.
The code assigned by the Inorganic Crystal Structure
Database.
The code assigned by the Metals Data File.
The code assigned by the NBS (NIST) Crystal Data Database.
The code assigned by the Protein Data Bank.
The code assigned by the Powder Diffraction File (JCPDS/ICDD).
Deposition numbers assigned by the Cambridge Crystallographic
Data Centre (CCDC) to files containing structural information
archived by the CCDC.
Deposition numbers assigned by the Fachinformationszentrum
Karlsruhe (FIZ) to files containing structural information
archived by the Cambridge Crystallographic Data Centre (CCDC).
Deposition numbers assigned by various journals to files
containing structural information archived by the Cambridge
Crystallographic Data Centre (CCDC).
The ASTM CODEN designator for a journal as given in the Chemical
Source List maintained by the Chemical Abstracts Service.
The journal code used in the Cambridge Structural Database.
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the DATABASE_2 category record details about the
database identifiers of the data block.
These data items are assigned by database managers and should
only appear in a data block if they originate from that source.
The name of this category, DATABASE_2, arose because the
category name DATABASE was already in use in the core CIF
dictionary, but was used differently from the way it needed
to be used in the mmCIF dictionary. Since CIF data names
cannot be changed once they have been adopted, a new category
had to be created.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:database_2Category>
<mmCIF:database_2 database_code="5HVP" database_id="PDB"></mmCIF:database_2>
</mmCIF:database_2Category>
The code assigned by the database identified in
attribute database_id in category database_2.
1ABC
ABCDEF
An abbreviation that identifies the database.
Data items in the DATABASE_PDB_CAVEAT category record details
about features of the data block flagged as 'caveats' by the
Protein Data Bank (PDB).
These data items are included only for consistency with PDB
format files. They should appear in a data block only if that
data block was created by reformatting a PDB format file.
Example 1 - hypothetical example.
<mmCIF:database_PDB_caveatCategory>
<mmCIF:database_PDB_caveat id="1">
<mmCIF:text> THE CRYSTAL TRANSFORMATION IS IN ERROR BUT IS</mmCIF:text>
</mmCIF:database_PDB_caveat>
<mmCIF:database_PDB_caveat id="2">
<mmCIF:text> UNCORRECTABLE AT THIS TIME</mmCIF:text>
</mmCIF:database_PDB_caveat>
</mmCIF:database_PDB_caveatCategory>
The full text of the PDB caveat record.
A unique identifier for the PDB caveat record.
The DATABASE_PDB_MATRIX category provides placeholders for
transformation matrices and vectors used by the Protein Data
Bank (PDB).
These data items are included only for consistency with older
PDB format files. They should appear in a data block only if
that data block was created by reformatting a PDB format file.
The [1][1] element of the PDB ORIGX matrix.
The [1][2] element of the PDB ORIGX matrix.
The [1][3] element of the PDB ORIGX matrix.
The [2][1] element of the PDB ORIGX matrix.
The [2][2] element of the PDB ORIGX matrix.
The [2][3] element of the PDB ORIGX matrix.
The [3][1] element of the PDB ORIGX matrix.
The [3][2] element of the PDB ORIGX matrix.
The [3][3] element of the PDB ORIGX matrix.
The [1] element of the PDB ORIGX vector.
The [2] element of the PDB ORIGX vector.
The [3] element of the PDB ORIGX vector.
The [1][1] element of the PDB SCALE matrix.
The [1][2] element of the PDB SCALE matrix.
The [1][3] element of the PDB SCALE matrix.
The [2][1] element of the PDB SCALE matrix.
The [2][2] element of the PDB SCALE matrix.
The [2][3] element of the PDB SCALE matrix.
The [3][1] element of the PDB SCALE matrix.
The [3][2] element of the PDB SCALE matrix.
The [3][3] element of the PDB SCALE matrix.
The [1] element of the PDB SCALE vector.
The [2] element of the PDB SCALE vector.
The [3] element of the PDB SCALE vector.
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the DATABASE_PDB_REMARK category record details
about the data block as archived by the Protein Data Bank (PDB).
Some data appearing in PDB REMARK records can be
algorithmically extracted into the appropriate data items
in the data block.
These data items are included only for consistency with older
PDB format files. They should appear in a data block only if
that data block was created by reformatting a PDB format file.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:database_PDB_remarkCategory>
<mmCIF:database_PDB_remark id="3">
<mmCIF:text> REFINEMENT. BY THE RESTRAINED LEAST-SQUARES PROCEDURE OF J.
KONNERT AND W. HENDRICKSON (PROGRAM *PROLSQ*). THE R
VALUE IS 0.176 FOR 12901 REFLECTIONS IN THE RESOLUTION
RANGE 8.0 TO 2.0 ANGSTROMS WITH I .GT. SIGMA(I).
RMS DEVIATIONS FROM IDEAL VALUES (THE VALUES OF
SIGMA, IN PARENTHESES, ARE THE INPUT ESTIMATED
STANDARD DEVIATIONS THAT DETERMINE THE RELATIVE
WEIGHTS OF THE CORRESPONDING RESTRAINTS)
DISTANCE RESTRAINTS (ANGSTROMS)
BOND DISTANCE 0.018(0.020)
ANGLE DISTANCE 0.038(0.030)
PLANAR 1-4 DISTANCE 0.043(0.040)
PLANE RESTRAINT (ANGSTROMS) 0.015(0.020)
CHIRAL-CENTER RESTRAINT (ANGSTROMS**3) 0.177(0.150)
NON-BONDED CONTACT RESTRAINTS (ANGSTROMS)
SINGLE TORSION CONTACT 0.216(0.500)
MULTIPLE TORSION CONTACT 0.207(0.500)
POSSIBLE HYDROGEN BOND 0.245(0.500)
CONFORMATIONAL TORSION ANGLE RESTRAINT (DEGREES)
PLANAR (OMEGA) 2.6(3.0)
STAGGERED 17.4(15.0)
ORTHONORMAL 18.1(20.0)</mmCIF:text>
</mmCIF:database_PDB_remark>
<mmCIF:database_PDB_remark id="4">
<mmCIF:text> THE TWO CHAINS OF THE DIMERIC ENZYME HAS BEEN ASSIGNED THE
THE CHAIN INDICATORS *A* AND *B*.</mmCIF:text>
</mmCIF:database_PDB_remark>
</mmCIF:database_PDB_remarkCategory>
The full text of the PDB remark record.
A unique identifier for the PDB remark record.
Data items in the DATABASE_PDB_REV category record details
about the history of the data block as archived by the Protein
Data Bank (PDB).
These data items are assigned by the PDB database managers and
should only appear in a data block if they originate from that
source.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:database_PDB_revCategory>
<mmCIF:database_PDB_rev num="1">
<mmCIF:author_name>Fitzgerald, Paula M.D</mmCIF:author_name>
<mmCIF:date>1991-10-15</mmCIF:date>
<mmCIF:date_original>1990-04-30</mmCIF:date_original>
<mmCIF:mod_type>0</mmCIF:mod_type>
<mmCIF:status>full release</mmCIF:status>
</mmCIF:database_PDB_rev>
</mmCIF:database_PDB_revCategory>
The name of the person responsible for submitting this revision
to the PDB.
The family name(s) followed by a comma precedes the first
name(s) or initial(s).
Bleary, Percival R.
O'Neil, F.K.
Van den Bossche, G.
Yang, D.-L.
Simonov, Yu.A
Date the PDB revision took place. Taken from the REVDAT record.
Date the entry first entered the PDB database in the form
yyyy-mm-dd. Taken from the PDB HEADER record.
1980-08-21
Taken from the REVDAT record. Refer to the Protein Data Bank
format description at
http://www.rcsb.org/pdb/docs/format/pdbguide2.2/guide2.2_frame.html
for details.
The PDB code for a subsequent PDB entry that replaced the
PDB file corresponding to this data block.
The PDB code for a previous PDB entry that was replaced by
the PDB file corresponding to this data block.
The status of this revision.
The value of attribute num in category database_PDB_rev must uniquely and
sequentially identify a record in the DATABASE_PDB_REV list.
Note that this item must be a number and that modification
numbers are assigned in increasing numerical order.
Data items in the DATABASE_PDB_REV_RECORD category record
details about specific record types that were changed in a
given revision of a PDB entry.
These data items are assigned by the PDB database managers and
should only appear in a data block if they originate from that
source.
Example 1 - hypothetical example.
<mmCIF:database_PDB_rev_recordCategory>
<mmCIF:database_PDB_rev_record rev_num="1" type="CONECT">
<mmCIF:details> Error fix - incorrect connection between
atoms 2312 and 2317</mmCIF:details>
</mmCIF:database_PDB_rev_record>
<mmCIF:database_PDB_rev_record rev_num="2" type="MATRIX">
<mmCIF:details>For consistency with 1995-08-04 style-guide</mmCIF:details>
</mmCIF:database_PDB_rev_record>
<mmCIF:database_PDB_rev_record rev_num="3" type="ORIGX">
<mmCIF:details>Based on new data from author</mmCIF:details>
</mmCIF:database_PDB_rev_record>
</mmCIF:database_PDB_rev_recordCategory>
A description of special aspects of the revision of records in
this PDB entry.
Based on new data from author
For consistency with 1995-08-04 style-guide
For consistency with structural class
This data item is a pointer to attribute num in category database_PDB_rev in the
DATABASE_PDB_REV category.
The types of records that were changed in this revision to a
PDB entry.
CRYST1
SCALE
MTRIX
ATOM
HETATM
The DATABASE_PDB_TVECT category provides placeholders for
the TVECT matrices and vectors used by the Protein Data
Bank (PDB).
These data items are included only for consistency with older
PDB format files. They should appear in a data block only if
the data block was created by reformatting a PDB format file.
A description of special aspects of this TVECT.
The [1] element of the PDB TVECT vector.
The [2] element of the PDB TVECT vector.
The [3] element of the PDB TVECT vector.
The value of attribute id in category database_PDB_tvect must uniquely identify a
record in the DATABASE_PDB_TVECT list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the DIFFRN category record details about the
diffraction data and their measurement.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:diffrnCategory>
<mmCIF:diffrn id="Set1">
<mmCIF:ambient_environment> Mother liquor from the reservoir of the vapor diffusion experiment, mounted in room air</mmCIF:ambient_environment>
<mmCIF:ambient_temp>293(3)</mmCIF:ambient_temp>
<mmCIF:crystal_support> 0.7 mm glass capillary, sealed with dental wax</mmCIF:crystal_support>
<mmCIF:crystal_treatment> Equilibrated in rotating anode radiation enclosure for
18 hours prior to beginning of data collection</mmCIF:crystal_treatment>
</mmCIF:diffrn>
</mmCIF:diffrnCategory>
Example 2 - based on data set TOZ of Willis, Beckwith & Tozer [(1991).
Acta Cryst. C47, 2276-2277].
<mmCIF:diffrnCategory>
<mmCIF:diffrn id="d1">
<mmCIF:ambient_temp>293</mmCIF:ambient_temp>
<mmCIF:details> \q scan width (1.0 + 0.14tan\q)\%, \q scan rate 1.2\% per
min. Background counts for 5 sec on each side every scan.</mmCIF:details>
</mmCIF:diffrn>
</mmCIF:diffrnCategory>
The gas or liquid surrounding the sample, if not air.
The mean hydrostatic pressure in kilopascals at which the
intensities were measured.
The estimated standard deviation of attribute ambient_pressure in category diffrn.
The mean hydrostatic pressure in kilopascals above which
the intensities were measured. attribute ambient_pressure_gt in category diffrn and
attribute ambient_pressure_lt in category diffrn allow a pressure range to be given.
attribute ambient_pressure in category diffrn should always be used in
preference to these two items whenever possible.
The mean hydrostatic pressure in kilopascals below which
the intensities were measured. attribute ambient_pressure_gt in category diffrn and
attribute ambient_pressure_lt in category diffrn allow a pressure range to be given.
attribute ambient_pressure in category diffrn should always be used in
preference to these two items whenever possible.
The mean temperature in kelvins at which the intensities were
measured.
A description of special aspects of temperature control during
data collection.
The standard uncertainty (estimated standard deviation)
of attribute ambient_temp in category diffrn.
The mean temperature in kelvins above which the intensities were
measured. _diffrn.ambient_temp_gt and _diffrn.ambient_temp_lt
allow a range of temperatures to be given.
attribute ambient_temp in category diffrn should always be used in preference
to these two items whenever possible.
The mean temperature in kelvins below which the intensities were
measured. _diffrn.ambient_temp_gt and _diffrn.ambient_temp_lt
allow a range of temperatures to be given.
attribute ambient_temp in category diffrn should always be used in preference
to these two items whenever possible.
This data item is a pointer to attribute id in category exptl_crystal in the
EXPTL_CRYSTAL category.
The physical device used to support the crystal during data
collection.
glass capillary
quartz capillary
fiber
metal loop
Remarks about how the crystal was treated prior to intensity
measurement. Particularly relevant when intensities were
measured at low temperature.
equilibrated in hutch for 24 hours
flash frozen in liquid nitrogen
slow cooled with direct air stream
Special details of the diffraction measurement process. Should
include information about source instability, crystal motion,
degradation and so on.
This data item uniquely identifies a set of diffraction
data.
Data items in the DIFFRN_ATTENUATOR category record details
about the diffraction attenuator scales employed.
Example 2 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
<mmCIF:diffrn_attenuatorCategory>
<mmCIF:diffrn_attenuator code="1">
<mmCIF:scale>16.976</mmCIF:scale>
</mmCIF:diffrn_attenuator>
</mmCIF:diffrn_attenuatorCategory>
Material from which the attenuator is made.
The scale factor applied when an intensity measurement is
reduced by an attenuator identified by attribute code.
in category diffrn_attenuator The measured intensity must be multiplied by this scale to
convert it to the same scale as unattenuated intensities.
A code associated with a particular attenuator setting. This
code is referenced by the attribute attenuator_code in category diffrn_refln which is
stored with the diffraction data. See attribute scale in category diffrn_attenuator.
Data items in the DIFFRN_DETECTOR category describe the
detector used to measure the scattered radiation, including
any analyser and post-sample collimation.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:diffrn_detectorCategory>
<mmCIF:diffrn_detector diffrn_id="d1">
<mmCIF:detector>multiwire</mmCIF:detector>
<mmCIF:type>Siemens</mmCIF:type>
</mmCIF:diffrn_detector>
</mmCIF:diffrn_detectorCategory>
The resolution of an area detector, in pixels/mm.
A description of special aspects of the radiation detector.
The general class of the radiation detector.
photographic film
scintillation counter
CCD plate
BF~3~ counter
The deadtime in microseconds of the detector used to measure
the diffraction intensities.
The make, model or name of the detector device used.
This data item is a pointer to attribute id in category diffrn in the DIFFRN
category.
Data items in the DIFFRN_MEASUREMENT category record details
about the device used to orient and/or position the crystal
during data measurement and the manner in which the diffraction
data were measured.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:diffrn_measurementCategory>
<mmCIF:diffrn_measurement diffrn_id="d1">
<mmCIF:details> 440 frames, 0.20 degrees, 150 sec, detector distance 12 cm,
detector angle 22.5 degrees</mmCIF:details>
<mmCIF:device>3-circle camera</mmCIF:device>
<mmCIF:device_details>none</mmCIF:device_details>
<mmCIF:device_type>Supper model x</mmCIF:device_type>
<mmCIF:method>omega scan</mmCIF:method>
</mmCIF:diffrn_measurement>
</mmCIF:diffrn_measurementCategory>
Example 2 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
<mmCIF:diffrn_measurementCategory>
<mmCIF:diffrn_measurement diffrn_id="s1">
<mmCIF:device_type>Philips PW1100/20 diffractometer</mmCIF:device_type>
<mmCIF:method>\q/2\q</mmCIF:method>
</mmCIF:diffrn_measurement>
</mmCIF:diffrn_measurementCategory>
A description of special aspects of the intensity measurement.
440 frames, 0.20 degrees, 150 sec, detector
distance 12 cm, detector angle 22.5 degrees
The general class of goniometer or device used to support and
orient the specimen.
3-circle camera
4-circle camera
kappa-geometry camera
oscillation camera
precession camera
A description of special aspects of the device used to measure
the diffraction intensities.
commercial goniometer modified locally to
allow for 90\% \t arc
The make, model or name of the measurement device
(goniometer) used.
Supper model q
Huber model r
Enraf-Nonius model s
homemade
Method used to measure intensities.
profile data from theta/2theta scans
The physical device used to support the crystal during data
collection.
glass capillary
quartz capillary
fiber
metal loop
This data item is a pointer to attribute id in category diffrn in the DIFFRN
category.
Data items in the DIFFRN_ORIENT_MATRIX category record details
about the orientation matrix used in the measurement of the
diffraction data.
Example 1 - based on CAD-4 diffractometer data obtained for
Yb(S-C5H4N)2(THF)4.
<mmCIF:diffrn_orient_matrixCategory>
<mmCIF:diffrn_orient_matrix diffrn_id="set1">
<mmCIF:UB11>-0.071479</mmCIF:UB11>
<mmCIF:UB12>0.020208</mmCIF:UB12>
<mmCIF:UB13>0.039076</mmCIF:UB13>
<mmCIF:UB21>0.035372</mmCIF:UB21>
<mmCIF:UB22>0.056209</mmCIF:UB22>
<mmCIF:UB23>0.078324</mmCIF:UB23>
<mmCIF:UB31>-0.007470</mmCIF:UB31>
<mmCIF:UB32>0.067854</mmCIF:UB32>
<mmCIF:UB33>-0.017832</mmCIF:UB33>
<mmCIF:type> reciprocal axis matrix, multiplies hkl vector to generate
diffractometer xyz vector and diffractometer angles</mmCIF:type>
</mmCIF:diffrn_orient_matrix>
</mmCIF:diffrn_orient_matrixCategory>
The [1][1] element of the 3x3 matrix that defines the dimensions
of the reciprocal cell and its orientation with respect to the
local diffractometer axes. See also attribute type in category diffrn_orient_matrix.
The [1][2] element of the 3x3 matrix that defines the dimensions
of the reciprocal cell and its orientation with respect to the
local diffractometer axes. See also attribute type in category diffrn_orient_matrix.
The [1][3] element of the 3x3 matrix that defines the dimensions
of the reciprocal cell and its orientation with respect to the
local diffractometer axes. See also attribute type in category diffrn_orient_matrix.
The [2][1] element of the 3x3 matrix that defines the dimensions
of the reciprocal cell and its orientation with respect to the
local diffractometer axes. See also attribute type in category diffrn_orient_matrix.
The [2][2] element of the 3x3 matrix that defines the dimensions
of the reciprocal cell and its orientation with respect to the
local diffractometer axes. See also attribute type in category diffrn_orient_matrix.
The [2][3] element of the 3x3 matrix that defines the dimensions
of the reciprocal cell and its orientation with respect to the
local diffractometer axes. See also attribute type in category diffrn_orient_matrix.
The [3][1] element of the 3x3 matrix that defines the dimensions
of the reciprocal cell and its orientation with respect to the
local diffractometer axes. See also attribute type in category diffrn_orient_matrix.
The [3][2] element of the 3x3 matrix that defines the dimensions
of the reciprocal cell and its orientation with respect to the
local diffractometer axes. See also attribute type in category diffrn_orient_matrix.
The [3][3] element of the 3x3 matrix that defines the dimensions
of the reciprocal cell and its orientation with respect to the
local diffractometer axes. See also attribute type in category diffrn_orient_matrix.
A description of the orientation matrix type and how it should
be applied to define the orientation of the crystal precisely
with respect to the diffractometer axes.
This data item is a pointer to attribute id in category diffrn in the DIFFRN
category.
Data items in the DIFFRN_ORIENT_REFLN category record details
about the reflections that define the orientation matrix used in
the measurement of the diffraction intensities.
Example 1 - based on CAD-4 diffractometer data obtained for
Yb(S-C5H4N)2(THF)4.
<mmCIF:diffrn_orient_reflnCategory>
<mmCIF:diffrn_orient_refln diffrn_id="myset1" index_h="2" index_k="0" index_l="2">
<mmCIF:angle_chi>-28.45</mmCIF:angle_chi>
<mmCIF:angle_kappa>-11.32</mmCIF:angle_kappa>
<mmCIF:angle_omega>5.33</mmCIF:angle_omega>
<mmCIF:angle_phi>101.78</mmCIF:angle_phi>
<mmCIF:angle_psi>0.00</mmCIF:angle_psi>
<mmCIF:angle_theta>10.66</mmCIF:angle_theta>
</mmCIF:diffrn_orient_refln>
</mmCIF:diffrn_orient_reflnCategory>
Diffractometer angle chi of a reflection used to
define the orientation matrix in degrees. See
attribute UB[][] in category diffrn_orient_matrix and the Miller indices
in the DIFFRN_ORIENT_REFLN category.
Diffractometer angle kappa of a reflection used to
define the orientation matrix in degrees. See
attribute UB[][] in category diffrn_orient_matrix and the Miller indices
in the DIFFRN_ORIENT_REFLN category.
Diffractometer angle omega of a reflection used to
define the orientation matrix in degrees. See
attribute UB[][] in category diffrn_orient_matrix and the Miller indices in
the DIFFRN_ORIENT_REFLN category.
Diffractometer angle phi of a reflection used to
define the orientation matrix in degrees. See
attribute UB[][] in category diffrn_orient_matrix and the Miller indices
in the DIFFRN_ORIENT_REFLN category.
Diffractometer angle psi of a reflection used to
define the orientation matrix in degrees. See
attribute UB[][] in category diffrn_orient_matrix and the Miller indices
in the DIFFRN_ORIENT_REFLN category.
Diffractometer angle theta of a reflection used to
define the orientation matrix in degrees. See
attribute UB[][] in category diffrn_orient_matrix and the Miller indices
in the DIFFRN_ORIENT_REFLN category.
This data item is a pointer to attribute id in category diffrn in the DIFFRN
category.
Miller index h of a reflection used to define the orientation
matrix.
Miller index k of a reflection used to define the orientation
matrix.
Miller index l of a reflection used to define the orientation
matrix.
Data items in the DIFFRN_RADIATION category describe
the radiation used in measuring the diffraction intensities,
its collimation and monochromatization before the sample.
Post-sample treatment of the beam is described by data
items in the DIFFRN_DETECTOR category.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:diffrn_radiationCategory>
<mmCIF:diffrn_radiation diffrn_id="set1">
<mmCIF:collimation>0.3 mm double pinhole</mmCIF:collimation>
<mmCIF:monochromator>graphite</mmCIF:monochromator>
<mmCIF:type>Cu K\a</mmCIF:type>
<mmCIF:wavelength_id>1</mmCIF:wavelength_id>
</mmCIF:diffrn_radiation>
</mmCIF:diffrn_radiationCategory>
Example 2 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
The collimation or focusing applied to the radiation.
0.3 mm double-pinhole
0.5 mm
focusing mirrors
Absorption edge in angstroms of the radiation filter used.
Half-width in millimetres of the incident beam in the
direction perpendicular to the diffraction plane.
The method used to obtain monochromatic radiation. If a mono-
chromator crystal is used, the material and the indices of the
Bragg reflection are specified.
Zr filter
Ge 220
none
equatorial mounted graphite
The angle in degrees, as viewed from the specimen, between the
perpendicular component of the polarization and the diffraction
plane. See attribute polarisn_ratio in category diffrn_radiation.
Polarization ratio of the diffraction beam incident on the
crystal. This is the ratio of the perpendicularly polarized
to the parallel-polarized component of the radiation. The
perpendicular component forms an angle of
attribute polarisn_norm in category diffrn_radiation to the normal to the
diffraction plane of the sample (i.e. the plane containing
the incident and reflected beams).
The nature of the radiation used (i.e. the name of the
subatomic particle or the region of the electromagnetic
spectrum). It is strongly recommended that this information
is given, so that the probe radiation can be simply determined.
The nature of the radiation. This is typically a description
of the X-ray wavelength in Siegbahn notation.
CuK\a
Cu K\a~1~
Cu K-L~2,3~
white-beam
This data item is a pointer to attribute id
in category diffrn_radiation_wavelength in the DIFFRN_RADIATION_WAVELENGTH category.
The IUPAC symbol for the X-ray wavelength for the probe
radiation.
This data item is a pointer to attribute id in category diffrn in the DIFFRN
category.
Data items in the DIFFRN_RADIATION_WAVELENGTH category
describe the wavelength of the radiation used to measure the
diffraction intensities. Items may be looped to identify
and assign weights to distinct components of a
polychromatic beam.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:diffrn_radiation_wavelengthCategory>
<mmCIF:diffrn_radiation_wavelength id="1">
<mmCIF:wavelength>1.54</mmCIF:wavelength>
<mmCIF:wt>1.0</mmCIF:wt>
</mmCIF:diffrn_radiation_wavelength>
</mmCIF:diffrn_radiation_wavelengthCategory>
The radiation wavelength in angstroms.
The relative weight of a wavelength identified by the code
attribute id in category diffrn_radiation_wavelength in the list of wavelengths.
The code identifying each value of
attribute wavelength.
in category diffrn_radiation_wavelength Items in the DIFFRN_RADIATION_WAVELENGTH category are looped
when multiple wavelengths are used.
This code is used to link with the DIFFRN_REFLN category.
The attribute wavelength_id in category diffrn_refln codes must match one of
the codes defined in this category.
x1
x2
neut
Data items in the DIFFRN_REFLN category record details about
the intensities in the diffraction data set
identified by attribute diffrn_id.
in category diffrn_refln
The DIFFRN_REFLN data items refer to individual intensity
measurements and must be included in looped lists.
The DIFFRN_REFLNS data items specify the parameters that apply
to all intensity measurements in the particular diffraction
data set identified by attribute diffrn_id in category diffrn_reflns.
Example 1 - based on CAD-4 diffractometer data obtained for
Yb(S-C5H4N)2(THF)4 for data set 'set1' reflection 1102.
<mmCIF:diffrn_reflnCategory>
<mmCIF:diffrn_refln diffrn_id="set1" id="1102">
<mmCIF:angle_chi>32.21</mmCIF:angle_chi>
<mmCIF:angle_kappa>20.12</mmCIF:angle_kappa>
<mmCIF:angle_omega>11.54</mmCIF:angle_omega>
<mmCIF:angle_phi>176.02</mmCIF:angle_phi>
<mmCIF:angle_psi>0.00</mmCIF:angle_psi>
<mmCIF:angle_theta>23.08</mmCIF:angle_theta>
<mmCIF:attenuator_code>Ni.005</mmCIF:attenuator_code>
<mmCIF:counts_bg_1>22</mmCIF:counts_bg_1>
<mmCIF:counts_bg_2>25</mmCIF:counts_bg_2>
<mmCIF:counts_net>3450</mmCIF:counts_net>
<mmCIF:counts_peak>321</mmCIF:counts_peak>
<mmCIF:counts_total>3499</mmCIF:counts_total>
<mmCIF:detect_slit_horiz>0.04</mmCIF:detect_slit_horiz>
<mmCIF:detect_slit_vert>0.02</mmCIF:detect_slit_vert>
<mmCIF:elapsed_time>1.00</mmCIF:elapsed_time>
<mmCIF:index_h>4</mmCIF:index_h>
<mmCIF:index_k>0</mmCIF:index_k>
<mmCIF:index_l>2</mmCIF:index_l>
<mmCIF:intensity_net>202.56</mmCIF:intensity_net>
<mmCIF:intensity_sigma>2.18</mmCIF:intensity_sigma>
<mmCIF:scale_group_code>A24</mmCIF:scale_group_code>
<mmCIF:scan_mode>om</mmCIF:scan_mode>
<mmCIF:scan_mode_backgd>mo</mmCIF:scan_mode_backgd>
<mmCIF:scan_rate>1.2</mmCIF:scan_rate>
<mmCIF:scan_time_backgd>900.00</mmCIF:scan_time_backgd>
<mmCIF:scan_width>1.0</mmCIF:scan_width>
<mmCIF:sint_over_lambda>0.25426</mmCIF:sint_over_lambda>
<mmCIF:standard_code>1</mmCIF:standard_code>
<mmCIF:wavelength>1.54184</mmCIF:wavelength>
<mmCIF:wavelength_id>Cu1fixed</mmCIF:wavelength_id>
</mmCIF:diffrn_refln>
</mmCIF:diffrn_reflnCategory>
The diffractometer angle chi of a reflection in degrees. This
angle corresponds to the specified orientation matrix
and the original measured cell before any subsequent cell
transformations.
The diffractometer angle kappa of a reflection in degrees. This
angle corresponds to the specified orientation matrix
and the original measured cell before any subsequent cell
transformations.
The diffractometer angle omega of a reflection in degrees. This
angle corresponds to the specified orientation matrix
and the original measured cell before any subsequent cell
transformations.
The diffractometer angle phi of a reflection in degrees. This
angle corresponds to the specified orientation matrix
and the original measured cell before any subsequent cell
transformations.
The diffractometer angle psi of a reflection in degrees. This
angle corresponds to the specified orientation matrix
and the original measured cell before any subsequent cell
transformations.
The diffractometer angle theta of a reflection in degrees. This
angle corresponds to the specified orientation matrix
and the original measured cell before any subsequent cell
transformations.
The code identifying the attenuator setting for this reflection.
This code must match one of the attribute code in category diffrn_attenuator values.
The code identifying the class to which this reflection has
been assigned. This code must match a value of
attribute code in category diffrn_reflns_class. Reflections may be grouped into
classes for a variety of purposes. For example, for modulated
structures each reflection class may be defined by the
number m=sum|m~i~|, where the m~i~ are the integer coefficients
that, in addition to h,k,l, index the corresponding diffraction
vector in the basis defined for the reciprocal lattice.
The diffractometer counts for the measurement of the background
before the peak.
The diffractometer counts for the measurement of the background
after the peak.
The diffractometer counts for the measurement of net counts after
background removal.
The diffractometer counts for the measurement of counts for the
peak scan or position.
The diffractometer counts for the measurement of total counts
(background plus peak).
Total slit aperture in degrees in the diffraction plane.
Total slit aperture in degrees perpendicular to the
diffraction plane.
Elapsed time in minutes from the start of the diffraction
experiment to the measurement of this intensity.
Miller index h of a reflection. The values of
the Miller indices in the DIFFRN_REFLN category need not match
the values of the Miller indices in the REFLN category if a
transformation of the original measured cell has taken place.
Details of the cell transformation are given in
attribute reduction_process in category diffrn_reflns. See also
attribute transf_matrix[][] in category diffrn_reflns.
Miller index k of a reflection. The values of
the Miller indices in the DIFFRN_REFLN category need not match
the values of the Miller indices in the REFLN category if a
transformation of the original measured cell has taken place.
Details of the cell transformation are given in
attribute reduction_process in category diffrn_reflns. See also
attribute transf_matrix[][] in category diffrn_reflns.
Miller index l of a reflection. The values of
the Miller indices in the DIFFRN_REFLN category need not match
the values of the Miller indices in the REFLN category if a
transformation of the original measured cell has taken place.
Details of the cell transformation are given in
attribute reduction_process in category diffrn_reflns. See also
attribute transf_matrix[][] in category diffrn_reflns.
Net intensity calculated from the diffraction counts after the
attenuator and standard scales have been applied.
Standard uncertainty (estimated standard deviation) of the
intensity calculated from the diffraction counts after the
attenuator and standard scales have been applied.
Standard uncertainty of the net intensity calculated from
the diffraction counts after the attenuator and standard
scales have been applied.
The code identifying the scale applying to this reflection.
This data item is a pointer to attribute code in category diffrn_scale_group in the
DIFFRN_SCALE_GROUP category.
The code identifying the mode of scanning for measurements
using a diffractometer.
See _diffrn_refln.scan_width and _diffrn_refln.scan_mode_backgd.
The code identifying the mode of scanning a reflection to
measure the background intensity.
The rate of scanning a reflection in degrees per minute
to measure the intensity.
The time spent measuring each background in seconds.
The scan width in degrees of the scan mode defined by the code
attribute scan_mode in category diffrn_refln.
The (sin theta)/lambda value in reciprocal angstroms for this
reflection.
The code identifying that this reflection was measured as a
standard intensity.
This data item is a pointer to attribute code in category diffrn_standard_refln in the
DIFFRN_STANDARD_REFLN category.
The mean wavelength in angstroms of the radiation used to measure
the intensity of this reflection. This is an important parameter
for data collected using energy-dispersive detectors or the
Laue method.
This data item is a pointer to attribute wavelength_id in category diffrn_radiation in
the DIFFRN_RADIATION category.
This data item is a pointer to attribute id in category diffrn in the DIFFRN
category.
The value of attribute id in category diffrn_refln must uniquely identify the
reflection in the data set identified by the item
attribute diffrn_id.
in category diffrn_refln
Note that this item need not be a number; it can be any unique
identifier.
Data items in the DIFFRN_REFLNS category record details about
the set of intensities measured in the diffraction experiment.
The DIFFRN_REFLN data items refer to individual intensity
measurements and must be included in looped lists.
The DIFFRN_REFLNS data items specify the parameters that apply
to all intensity measurements in a diffraction data set.
The residual [sum|avdel(I)| / sum|av(I)|] for symmetry-equivalent
reflections used to calculate the average intensity av(I). The
avdel(I) term is the average absolute difference between av(I)
and the individual symmetry-equivalent intensities.
Measure [sum|sigma(I)|/sum|net(I)|] for all measured reflections.
Measure [sum u(net I)|/sum|net I|] for all measured reflections.
The maximum value of the Miller index h for the
reflection data specified by attribute index_h in category diffrn_refln.
The minimum value of the Miller index h for the
reflection data specified by attribute index_h in category diffrn_refln.
The maximum value of the Miller index k for the
reflection data specified by attribute index_k in category diffrn_refln.
The minimum value of the Miller index k for the
reflection data specified by attribute index_k in category diffrn_refln.
The maximum value of the Miller index l for the
reflection data specified by attribute index_l in category diffrn_refln.
The minimum value of the Miller index l for the
reflection data specified by attribute index_l in category diffrn_refln.
The total number of measured intensities, excluding reflections
that are classified as systematically absent.
A description of the process used to reduce the intensity data
into structure-factor magnitudes.
data averaged using Fisher test
Maximum theta angle in degrees for the measured diffraction
intensities.
Minimum theta angle in degrees for the measured diffraction
intensities.
The [1][1] element of the 3x3 matrix used to transform Miller
indices in the DIFFRN_REFLN category into the Miller indices in
the REFLN category.
The [1][2] element of the 3x3 matrix used to transform Miller
indices in the DIFFRN_REFLN category into the Miller indices in
the REFLN category.
The [1][3] element of the 3x3 matrix used to transform Miller
indices in the DIFFRN_REFLN category into the Miller indices in
the REFLN category.
The [2][1] element of the 3x3 matrix used to transform Miller
indices in the DIFFRN_REFLN category into the Miller indices in
the REFLN category.
The [2][2] element of the 3x3 matrix used to transform Miller
indices in the DIFFRN_REFLN category into the Miller indices in
the REFLN category.
The [2][3] element of the 3x3 matrix used to transform Miller
indices in the DIFFRN_REFLN category into the Miller indices in
the REFLN category.
The [3][1] element of the 3x3 matrix used to transform Miller
indices in the DIFFRN_REFLN category into the Miller indices in
the REFLN category.
The [3][2] element of the 3x3 matrix used to transform Miller
indices in the DIFFRN_REFLN category into the Miller indices in
the REFLN category.
The [3][3] element of the 3x3 matrix used to transform Miller
indices in the DIFFRN_REFLN category into the Miller indices in
the REFLN category.
This data item is a pointer to attribute id in category diffrn in the DIFFRN
category.
Data items in the DIFFRN_REFLNS_CLASS category record details
about the classes of reflections measured in the diffraction
experiment.
Example 1 - example corresponding to the one-dimensional incommensurately
modulated structure of K~2~SeO~4~. Each reflection class is
defined by the number m=sum|m~i~|, where the m~i~ are the
integer coefficients that, in addition to h,k,l, index the
corresponding diffraction vector in the basis defined for
the reciprocal lattice.
<mmCIF:diffrn_reflns_classCategory>
<mmCIF:diffrn_reflns_class code="Main">
<mmCIF:av_R_eq>0.015</mmCIF:av_R_eq>
<mmCIF:d_res_high>0.551</mmCIF:d_res_high>
<mmCIF:d_res_low>6.136</mmCIF:d_res_low>
<mmCIF:description>m=0; main reflections</mmCIF:description>
<mmCIF:number>1580</mmCIF:number>
</mmCIF:diffrn_reflns_class>
<mmCIF:diffrn_reflns_class code="Sat1">
<mmCIF:av_R_eq>0.010</mmCIF:av_R_eq>
<mmCIF:d_res_high>0.551</mmCIF:d_res_high>
<mmCIF:d_res_low>6.136</mmCIF:d_res_low>
<mmCIF:description>m=1; first-order satellites</mmCIF:description>
<mmCIF:number>1045</mmCIF:number>
</mmCIF:diffrn_reflns_class>
</mmCIF:diffrn_reflns_classCategory>
For each reflection class, the residual
[sum av|del(I)|/sum|av(I)|] for symmetry-equivalent reflections
used to calculate the average intensity av(I). The av|del(I)|
term is the average absolute difference between av(I) and the
individual intensities.
Measure [sum|sigma(net I)|/sum|net I|] for all measured intensities
in a reflection class.
Measure [sum|u(net I)|/sum|net I|] for all measured intensities
in a reflection class.
The smallest value in angstroms for the interplanar
spacings for the reflections in each measured reflection class.
This is called the highest resolution for this reflection class.
The largest value in angstroms of the interplanar
spacings for the reflections for each measured reflection class.
This is called the lowest resolution for this reflection class.
Description of each reflection class.
m=1 first order satellites
H0L0 common projection reflections
The total number of measured intensities for each reflection
class, excluding the systematic absences arising from
centring translations.
The code identifying a certain reflection class.
1
m1
s2
Data items in the DIFFRN_SCALE_GROUP category record details
of the scaling factors applied to place all intensities in the
reflection lists on a common scale.
Scaling groups might, for example, correspond to each film in a
multi-film data set or each crystal in a multi-crystal data set.
Example 1 - based on CAD-4 diffractometer data obtained for
Yb(S-C5H4N)2(THF)4.
<mmCIF:diffrn_scale_groupCategory>
<mmCIF:diffrn_scale_group code="A24">
<mmCIF:I_net>1.021</mmCIF:I_net>
</mmCIF:diffrn_scale_group>
</mmCIF:diffrn_scale_groupCategory>
The scale for a specific measurement group which is to be
multiplied with the net intensity to place all intensities
in the DIFFRN_REFLN or REFLN list on a common scale.
The value of attribute code in category diffrn_scale_group must uniquely identify a
record in the DIFFRN_SCALE_GROUP list.
Note that this item need not be a number; it can be any unique
identifier.
1
2
c1
c2
Data items in the DIFFRN_SOURCE category record details of
the source of radiation used in the diffraction experiment.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:diffrn_sourceCategory>
<mmCIF:diffrn_source diffrn_id="s1">
<mmCIF:current>180</mmCIF:current>
<mmCIF:power>50</mmCIF:power>
<mmCIF:size>8mm x 0.4 mm broad-focus</mmCIF:size>
<mmCIF:source>rotating anode</mmCIF:source>
<mmCIF:type>Rigaku RU-200</mmCIF:type>
</mmCIF:diffrn_source>
</mmCIF:diffrn_sourceCategory>
The current in milliamperes at which the radiation source
was operated.
A description of special aspects of the radiation source used.
The power in kilowatts at which the radiation source
was operated.
The dimensions of the source as viewed from the sample.
8mm x 0.4 mm fine-focus
broad focus
The general class of the radiation source.
sealed X-ray tube
nuclear reactor
spallation source
electron microscope
rotating-anode X-ray tube
synchrotron
The complement of the angle in degrees between the normal
to the surface of the X-ray tube target and the primary
X-ray beam for beams generated by traditional X-ray tubes.
1.5
The chemical element symbol for the X-ray target
(usually the anode) used to generate X-rays.
This can also be used for spallation sources.
The make, model or name of the source of radiation.
NSLS beamline X8C
Rigaku RU200
The voltage in kilovolts at which the radiation source was
operated.
This data item is a pointer to attribute id in category diffrn in the DIFFRN
category.
Data items in the DIFFRN_STANDARD_REFLN category record details
about the reflections treated as standards during the measurement
of a set of diffraction intensities.
Note that these are the individual standard reflections, not the
results of the analysis of the standard reflections.
Example 2 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
<mmCIF:diffrn_standard_reflnCategory>
<mmCIF:diffrn_standard_refln code="1" diffrn_id="s1">
<mmCIF:index_h>3</mmCIF:index_h>
<mmCIF:index_k>2</mmCIF:index_k>
<mmCIF:index_l>4</mmCIF:index_l>
</mmCIF:diffrn_standard_refln>
<mmCIF:diffrn_standard_refln code="1" diffrn_id="s1">
<mmCIF:index_h>1</mmCIF:index_h>
<mmCIF:index_k>9</mmCIF:index_k>
<mmCIF:index_l>1</mmCIF:index_l>
</mmCIF:diffrn_standard_refln>
<mmCIF:diffrn_standard_refln code="1" diffrn_id="s1">
<mmCIF:index_h>3</mmCIF:index_h>
<mmCIF:index_k>0</mmCIF:index_k>
<mmCIF:index_l>10</mmCIF:index_l>
</mmCIF:diffrn_standard_refln>
</mmCIF:diffrn_standard_reflnCategory>
Miller index h of a standard reflection used in the diffraction
measurement process.
Miller index k of a standard reflection used in the diffraction
measurement process.
Miller index l of a standard reflection used in the diffraction
measurement process.
The code identifying a reflection measured as a standard
reflection with the indices attribute index_h,
in category diffrn_standard_refln attribute index_k in category diffrn_standard_refln and
attribute index_l in category diffrn_standard_refln. This is the same code as the
attribute standard_code in category diffrn_refln in the DIFFRN_REFLN list.
1
2
c1
c2
This data item is a pointer to attribute id in category diffrn in the DIFFRN
category.
Data items in the DIFFRN_STANDARDS category record details
about the set of standard reflections used to monitor intensity
stability during the measurement of diffraction intensities.
Note that these records describe properties common to the set of
standard reflections, not the standard reflections themselves.
Example 1 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
<mmCIF:diffrn_standardsCategory>
<mmCIF:diffrn_standards diffrn_id="s1">
<mmCIF:decay_>0</mmCIF:decay_>
<mmCIF:interval_time>120</mmCIF:interval_time>
<mmCIF:number>3</mmCIF:number>
</mmCIF:diffrn_standards>
</mmCIF:diffrn_standardsCategory>
The percentage decrease in the mean of the intensities
for the set of standard reflections from the start of the
measurement process to the end. This value usually
affords a measure of the overall decay in crystal quality
during the diffraction measurement process. Negative values
are used in exceptional instances where the final intensities
are greater than the initial ones.
The number of reflection intensities between the measurement of
standard reflection intensities.
The time in minutes between the measurement of standard
reflection intensities.
The number of unique standard reflections used during the
measurement of the diffraction intensities.
The standard uncertainty (estimated standard deviation) of
the individual mean standard scales applied to the intensity
data.
The standard uncertainty of the individual mean
standard scales applied to the intensity data.
This data item is a pointer to attribute id in category diffrn in the DIFFRN
category.
Data items in the ENTITY category record details (such as
chemical composition, name and source) about the molecular
entities that are present in the crystallographic structure.
Items in the various ENTITY subcategories provide a full
chemical description of these molecular entities.
Entities are of three types: polymer, non-polymer and water.
Note that the water category includes only water; ordered
solvent such as sulfate ion or acetone would be described as
individual non-polymer entities.
The ENTITY category is specific to macromolecular CIF
applications and replaces the function of the CHEMICAL category
in the CIF core.
It is important to remember that the ENTITY data are not the
result of the crystallographic experiment; those results are
represented by the ATOM_SITE data items. ENTITY data items
describe the chemistry of the molecules under investigation
and can most usefully be thought of as the ideal groups to which
the structure is restrained or constrained during refinement.
It is also important to remember that entities do not correspond
directly to the enumeration of the contents of the asymmetric
unit. Entities are described only once, even in those structures
that contain multiple observations of an entity. The
STRUCT_ASYM data items, which reference the entity list,
describe and label the contents of the asymmetric unit.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:entityCategory>
<mmCIF:entity id="1">
<mmCIF:details> The enzymatically competent form of HIV
protease is a dimer. This entity
corresponds to one monomer of an active dimer.</mmCIF:details>
<mmCIF:formula_weight>10916</mmCIF:formula_weight>
<mmCIF:type>polymer</mmCIF:type>
</mmCIF:entity>
<mmCIF:entity id="2">
<mmCIF:details xsi:nil="true" />
<mmCIF:formula_weight>762</mmCIF:formula_weight>
<mmCIF:type>non-polymer</mmCIF:type>
</mmCIF:entity>
<mmCIF:entity id="3">
<mmCIF:details xsi:nil="true" />
<mmCIF:formula_weight>18</mmCIF:formula_weight>
<mmCIF:type>water</mmCIF:type>
</mmCIF:entity>
</mmCIF:entityCategory>
A description of special aspects of the entity.
Formula mass in daltons of the entity.
The method by which the sample for the entity was produced.
Entities isolated directly from natural sources (tissues, soil
samples etc.) are expected to have further information in the
ENTITY_SRC_NAT category. Entities isolated from genetically
manipulated sources are expected to have further information in
the ENTITY_SRC_GEN category.
Defines the type of the entity.
Polymer entities are expected to have corresponding
ENTITY_POLY and associated entries.
Non-polymer entities are expected to have corresponding
CHEM_COMP and associated entries.
Water entities are not expected to have corresponding
entries in the ENTITY category.
The value of attribute id in category entity must uniquely identify a record in the
ENTITY list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the ENTITY_KEYWORDS category specify keywords
relevant to the molecular entities. Note that this list of
keywords is separate from the list that is used for the
STRUCT_BIOL data items and is intended to provide only the
information that one would know about the molecular entity *if
one did not know its structure*. Hence polypeptides are simply
polypeptides, not cytokines or beta-alpha-barrels, and
polyribonucleic acids are simply poly-RNA, not transfer-
RNA.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:entity_keywordsCategory>
<mmCIF:entity_keywords entity_id="1" text="polypeptide"></mmCIF:entity_keywords>
<mmCIF:entity_keywords entity_id="2" text="natural product, inhibitor, reduced peptide"></mmCIF:entity_keywords>
</mmCIF:entity_keywordsCategory>
This data item is a pointer to attribute id in category entity in the ENTITY category.
Keywords describing this entity.
polypeptide
natural product
polysaccharide
Data items in the ENTITY_LINK category give details about
the links between entities.
A description of special aspects of a link between
chemical components in the structure.
The entity ID of the first of the two entities joined by the
link.
This data item is a pointer to attribute id in category entity in the ENTITY
category.
The entity ID of the second of the two entities joined by the
link.
This data item is a pointer to attribute id in category entity in the ENTITY
category.
For a polymer entity, the sequence number in the first of
the two entities containing the link.
This data item is a pointer to attribute num in category entity_poly_seq in the
ENTITY_POLY_SEQ category.
For a polymer entity, the sequence number in the second of
the two entities containing the link.
This data item is a pointer to attribute num in category entity_poly_seq in the
ENTITY_POLY_SEQ category.
This data item is a pointer to attribute id in category chem_link in the
CHEM_LINK category.
Data items in the ENTITY_NAME_COM category record the common name
or names associated with the entity. In some cases, the entity
name may not be the same as the name of the biological structure.
For example, haemoglobin alpha chain would be the entity common
name, not haemoglobin.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:entity_name_comCategory>
<mmCIF:entity_name_com entity_id="1" name="HIV-1 protease monomer"></mmCIF:entity_name_com>
<mmCIF:entity_name_com entity_id="1" name="HIV-1 PR monomer"></mmCIF:entity_name_com>
<mmCIF:entity_name_com entity_id="2" name="acetyl-pepstatin"></mmCIF:entity_name_com>
<mmCIF:entity_name_com entity_id="2" name="acetyl-Ile-Val-Asp-Statine-Ala-Ile-Statine"></mmCIF:entity_name_com>
<mmCIF:entity_name_com entity_id="3" name="water"></mmCIF:entity_name_com>
</mmCIF:entity_name_comCategory>
This data item is a pointer to attribute id in category entity in the ENTITY category.
A common name for the entity.
HIV protease monomer
hemoglobin alpha chain
2-fluoro-1,4-dichloro benzene
arbutin
Data items in the ENTITY_NAME_SYS category record the systematic
name or names associated with the entity and the system that
was used to construct the systematic name. In some cases, the
entity name may not be the same as the name of the biological
structure.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:entity_name_sysCategory>
<mmCIF:entity_name_sys entity_id="1" name="EC 3.4.23.16"></mmCIF:entity_name_sys>
<mmCIF:entity_name_sys entity_id="2" name="acetyl-Ile-Val-Asp-Sta-Ala-Ile-Sta"></mmCIF:entity_name_sys>
<mmCIF:entity_name_sys entity_id="3" name="water"></mmCIF:entity_name_sys>
</mmCIF:entity_name_sysCategory>
The system used to generate the systematic name of the entity.
Chemical Abstracts conventions
enzyme convention
Sigma catalog
This data item is a pointer to attribute id in category entity in the ENTITY category.
The systematic name for the entity.
hydroquinone-beta-D-pyranoside
EC 2.1.1.1
2-fluoro-1,4-dichlorobenzene
Data items in the ENTITY_POLY category record details about the
polymer, such as the type of the polymer, the number of
monomers and whether it has nonstandard features.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:entity_polyCategory>
<mmCIF:entity_poly entity_id="1">
<mmCIF:nstd_chirality>no</mmCIF:nstd_chirality>
<mmCIF:nstd_linkage>no</mmCIF:nstd_linkage>
<mmCIF:nstd_monomer>no</mmCIF:nstd_monomer>
<mmCIF:type>polypeptide(L)</mmCIF:type>
<mmCIF:type_details xsi:nil="true" />
</mmCIF:entity_poly>
</mmCIF:entity_polyCategory>
A flag to indicate whether the polymer contains at least
one monomer unit with chirality different from that specified in
attribute type in category entity_poly.
A flag to indicate whether the polymer contains at least
one monomer-to-monomer link different from that implied by
attribute type in category entity_poly.
A flag to indicate whether the polymer contains at least
one monomer that is not considered standard.
The number of monomers in the polymer.
The type of the polymer.
A description of special aspects of the polymer type.
monomer Ala 16 is a D-amino acid
the oligomer contains alternating RNA and DNA units
This data item is a pointer to attribute id in category entity in the ENTITY category.
Data items in the ENTITY_POLY_SEQ category specify the sequence
of monomers in a polymer. Allowance is made for the possibility
of microheterogeneity in a sample by allowing a given sequence
number to be correlated with more than one monomer ID. The
corresponding ATOM_SITE entries should reflect this
heterogeneity.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:entity_poly_seqCategory>
<mmCIF:entity_poly_seq entity_id="1" mon_id="PRO" num="1"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="GLN" num="2"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="ILE" num="3"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="THR" num="4"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="LEU" num="5"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="TRP" num="6"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="GLN" num="7"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="ARG" num="8"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="PRO" num="9"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="LEU" num="10"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="VAL" num="11"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="THR" num="12"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="ILE" num="13"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="LYS" num="14"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="ILE" num="15"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="GLY" num="16"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="GLY" num="17"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="GLN" num="18"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="LEU" num="19"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="LYS" num="20"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="GLU" num="21"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="ALA" num="22"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="LEU" num="23"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="LEU" num="24"></mmCIF:entity_poly_seq>
<mmCIF:entity_poly_seq entity_id="1" mon_id="ASP" num="25"></mmCIF:entity_poly_seq>
</mmCIF:entity_poly_seqCategory>
A flag to indicate whether this monomer in the polymer is
heterogeneous in sequence. This would be rare.
This data item is a pointer to attribute id in category entity in the ENTITY category.
This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP
category.
The value of attribute num in category entity_poly_seq must uniquely and sequentially
identify a record in the ENTITY_POLY_SEQ list.
Note that this item must be a number and that the sequence
numbers must progress in increasing numerical order.
Data items in the ENTITY_SRC_GEN category record details of
the source from which the entity was obtained in cases
where the source was genetically manipulated. The
following are treated separately: items pertaining to the tissue
from which the gene was obtained, items pertaining to the host
organism for gene expression and items pertaining to the actual
producing organism (plasmid).
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:entity_src_genCategory>
<mmCIF:entity_src_gen entity_id="1">
<mmCIF:gene_src_common_name>HIV-1</mmCIF:gene_src_common_name>
<mmCIF:gene_src_strain>NY-5</mmCIF:gene_src_strain>
<mmCIF:host_org_common_name>bacteria</mmCIF:host_org_common_name>
<mmCIF:host_org_genus>Escherichia</mmCIF:host_org_genus>
<mmCIF:host_org_species>coli</mmCIF:host_org_species>
<mmCIF:plasmid_name>pB322</mmCIF:plasmid_name>
</mmCIF:entity_src_gen>
</mmCIF:entity_src_genCategory>
The common name of the natural organism from which the gene was
obtained.
man
yeast
bacteria
A description of special aspects of the natural organism from
which the gene was obtained.
The genus of the natural organism from which the gene was
obtained.
Homo
Saccharomyces
Escherichia
The species of the natural organism from which the gene was
obtained.
sapiens
cerevisiae
coli
The strain of the natural organism from which the gene was
obtained, if relevant.
DH5a
BMH 71-18
The tissue of the natural organism from which the gene was
obtained.
heart
liver
eye lens
The subcellular fraction of the tissue of the natural organism
from which the gene was obtained.
mitochondria
nucleus
membrane
The common name of the organism that served as host for the
production of the entity.
yeast
bacteria
A description of special aspects of the organism that served as
host for the production of the entity.
The genus of the organism that served as host for the production
of the entity.
Saccharomyces
Escherichia
The species of the organism that served as host for the
production of the entity.
cerevisiae
coli
The strain of the organism that served as host for the
production of the entity.
DH5a
BMH 71-18
A description of special aspects of the plasmid that produced the
entity in the host organism.
The name of the plasmid that produced the entity in the host
organism.
pET3C
pT123sab
This data item is a pointer to attribute id in category entity in the ENTITY category.
Data items in the ENTITY_SRC_NAT category record details of
the source from which the entity was obtained in cases
where the entity was isolated directly from a natural tissue.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:entity_src_natCategory>
<mmCIF:entity_src_nat entity_id="2">
<mmCIF:common_name>bacteria</mmCIF:common_name>
<mmCIF:details> Acetyl-pepstatin was isolated by Dr. K. Oda, Osaka
Prefecture University, and provided to us by Dr. Ben
Dunn, University of Florida, and Dr. J. Kay, University
of Wales.</mmCIF:details>
<mmCIF:genus>Actinomycetes</mmCIF:genus>
</mmCIF:entity_src_nat>
</mmCIF:entity_src_natCategory>
The common name of the organism from which the entity
was isolated.
man
yeast
bacteria
A description of special aspects of the organism from which the
entity was isolated.
The genus of the organism from which the entity was isolated.
Homo
Saccharomyces
Escherichia
The species of the organism from which the entity was isolated.
sapiens
cerevisiae
coli
The strain of the organism from which the entity was isolated.
DH5a
BMH 71-18
The tissue of the organism from which the entity was isolated.
heart
liver
eye lens
The subcellular fraction of the tissue of the organism from
which the entity was isolated.
mitochondria
nucleus
membrane
This data item is a pointer to attribute id in category entity in the ENTITY category.
There is only one item in the ENTRY category, attribute id in category entry. This
data item gives a name to this entry and is indirectly a key to
the categories (such as CELL, GEOM, EXPTL) that describe
information pertinent to the entire data block.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:entryCategory>
<mmCIF:entry id="5HVP"></mmCIF:entry>
</mmCIF:entryCategory>
Example 2 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
<mmCIF:entryCategory>
<mmCIF:entry id="TOZ"></mmCIF:entry>
</mmCIF:entryCategory>
The value of attribute id in category entry identifies the data block.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the ENTRY_LINK category record the
relationships between the current data block
identified by attribute id in category entry and other data blocks
within the current file which may be referenced
in the current data block.
Example 1 - example file for the one-dimensional incommensurately
modulated structure of K~2~SeO~4~.
<mmCIF:entry_linkCategory>
<mmCIF:entry_link entry_id="KSE_TEXT" id="KSE_COM">
<mmCIF:details>experimental data common to ref./mod. structures</mmCIF:details>
</mmCIF:entry_link>
<mmCIF:entry_link entry_id="KSE_TEXT" id="KSE_REF">
<mmCIF:details>reference structure</mmCIF:details>
</mmCIF:entry_link>
<mmCIF:entry_link entry_id="KSE_TEXT" id="KSE_MOD">
<mmCIF:details>modulated structure</mmCIF:details>
</mmCIF:entry_link>
</mmCIF:entry_linkCategory>
A description of the relationship between the data blocks
identified by _entry_link.id and _entry_link.entry_id.
This data item is a pointer to attribute id in category entry in the ENTRY category.
The value of attribute id in category entry_link identifies a data block
related to the current data block.
Data items in the EXPTL category record details about the
experimental work prior to the intensity measurements and
details about the absorption-correction technique employed.
Example 1 - based on laboratory records for Yb(S-C5H4N)2(THF)4.
<mmCIF:exptlCategory>
<mmCIF:exptl entry_id="datablock1">
<mmCIF:absorpt_coefficient_mu>1.22</mmCIF:absorpt_coefficient_mu>
<mmCIF:absorpt_correction_T_max>0.896</mmCIF:absorpt_correction_T_max>
<mmCIF:absorpt_correction_T_min>0.802</mmCIF:absorpt_correction_T_min>
<mmCIF:absorpt_correction_type>integration</mmCIF:absorpt_correction_type>
<mmCIF:absorpt_process_details> Gaussian grid method from SHELX76
Sheldrick, G. M., "SHELX-76: structure determination and
refinement program", Cambridge University, UK, 1976</mmCIF:absorpt_process_details>
<mmCIF:crystals_number>1</mmCIF:crystals_number>
<mmCIF:details> Enraf-Nonius LT2 liquid nitrogen variable-temperature
device used</mmCIF:details>
<mmCIF:method>single-crystal x-ray diffraction</mmCIF:method>
<mmCIF:method_details> graphite monochromatized Cu K(alpha) fixed tube and
Enraf-Nonius CAD4 diffractometer used</mmCIF:method_details>
</mmCIF:exptl>
</mmCIF:exptlCategory>
The absorption coefficient mu in reciprocal millimetres
calculated from the atomic content of the cell, the density and
the radiation wavelength.
The maximum transmission factor for the crystal and radiation.
The maximum and minimum transmission factors are also referred
to as the absorption correction
A or 1/A*.
The minimum transmission factor for the crystal and radiation.
The maximum and minimum transmission factors are also referred
to as the absorption correction
A or 1/A*.
The absorption correction type and method. The value
'empirical' should NOT be used unless more detailed
information is not available.
Description of the absorption process applied to the
intensities. A literature reference should be supplied for
psi-scan techniques.
Tompa analytical
The total number of crystals used in the measurement of
intensities.
Any special information about the experimental work prior to the
intensity measurement. See also attribute preparation in category exptl_crystal.
The method used in the experiment.
single-crystal x-ray diffraction
single-crystal neutron diffraction
single-crystal electron diffraction
fiber x-ray diffraction
fiber neutron diffraction
fiber electron diffraction
single-crystal joint x-ray and neutron diffraction
single-crystal joint x-ray and electron diffraction
solution nmr
solid-state nmr
theoretical model
other
A description of special aspects of the experimental method.
29 structures
minimized average structure
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the EXPTL_CRYSTAL category record the results of
experimental measurements on the crystal or crystals used,
such as shape, size or density.
Example 1 - based on laboratory records for Yb(S-C5H4N)2(THF)4.
<mmCIF:exptl_crystalCategory>
<mmCIF:exptl_crystal id="xst2l">
<mmCIF:F_000>202</mmCIF:F_000>
<mmCIF:colour>pale yellow</mmCIF:colour>
<mmCIF:density_Matthews>1.01</mmCIF:density_Matthews>
<mmCIF:density_diffrn>1.113</mmCIF:density_diffrn>
<mmCIF:density_meas>1.11</mmCIF:density_meas>
<mmCIF:density_meas_temp>294.5</mmCIF:density_meas_temp>
<mmCIF:density_method>neutral buoyancy</mmCIF:density_method>
<mmCIF:density_percent_sol>0.15</mmCIF:density_percent_sol>
<mmCIF:description>hexagonal rod, uncut</mmCIF:description>
<mmCIF:preparation> hanging drop, crystal soaked in 10% ethylene glycol for
10 h, then placed in nylon loop at data collection time</mmCIF:preparation>
<mmCIF:size_max>0.30</mmCIF:size_max>
<mmCIF:size_mid>0.20</mmCIF:size_mid>
<mmCIF:size_min>0.05</mmCIF:size_min>
<mmCIF:size_rad>0.025</mmCIF:size_rad>
</mmCIF:exptl_crystal>
</mmCIF:exptl_crystalCategory>
Example 2 - using separate items to define upper and lower
limits for a value.
Example 3 - here the density was measured at some
unspecified temperature below room temperature.
The effective number of electrons in the crystal unit cell
contributing to F(000). This may contain dispersion contributions
and is calculated as
F(000) = [ sum (f~r~^2^ + f~i~^2^) ]^1/2^
f~r~ = real part of the scattering factors at theta = 0 degree
f~i~ = imaginary part of the scattering factors at
theta = 0 degree
the sum is taken over each atom in the unit cell
The colour of the crystal.
dark green
The enumeration list of standardized names developed for the
International Centre for Diffraction Data.
The colour of a crystal is given by the combination of
attribute colour_modifier in category exptl_crystal with
attribute colour_primary in category exptl_crystal, as in 'dark-green' or
'bluish-violet', if necessary combined with
attribute colour_lustre in category exptl_crystal, as in 'metallic-green'.
The enumeration list of standardized names developed for the
International Centre for Diffraction Data.
The colour of a crystal is given by the combination of
attribute colour_modifier in category exptl_crystal with
attribute colour_primary in category exptl_crystal, as in 'dark-green' or
'bluish-violet', if necessary combined with
attribute colour_lustre in category exptl_crystal, as in 'metallic-green'.
The enumeration list of standardized names developed for the
International Centre for Diffraction Data.
The colour of a crystal is given by the combination of
attribute colour_modifier in category exptl_crystal with
attribute colour_primary in category exptl_crystal, as in 'dark-green' or
'bluish-violet', if necessary combined with
attribute colour_lustre in category exptl_crystal, as in 'metallic-green'.
The density of the crystal, expressed as the ratio of the
volume of the asymmetric unit to the molecular mass of a
monomer of the structure, in units of angstroms^3^ per dalton.
Ref: Matthews, B. W. (1968). J. Mol. Biol. 33, 491-497.
Density values calculated from the crystal cell and contents. The
units are megagrams per cubic metre (grams per cubic centimetre).
Density values measured using standard chemical and physical
methods. The units are megagrams per cubic metre (grams per
cubic centimetre).
The estimated standard deviation of attribute density_meas in category exptl_crystal.
The value above which the density measured using standard
chemical and physical methods lies. The units are megagrams
per cubic metre (grams per cubic centimetre).
_exptl_crystal.density_meas_gt and _exptl_crystal.density_meas_lt
should not be used to report new experimental work, for which
attribute density_meas in category exptl_crystal should be used. These items are
intended for use in reporting information in existing databases
and archives which would be misleading if reported under
attribute density_meas in category exptl_crystal.
lower limit for the density (only the range
within which the density lies was given in the
original paper)
2.5
The value below which the density measured using standard
chemical and physical methods lies. The units are megagrams
per cubic metre (grams per cubic centimetre).
_exptl_crystal.density_meas_gt and _exptl_crystal.density_meas_lt
should not be used to report new experimental work, for which
attribute density_meas in category exptl_crystal should be used. These items are
intended for use in reporting information in existing databases
and archives which would be misleading if reported under
attribute density_meas in category exptl_crystal.
specimen floats in water
1.0
upper limit for the density (only the range
within which the density lies was given in the
original paper)
5.0
Temperature in kelvins at which attribute density_meas
in category exptl_crystal was determined.
The estimated standard deviation of
attribute density_meas_temp in category exptl_crystal.
Temperature in kelvins above which attribute density_meas
in category exptl_crystal was determined. attribute density_meas_temp_gt in category exptl_crystal and
attribute density_meas_temp_lt in category exptl_crystal should not be used for
reporting new work, for which the correct temperature of
measurement should be given. These items are intended for
use in reporting information stored in databases or archives
which would be misleading if reported under
attribute density_meas_temp in category exptl_crystal.
Temperature in kelvins below which attribute density_meas
in category exptl_crystal was determined. attribute density_meas_temp_gt in category exptl_crystal and
attribute density_meas_temp_lt in category exptl_crystal should not be used for
reporting new work, for which the correct temperature of
measurement should be given. These items are intended for
use in reporting information stored in databases or archives
which would be misleading if reported under
attribute density_meas_temp in category exptl_crystal.
The density was measured at some unspecified
temperature below room temperature.
300
The method used to measure attribute density_meas in category exptl_crystal.
Density value P calculated from the crystal cell and contents,
expressed as per cent solvent.
P = 1 - (1.23 N MMass) / V
N = the number of molecules in the unit cell
MMass = the molecular mass of each molecule (gm/mole)
V = the volume of the unit cell (A^3^)
1.23 = a conversion factor evaluated as:
(0.74 cm^3^/g) (10^24^ A^3^/cm^3^)
--------------------------------------
(6.02*10^23^) molecules/mole
where 0.74 is an assumed value for the partial specific
volume of the molecule
A description of the quality and habit of the crystal.
The crystal dimensions should not normally be reported here;
use instead the specific items in the EXPTL_CRYSTAL category
relating to size for the gross dimensions of the crystal and
data items in the EXPTL_CRYSTAL_FACE category to describe the
relationship between individual faces.
Details of crystal growth and preparation of the crystal (e.g.
mounting) prior to the intensity measurements.
mounted in an argon-filled quartz capillary
The maximum dimension of the crystal. This item may appear in a
list with attribute id in category exptl_crystal if multiple crystals are used in the
experiment.
The medial dimension of the crystal. This item may appear in a
list with attribute id in category exptl_crystal if multiple crystals are used in the
experiment.
The minimum dimension of the crystal. This item may appear in a
list with attribute id in category exptl_crystal if multiple crystals are used in the
experiment.
The radius of the crystal, if the crystal is a sphere or a
cylinder. This item may appear in a list with attribute id
in category exptl_crystal if multiple crystals are used in the experiment.
The value of attribute id in category exptl_crystal must uniquely identify a record in
the EXPTL_CRYSTAL list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the EXPTL_CRYSTAL_FACE category record details
of the crystal faces.
Example 1 - based on laboratory records for Yb(S-C5H4N)2(THF)4
for the 100 face of crystal xstl1.
<mmCIF:exptl_crystal_faceCategory>
<mmCIF:exptl_crystal_face crystal_id="xstl1" index_h="1" index_k="0" index_l="0">
<mmCIF:diffr_chi>42.56</mmCIF:diffr_chi>
<mmCIF:diffr_kappa>30.23</mmCIF:diffr_kappa>
<mmCIF:diffr_phi>-125.56</mmCIF:diffr_phi>
<mmCIF:diffr_psi>-0.34</mmCIF:diffr_psi>
<mmCIF:perp_dist>0.025</mmCIF:perp_dist>
</mmCIF:exptl_crystal_face>
</mmCIF:exptl_crystal_faceCategory>
The chi diffractometer setting angle in degrees for a specific
crystal face associated with attribute perp_dist in category exptl_crystal_face.
The kappa diffractometer setting angle in degrees for a specific
crystal face associated with attribute perp_dist in category exptl_crystal_face.
The phi diffractometer setting angle in degrees for a specific
crystal face associated with attribute perp_dist in category exptl_crystal_face.
The psi diffractometer setting angle in degrees for a specific
crystal face associated with attribute perp_dist in category exptl_crystal_face.
The perpendicular distance in millimetres from the face to the
centre of rotation of the crystal.
This data item is a pointer to attribute id in category exptl_crystal in the
EXPTL_CRYSTAL category.
Miller index h of the crystal face associated with the value
attribute perp_dist in category exptl_crystal_face.
Miller index k of the crystal face associated with the value
attribute perp_dist in category exptl_crystal_face.
Miller index l of the crystal face associated with the value
attribute perp_dist in category exptl_crystal_face.
Data items in the EXPTL_CRYSTAL_GROW category record details
about the conditions and methods used to grow the crystal.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:exptl_crystal_growCategory>
<mmCIF:exptl_crystal_grow crystal_id="1">
<mmCIF:apparatus>Linbro plates</mmCIF:apparatus>
<mmCIF:atmosphere>room air</mmCIF:atmosphere>
<mmCIF:method>hanging drop</mmCIF:method>
<mmCIF:pH>4.7</mmCIF:pH>
<mmCIF:temp>18(3)</mmCIF:temp>
<mmCIF:time>approximately 2 days</mmCIF:time>
</mmCIF:exptl_crystal_grow>
</mmCIF:exptl_crystal_growCategory>
The physical apparatus in which the crystal was grown.
Linbro plate
sandwich box
ACA plates
The nature of the gas or gas mixture in which the crystal was
grown.
room air
nitrogen
argon
A description of special aspects of the crystal growth.
Solution 2 was prepared as a well solution and
mixed. A droplet containing 2 \ml of solution
1 was delivered onto a cover slip; 2 \ml of
solution 2 was added to the droplet without
mixing.
Crystal plates were originally stored at room
temperature for 1 week but no nucleation
occurred. They were then transferred to 4
degrees C, at which temperature well formed
single crystals grew in 2 days.
The dependence on pH for successful crystal
growth is very sharp. At pH 7.4 only showers
of tiny crystals grew, at pH 7.5 well formed
single crystals grew, at pH 7.6 no
crystallization occurred at all.
The method used to grow the crystals.
batch precipitation
batch dialysis
hanging drop vapor diffusion
sitting drop vapor diffusion
A literature reference that describes the method used to grow
the crystals.
McPherson et al., 1988
The pH at which the crystal was grown. If more than one pH was
employed during the crystallization process, the final pH should
be noted here and the protocol involving multiple pH values
should be described in attribute details in category exptl_crystal_grow.
7.4
7.6
4.3
The ambient pressure in kilopascals at which the crystal was
grown.
The standard uncertainty (estimated standard deviation)
of attribute pressure in category exptl_crystal_grow.
A description of the protocol used for seeding the crystal
growth.
macroseeding
Microcrystals were introduced from a previous
crystal growth experiment by transfer with a
human hair.
A literature reference that describes the protocol used to seed
the crystal.
Stura et al., 1989
The temperature in kelvins at which the crystal was grown.
If more than one temperature was employed during the
crystallization process, the final temperature should be noted
here and the protocol involving multiple temperatures should be
described in attribute details in category exptl_crystal_grow.
A description of special aspects of temperature control during
crystal growth.
The standard uncertainty (estimated standard deviation)
of attribute temp in category exptl_crystal_grow.
The approximate time that the crystal took to grow to the size
used for data collection.
overnight
2-4 days
6 months
This data item is a pointer to attribute id in category exptl_crystal in the
EXPTL_CRYSTAL category.
Data items in the EXPTL_CRYSTAL_GROW_COMP category record
details about the components of the solutions that were 'mixed'
(by whatever means) to produce the crystal.
In general, solution 1 is the solution that contains the
molecule to be crystallized and solution 2 is the solution
that contains the precipitant. However, the number of solutions
required to describe the crystallization protocol is not limited
to 2.
Details of the crystallization protocol should be given in
attribute details in category exptl_crystal_grow_comp using the solutions
described in EXPTL_CRYSTAL_GROW_COMP.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:exptl_crystal_grow_compCategory>
<mmCIF:exptl_crystal_grow_comp crystal_id="1" id="1">
<mmCIF:conc>6 mg/ml</mmCIF:conc>
<mmCIF:details> The protein solution was in a buffer containing 25 mM NaCl,
100 mM NaMES/ MES buffer, pH 7.5, 3 mM NaAzide</mmCIF:details>
<mmCIF:name>HIV-1 protease</mmCIF:name>
<mmCIF:sol_id>1</mmCIF:sol_id>
<mmCIF:volume>0.002 ml</mmCIF:volume>
</mmCIF:exptl_crystal_grow_comp>
<mmCIF:exptl_crystal_grow_comp crystal_id="1" id="2">
<mmCIF:conc>4 M</mmCIF:conc>
<mmCIF:details>in 3 mM NaAzide</mmCIF:details>
<mmCIF:name>NaCl</mmCIF:name>
<mmCIF:sol_id>2</mmCIF:sol_id>
<mmCIF:volume>0.200 ml</mmCIF:volume>
</mmCIF:exptl_crystal_grow_comp>
<mmCIF:exptl_crystal_grow_comp crystal_id="1" id="3">
<mmCIF:conc>100 mM</mmCIF:conc>
<mmCIF:details>in 3 mM NaAzide</mmCIF:details>
<mmCIF:name>Acetic Acid</mmCIF:name>
<mmCIF:sol_id>2</mmCIF:sol_id>
<mmCIF:volume>0.047 ml</mmCIF:volume>
</mmCIF:exptl_crystal_grow_comp>
<mmCIF:exptl_crystal_grow_comp crystal_id="1" id="4">
<mmCIF:conc>100 mM</mmCIF:conc>
<mmCIF:details> in 3 mM NaAzide. Buffer components were mixed to produce a
pH of 4.7 according to a ratio calculated from the pKa. The
actual pH of solution 2 was not measured.</mmCIF:details>
<mmCIF:name>Na Acetate</mmCIF:name>
<mmCIF:sol_id>2</mmCIF:sol_id>
<mmCIF:volume>0.053 ml</mmCIF:volume>
</mmCIF:exptl_crystal_grow_comp>
<mmCIF:exptl_crystal_grow_comp crystal_id="1" id="5">
<mmCIF:conc>neat</mmCIF:conc>
<mmCIF:details>in 3 mM NaAzide</mmCIF:details>
<mmCIF:name>water</mmCIF:name>
<mmCIF:sol_id>2</mmCIF:sol_id>
<mmCIF:volume>0.700 ml</mmCIF:volume>
</mmCIF:exptl_crystal_grow_comp>
</mmCIF:exptl_crystal_grow_compCategory>
The concentration of the solution component.
200 \ml
0.1 ml
A description of any special aspects of the solution component.
When the solution component is the one that contains the
macromolecule, this could be the specification of the buffer in
which the macromolecule was stored. When the solution component
is a buffer component, this could be the methods (or formula)
used to achieve a desired pH.
in 3 mM NaAzide
The protein solution was in a buffer
containing 25 mM NaCl, 100 mM NaMES/MES
buffer, pH 7.5, 3 mM NaAzide
in 3 mM NaAzide. Buffer components were mixed
to produce a pH of 4.7 according to a ratio
calculated from the pKa. The actual pH of
solution 2 was not measured.
A common name for the component of the solution.
protein in buffer
acetic acid
An identifier for the solution to which the given solution
component belongs.
1
well solution
solution A
The volume of the solution component.
200 \ml
0.1 ml
This data item is a pointer to attribute id in category exptl_crystal in the
EXPTL_CRYSTAL category.
The value of attribute id in category exptl_crystal_grow_comp must uniquely identify
each item in the EXPTL_CRYSTAL_GROW_COMP list.
Note that this item need not be a number; it can be any unique
identifier.
1
A
protein in buffer
Data items in the GEOM and related (GEOM_ANGLE,
GEOM_BOND, GEOM_CONTACT, GEOM_HBOND and GEOM_TORSION)
categories record details about the molecular
geometry as calculated from the contents of the ATOM, CELL
and SYMMETRY data.
Geometry data are therefore redundant, in that they can be
calculated from other more fundamental quantities in the data
block. However, they provide a check on the correctness of
both sets of data and enable the most important geometric data
to be identified for publication by setting the appropriate
publication flag.
A description of geometry not covered by the
existing data names in the GEOM categories, such as
least-squares planes.
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the GEOM_ANGLE category record details about the
bond angles as calculated from the contents
of the ATOM, CELL and SYMMETRY data.
Example 1 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
<mmCIF:geom_angleCategory>
<mmCIF:geom_angle atom_site_id_1="C2" atom_site_id_2="O1" atom_site_id_3="C5" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555">
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
<mmCIF:value>111.6</mmCIF:value>
<mmCIF:value_esd>0.2</mmCIF:value_esd>
</mmCIF:geom_angle>
<mmCIF:geom_angle atom_site_id_1="O1" atom_site_id_2="C2" atom_site_id_3="C3" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555">
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
<mmCIF:value>110.9</mmCIF:value>
<mmCIF:value_esd>0.2</mmCIF:value_esd>
</mmCIF:geom_angle>
<mmCIF:geom_angle atom_site_id_1="O1" atom_site_id_2="C2" atom_site_id_3="O21" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555">
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
<mmCIF:value>122.2</mmCIF:value>
<mmCIF:value_esd>0.3</mmCIF:value_esd>
</mmCIF:geom_angle>
<mmCIF:geom_angle atom_site_id_1="C3" atom_site_id_2="C2" atom_site_id_3="O21" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555">
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
<mmCIF:value>127.0</mmCIF:value>
<mmCIF:value_esd>0.3</mmCIF:value_esd>
</mmCIF:geom_angle>
<mmCIF:geom_angle atom_site_id_1="C2" atom_site_id_2="C3" atom_site_id_3="N4" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555">
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
<mmCIF:value>101.3</mmCIF:value>
<mmCIF:value_esd>0.2</mmCIF:value_esd>
</mmCIF:geom_angle>
<mmCIF:geom_angle atom_site_id_1="C2" atom_site_id_2="C3" atom_site_id_3="C31" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555">
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
<mmCIF:value>111.3</mmCIF:value>
<mmCIF:value_esd>0.2</mmCIF:value_esd>
</mmCIF:geom_angle>
<mmCIF:geom_angle atom_site_id_1="C2" atom_site_id_2="C3" atom_site_id_3="H3" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555">
<mmCIF:publ_flag>no</mmCIF:publ_flag>
<mmCIF:value>107</mmCIF:value>
<mmCIF:value_esd>1</mmCIF:value_esd>
</mmCIF:geom_angle>
<mmCIF:geom_angle atom_site_id_1="N4" atom_site_id_2="C3" atom_site_id_3="C31" site_symmetry_1="1_555" site_symmetry_2="1_555" site_symmetry_3="1_555">
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
<mmCIF:value>116.7</mmCIF:value>
<mmCIF:value_esd>0.2</mmCIF:value_esd>
</mmCIF:geom_angle>
</mmCIF:geom_angleCategory>
An optional identifier of the first of the three atom sites that
define the angle.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the three atom sites
that define the angle.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the three atom sites that
define the angle.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the three atom sites that
define the angle.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the three atom sites
that define the angle.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the three atom sites that
define the angle.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the three atom sites that
define the angle.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the three atom sites
that define the angle.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the three atom sites that
define the angle.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the three atom sites that
define the angle.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the three atom sites
that define the angle.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the three atom sites that
define the angle.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the three atom sites that
define the angle.
This data item is a pointer to attribute label_alt_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the three atom sites
that define the angle.
This data item is a pointer to attribute label_alt_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the three atom sites that
define the angle.
This data item is a pointer to attribute label_alt_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the three atom sites that
define the angle.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the three atom sites
that define the angle.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the three atom sites that
define the angle.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the three atom sites that
define the angle.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the three atom sites
that define the angle.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the three atom sites that
define the angle.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the three atom sites that
define the angle.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the three atom sites
that define the angle.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the three atom sites that
define the angle.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the three atom sites that
define the angle.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the three atom sites
that define the angle.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the three atom sites that
define the angle.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
This code signals whether the angle is referred to in a
publication or should be placed in a table of significant angles.
Angle in degrees defined by the three sites
_geom_angle.atom_site_id_1, _geom_angle.atom_site_id_2 and
attribute atom_site_id_3 in category geom_angle.
The standard uncertainty (estimated standard deviation)
of attribute value in category geom_angle.
The identifier of the first of the three atom sites that define
the angle.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
The identifier of the second of the three atom sites that define
the angle. The second atom is taken to be the apex of the angle.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
The identifier of the third of the three atom sites that define
the angle.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
The symmetry code of the first of the three atom sites that
define the angle.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
The symmetry code of the second of the three atom sites that
define the angle.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
The symmetry code of the third of the three atom sites that
define the angle.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
Data items in the GEOM_BOND category record details about
the bond lengths as calculated from the contents
of the ATOM, CELL and SYMMETRY data.
Example 1 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
<mmCIF:geom_bondCategory>
<mmCIF:geom_bond atom_site_id_1="O1" atom_site_id_2="C2" site_symmetry_1="1_555" site_symmetry_2="1_555">
<mmCIF:dist>1.342</mmCIF:dist>
<mmCIF:dist_esd>0.004</mmCIF:dist_esd>
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
</mmCIF:geom_bond>
<mmCIF:geom_bond atom_site_id_1="O1" atom_site_id_2="C5" site_symmetry_1="1_555" site_symmetry_2="1_555">
<mmCIF:dist>1.439</mmCIF:dist>
<mmCIF:dist_esd>0.003</mmCIF:dist_esd>
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
</mmCIF:geom_bond>
<mmCIF:geom_bond atom_site_id_1="C2" atom_site_id_2="C3" site_symmetry_1="1_555" site_symmetry_2="1_555">
<mmCIF:dist>1.512</mmCIF:dist>
<mmCIF:dist_esd>0.004</mmCIF:dist_esd>
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
</mmCIF:geom_bond>
<mmCIF:geom_bond atom_site_id_1="C2" atom_site_id_2="O21" site_symmetry_1="1_555" site_symmetry_2="1_555">
<mmCIF:dist>1.199</mmCIF:dist>
<mmCIF:dist_esd>0.004</mmCIF:dist_esd>
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
</mmCIF:geom_bond>
<mmCIF:geom_bond atom_site_id_1="C3" atom_site_id_2="N4" site_symmetry_1="1_555" site_symmetry_2="1_555">
<mmCIF:dist>1.465</mmCIF:dist>
<mmCIF:dist_esd>0.003</mmCIF:dist_esd>
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
</mmCIF:geom_bond>
<mmCIF:geom_bond atom_site_id_1="C3" atom_site_id_2="C31" site_symmetry_1="1_555" site_symmetry_2="1_555">
<mmCIF:dist>1.537</mmCIF:dist>
<mmCIF:dist_esd>0.004</mmCIF:dist_esd>
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
</mmCIF:geom_bond>
<mmCIF:geom_bond atom_site_id_1="C3" atom_site_id_2="H3" site_symmetry_1="1_555" site_symmetry_2="1_555">
<mmCIF:dist>1.00</mmCIF:dist>
<mmCIF:dist_esd>0.03</mmCIF:dist_esd>
<mmCIF:publ_flag>no</mmCIF:publ_flag>
</mmCIF:geom_bond>
<mmCIF:geom_bond atom_site_id_1="N4" atom_site_id_2="C5" site_symmetry_1="1_555" site_symmetry_2="1_555">
<mmCIF:dist>1.472</mmCIF:dist>
<mmCIF:dist_esd>0.003</mmCIF:dist_esd>
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
</mmCIF:geom_bond>
</mmCIF:geom_bondCategory>
An optional identifier of the first of the two atom sites that
define the bond.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the bond.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the bond.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the bond.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the bond.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the bond.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the bond.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the bond.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the bond.
This data item is a pointer to attribute label_alt_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the bond.
This data item is a pointer to attribute label_alt_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the bond.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the bond.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the bond.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the bond.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the bond.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the bond.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the bond.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the bond.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
The intramolecular bond distance in angstroms.
The standard uncertainty (estimated standard deviation)
of attribute dist in category geom_bond.
This code signals whether the bond distance is referred to in a
publication or should be placed in a list of significant bond
distances.
The bond valence calculated from attribute dist in category geom_bond.
The identifier of the first of the two atom sites that define the
bond.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
The identifier of the second of the two atom sites that define
the bond.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
The symmetry code of the first of the two atom sites that
define the bond.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
The symmetry code of the second of the two atom sites that
define the bond.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
Data items in the GEOM_CONTACT category record details about
interatomic contacts as calculated from the contents
of the ATOM, CELL and SYMMETRY data.
Example 1 - based on data set CLPHO6 of Ferguson, Ruhl, McKervey & Browne
[Acta Cryst. (1992), C48, 2262-2264].
An optional identifier of the first of the two atom sites that
define the contact.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the contact.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the contact.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the contact.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the contact.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the contact.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the contact.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the contact.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the contact.
This data item is a pointer to attribute label_alt_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the contact.
This data item is a pointer to attribute label_alt_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the contact.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the contact.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the contact.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the contact.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the contact.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the contact.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the two atom sites that
define the contact.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the two atom sites that
define the contact.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
The interatomic contact distance in angstroms.
The standard uncertainty (estimated standard deviation)
of attribute dist in category geom_contact.
This code signals whether the contact distance is referred to
in a publication or should be placed in a list of significant
contact distances.
The identifier of the first of the two atom sites that define the
contact.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
The identifier of the second of the two atom sites that define
the contact.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
The symmetry code of the first of the two atom sites that
define the contact.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
The symmetry code of the second of the two atom sites that
define the contact.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
Data items in the GEOM_HBOND category record details about
hydrogen bonds as calculated from the contents of the ATOM,
CELL and SYMMETRY data.
Example 1 - based on C~14~H~13~ClN~2~O.H~2~O, reported by Palmer,
Puddle & Lisgarten [Acta Cryst. (1993), C49, 1777-1779].
<mmCIF:geom_hbondCategory>
<mmCIF:geom_hbond atom_site_id_A="OW" atom_site_id_D="N6" atom_site_id_H="HN6">
<mmCIF:angle_DHA>169.6</mmCIF:angle_DHA>
<mmCIF:dist_DA>2.801</mmCIF:dist_DA>
<mmCIF:dist_DH>0.888</mmCIF:dist_DH>
<mmCIF:dist_HA>1.921</mmCIF:dist_HA>
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
</mmCIF:geom_hbond>
<mmCIF:geom_hbond atom_site_id_A="O7" atom_site_id_D="OW" atom_site_id_H="HO2">
<mmCIF:angle_DHA>153.5</mmCIF:angle_DHA>
<mmCIF:dist_DA>2.793</mmCIF:dist_DA>
<mmCIF:dist_DH>0.917</mmCIF:dist_DH>
<mmCIF:dist_HA>1.923</mmCIF:dist_HA>
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
</mmCIF:geom_hbond>
<mmCIF:geom_hbond atom_site_id_A="N10" atom_site_id_D="OW" atom_site_id_H="HO1">
<mmCIF:angle_DHA>179.7</mmCIF:angle_DHA>
<mmCIF:dist_DA>2.842</mmCIF:dist_DA>
<mmCIF:dist_DH>0.894</mmCIF:dist_DH>
<mmCIF:dist_HA>1.886</mmCIF:dist_HA>
<mmCIF:publ_flag>yes</mmCIF:publ_flag>
</mmCIF:geom_hbond>
</mmCIF:geom_hbondCategory>
The angle in degrees defined by the donor-, hydrogen- and
acceptor-atom sites in a hydrogen bond.
The standard uncertainty (estimated standard deviation)
of attribute angle_DHA in category geom_hbond.
An optional identifier of the acceptor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the donor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the hydrogen-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the acceptor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the donor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the hydrogen-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the acceptor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the donor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the hydrogen-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the acceptor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the donor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the hydrogen-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the acceptor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_alt_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the donor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_alt_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the hydrogen-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_alt_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the acceptor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the donor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the hydrogen-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the acceptor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the donor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the hydrogen-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the acceptor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the donor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the hydrogen-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the acceptor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the donor-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the hydrogen-atom site that defines
the hydrogen bond.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
The distance in angstroms between the donor- and acceptor-atom
sites in a hydrogen bond.
The standard uncertainty (estimated standard deviation)
in angstroms of attribute dist_DA in category geom_hbond.
The distance in angstroms between the donor- and hydrogen-atom
sites in a hydrogen bond.
The standard uncertainty (estimated standard deviation)
in angstroms of attribute dist_DH in category geom_hbond.
The distance in angstroms between the hydrogen- and acceptor-
atom sites in a hydrogen bond.
The standard uncertainty (estimated standard deviation)
in angstroms of attribute dist_HA in category geom_hbond.
This code signals whether the hydrogen-bond information is
referred to in a publication or should be placed in a table of
significant hydrogen-bond geometry.
The identifier of the acceptor-atom site that defines the
hydrogen bond.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
The identifier of the donor-atom site that defines the hydrogen
bond.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
The identifier of the hydrogen-atom site that defines the
hydrogen bond.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
The symmetry code of the acceptor-atom site that defines the
hydrogen bond.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
The symmetry code of the donor-atom site that defines the
hydrogen bond.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
The symmetry code of the hydrogen-atom site that defines the
hydrogen bond.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
Data items in the GEOM_TORSION category record details about
torsion angles as calculated from the
contents of the ATOM, CELL and SYMMETRY data.
The vector direction attribute atom_site_id_2 in category geom_torsion to
attribute atom_site_id_3 in category geom_torsion is the viewing direction, and the
torsion angle is the angle of twist required to superimpose the
projection of the vector between site 2 and site 1 onto the
projection of the vector between site 3 and site 4. Clockwise
torsions are positive, anticlockwise torsions are negative.
Ref: Klyne, W. & Prelog, V. (1960). Experientia, 16, 521-523.
Example 1 - based on data set CLPHO6 of Ferguson, Ruhl, McKervey & Browne
[Acta Cryst. (1992), C48, 2262-2264].
An optional identifier of the first of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the fourth of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the fourth of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the fourth of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the fourth of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_alt_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_alt_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_alt_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the fourth of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_alt_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the fourth of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the fourth of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the fourth of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the first of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the second of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the third of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
An optional identifier of the fourth of the four atom sites that
define the torsion angle.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
This code signals whether the torsion angle is referred to in a
publication or should be placed in a table of significant
torsion angles.
The value of the torsion angle in degrees.
The standard uncertainty (estimated standard deviation)
of attribute value in category geom_torsion.
The identifier of the first of the four atom sites that define
the torsion angle.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
The identifier of the second of the four atom sites that define
the torsion angle.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
The identifier of the third of the four atom sites that define
the torsion angle.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
The identifier of the fourth of the four atom sites that define
the torsion angle.
This data item is a pointer to attribute id in category atom_site in the ATOM_SITE
category.
The symmetry code of the first of the four atom sites that
define the torsion angle.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
The symmetry code of the second of the four atom sites that
define the torsion angle.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
The symmetry code of the third of the four atom sites that
define the torsion angle.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
The symmetry code of the fourth of the four atom sites that
define the torsion angle.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
Data items in the JOURNAL category record details about the
book-keeping by the journal staff when processing
a data block submitted for publication.
The creator of a data block will not normally specify these data.
The data names are not defined in the dictionary because they are
for journal use only.
Example 1 - based on Acta Cryst. file for entry HL0007 [Willis, Beckwith
& Tozer (1991). Acta Cryst. C47, 2276-2277].
<mmCIF:journalCategory>
<mmCIF:journal entry_id="TOZ">
<mmCIF:coden_ASTM>ACSCEE</mmCIF:coden_ASTM>
<mmCIF:coeditor_code>HL0007</mmCIF:coeditor_code>
<mmCIF:date_accepted>1991-04-18</mmCIF:date_accepted>
<mmCIF:date_from_coeditor>1991-04-18</mmCIF:date_from_coeditor>
<mmCIF:date_printers_first>1991-08-07</mmCIF:date_printers_first>
<mmCIF:date_proofs_out>1991-08-07</mmCIF:date_proofs_out>
<mmCIF:date_recd_electronic>1991-04-15</mmCIF:date_recd_electronic>
<mmCIF:issue>NOV91</mmCIF:issue>
<mmCIF:name_full>Acta Crystallographica Section C</mmCIF:name_full>
<mmCIF:page_first>2276</mmCIF:page_first>
<mmCIF:page_last>2277</mmCIF:page_last>
<mmCIF:techeditor_code>C910963</mmCIF:techeditor_code>
<mmCIF:volume>47</mmCIF:volume>
<mmCIF:year>1991</mmCIF:year>
</mmCIF:journal>
</mmCIF:journalCategory>
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
Journal data items are defined by the journal staff.
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the JOURNAL_INDEX category are used to list terms
used to generate the journal indexes.
The creator of a data block will not normally specify these data
items.
Example 1 - based on a paper by Zhu, Reynolds, Klein & Trudell
[Acta Cryst. (1994), C50, 2067-2069].
<mmCIF:journal_indexCategory>
<mmCIF:journal_index term="C16H19NO4" type="O">
<mmCIF:subterm xsi:nil="true" />
</mmCIF:journal_index>
<mmCIF:journal_index term="alkaloids" type="S">
<mmCIF:subterm>(-)-norcocaine</mmCIF:subterm>
</mmCIF:journal_index>
<mmCIF:journal_index term="(-)-norcocaine" type="S">
<mmCIF:subterm xsi:nil="true" />
</mmCIF:journal_index>
<mmCIF:journal_index term=" [2R,3S-(2\b,3\b)]-methyl 3-(benzoyloxy)-8-azabicyclo[3.2.1]octane-2-carboxylate" type="S">
<mmCIF:subterm xsi:nil="true" />
</mmCIF:journal_index>
</mmCIF:journal_indexCategory>
Journal index data items are defined by the journal staff.
Journal index data items are defined by the journal staff.
Journal index data items are defined by the journal staff.
Data items in the PHASING category record details about the
phasing of the structure, listing the various methods used in
the phasing process. Details about the application of each
method are listed in the appropriate subcategories.
Example 1 - hypothetical example.
<mmCIF:phasingCategory>
<mmCIF:phasing method="mir"></mmCIF:phasing>
<mmCIF:phasing method="averaging"></mmCIF:phasing>
</mmCIF:phasingCategory>
A listing of the method or methods used to phase this
structure.
phasing by ab initio methods
abinitio
phase improvement by averaging over multiple
images of the structure
averaging
phasing by direct methods
dm
phasing by iterative single-wavelength
anomalous scattering
isas
phasing by iterative single-wavelength
isomorphous replacement
isir
phasing beginning with phases calculated from
an isomorphous structure
isomorphous
phasing by multiple-wavelength anomalous
dispersion
mad
phasing by multiple isomorphous replacement
mir
phasing by multiple isomorphous replacement
with anomalous scattering
miras
phasing by molecular replacement
mr
phasing by single isomorphous replacement
sir
phasing by single isomorphous replacement
with anomalous scattering
siras
Data items in the PHASING_MAD category record details about
the phasing of the structure where methods involving
multiple-wavelength anomalous-dispersion techniques are involved.
Example 1 - based on a paper by Shapiro et al. [Nature (London)
(1995), 374, 327-337].
<mmCIF:phasing_MADCategory>
<mmCIF:phasing_MAD entry_id="NCAD"></mmCIF:phasing_MAD>
</mmCIF:phasing_MADCategory>
A description of special aspects of the MAD phasing.
A description of the MAD phasing method used to phase
this structure.
Note that this is not the computer program used, which is
described in the SOFTWARE category, but rather the method
itself.
This data item should be used to describe significant
methodological options used within the MAD phasing program.
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the PHASING_MAD_CLUST category record details
about a cluster of experiments that contributed to the
generation of a set of phases.
Example 1 - based on a paper by Shapiro et al. [Nature (London)
(1995), 374, 327-337].
<mmCIF:phasing_MAD_clustCategory>
<mmCIF:phasing_MAD_clust expt_id="1" id="4 wavelength">
<mmCIF:number_set>4</mmCIF:number_set>
</mmCIF:phasing_MAD_clust>
<mmCIF:phasing_MAD_clust expt_id="1" id="5 wavelength">
<mmCIF:number_set>5</mmCIF:number_set>
</mmCIF:phasing_MAD_clust>
<mmCIF:phasing_MAD_clust expt_id="2" id="5 wavelength">
<mmCIF:number_set>5</mmCIF:number_set>
</mmCIF:phasing_MAD_clust>
</mmCIF:phasing_MAD_clustCategory>
The number of data sets in this cluster of data sets.
This data item is a pointer to attribute id in category phasing_MAD_expt in the
PHASING_MAD_EXPT category.
The value of attribute id in category phasing_MAD_clust must, together with
attribute expt_id in category phasing_MAD_clust, uniquely identify a record in the
PHASING_MAD_CLUST list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the PHASING_MAD_EXPT category record details about
a MAD phasing experiment, such as the number of experiments that
were clustered together to produce a set of phases or the
statistics for those phases.
Example 1 - based on a paper by Shapiro et al. [Nature (London)
(1995), 374, 327-337].
<mmCIF:phasing_MAD_exptCategory>
<mmCIF:phasing_MAD_expt id="1">
<mmCIF:R_normal_all>0.063</mmCIF:R_normal_all>
<mmCIF:R_normal_anom_scat>0.451</mmCIF:R_normal_anom_scat>
<mmCIF:delta_delta_phi>58.5</mmCIF:delta_delta_phi>
<mmCIF:delta_phi_sigma>20.3</mmCIF:delta_phi_sigma>
<mmCIF:mean_fom>0.88</mmCIF:mean_fom>
<mmCIF:number_clust>2</mmCIF:number_clust>
</mmCIF:phasing_MAD_expt>
<mmCIF:phasing_MAD_expt id="2">
<mmCIF:R_normal_all>0.051</mmCIF:R_normal_all>
<mmCIF:R_normal_anom_scat>0.419</mmCIF:R_normal_anom_scat>
<mmCIF:delta_delta_phi>36.8</mmCIF:delta_delta_phi>
<mmCIF:delta_phi_sigma>18.2</mmCIF:delta_phi_sigma>
<mmCIF:mean_fom>0.93</mmCIF:mean_fom>
<mmCIF:number_clust>1</mmCIF:number_clust>
</mmCIF:phasing_MAD_expt>
</mmCIF:phasing_MAD_exptCategory>
Definition...
Definition...
The difference between two independent determinations of
attribute delta_phi in category phasing_MAD_expt.
The phase difference between F~t~(h), the structure factor due
to normal scattering from all atoms, and F~a~(h), the structure
factor due to normal scattering from only the anomalous
scatterers.
The standard uncertainty (estimated standard deviation)
of attribute delta_phi in category phasing_MAD_expt.
The mean figure of merit.
The number of clusters of data sets in this phasing experiment.
The value of attribute id in category phasing_MAD_expt must uniquely identify each
record in the PHASING_MAD_EXPT list.
Data items in the PHASING_MAD_RATIO category record
the ratios of phasing statistics between pairs of data sets
in a MAD phasing experiment, in given shells of resolution.
Example 1 - based on a paper by Shapiro et al. [Nature (London)
(1995), 374, 327-337].
<mmCIF:phasing_MAD_ratioCategory>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.4013">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.084</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.076</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.3857">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.067</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.3852">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.051</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.3847">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.044</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3857">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.110</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.049</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3852">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.049</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3847">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.067</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3852">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.149</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.072</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3847">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.039</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.3847">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.102</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.071</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.4013">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.114</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.111</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.3857">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.089</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.3852">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.086</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.4013" wavelength_2="1.3847">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.077</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3857">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.140</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.127</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3852">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.085</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3847">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.089</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3852">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.155</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.119</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3847">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.082</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="4 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.3847">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.124</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.120</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3857">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.075</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.027</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3852">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.041</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3847">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.060</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3784">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.057</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.2862">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.072</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3852">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.105</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.032</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3847">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.036</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3784">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.044</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.2862">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.065</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.3847">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.072</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.031</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.3784">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.040</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.2862">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.059</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3784" wavelength_2="1.3784">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.059</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.032</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3784" wavelength_2="1.2862">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.059</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.2862" wavelength_2="1.3847">
<mmCIF:d_res_high>4.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.058</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.028</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3857">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.078</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.075</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3852">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.059</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3847">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.067</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.3784">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.084</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3857" wavelength_2="1.2862">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.073</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3852">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.101</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.088</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3847">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.066</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.3784">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.082</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3852" wavelength_2="1.2862">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.085</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.3847">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.097</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.074</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.3784">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.081</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3847" wavelength_2="1.2862">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.085</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3784" wavelength_2="1.3784">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.114</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.089</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.3784" wavelength_2="1.2862">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.103</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="1" wavelength_1="1.2862" wavelength_2="1.2862">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>4.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.062</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.060</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7263">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.035</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.026</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7251">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.028</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7284">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.023</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7246">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.025</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7217">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.026</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7251">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.060</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.026</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7284">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.029</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7246">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.031</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7217">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.035</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7284" wavelength_2="0.7284">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.075</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.030</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7284" wavelength_2="0.7246">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.023</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7284" wavelength_2="0.7217">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.027</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7246" wavelength_2="0.7246">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.069</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.026</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7246" wavelength_2="0.7217">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.024</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7217" wavelength_2="0.7284">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.060</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.028</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7263">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.060</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.050</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7251">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.056</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7284">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.055</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7246">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.053</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7263" wavelength_2="0.7217">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.056</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7251">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.089</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.050</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7284">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.054</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7246">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.058</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7251" wavelength_2="0.7217">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.063</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7284" wavelength_2="0.7284">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.104</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.057</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7284" wavelength_2="0.7246">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.052</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7284" wavelength_2="0.7217">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.057</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7246" wavelength_2="0.7246">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.098</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.052</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7246" wavelength_2="0.7217">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl xsi:nil="true" />
<mmCIF:ratio_one_wl_centric xsi:nil="true" />
<mmCIF:ratio_two_wl>0.054</mmCIF:ratio_two_wl>
</mmCIF:phasing_MAD_ratio>
<mmCIF:phasing_MAD_ratio clust_id="5 wavelength" expt_id="2" wavelength_1="0.7217" wavelength_2="0.7284">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>3.00</mmCIF:d_res_low>
<mmCIF:ratio_one_wl>0.089</mmCIF:ratio_one_wl>
<mmCIF:ratio_one_wl_centric>0.060</mmCIF:ratio_one_wl_centric>
<mmCIF:ratio_two_wl xsi:nil="true" />
</mmCIF:phasing_MAD_ratio>
</mmCIF:phasing_MAD_ratioCategory>
The lowest value for the interplanar spacings for the
reflection data used for the comparison of Bijvoet differences.
This is called the highest resolution.
The highest value for the interplanar spacings for the
reflection data used for the comparison of Bijvoet differences.
This is called the lowest resolution.
The root-mean-square Bijvoet difference at one wavelength for
all reflections.
The root-mean-square Bijvoet difference at one wavelength for
centric reflections. This would be equal to zero for perfect
data and thus serves as an estimate of the noise in the
anomalous signals.
The root-mean-square dispersive Bijvoet difference between
two wavelengths for all reflections.
This data item is a pointer to attribute id in category phasing_MAD_clust in
the PHASING_MAD_CLUST category.
This data item is a pointer to attribute id in category phasing_MAD_expt in the
PHASING_MAD_EXPT category.
This data item is a pointer to attribute wavelength in category phasing_MAD_set in
the PHASING_MAD_SET category.
This data item is a pointer to attribute wavelength in category phasing_MAD_set in
the PHASING_MAD_SET category.
Data items in the PHASING_MAD_SET category record
details about the individual data sets used in a MAD phasing
experiment.
Example 1 - based on a paper by Shapiro et al. [Nature (London)
(1995), 374, 327-337].
<mmCIF:phasing_MAD_setCategory>
<mmCIF:phasing_MAD_set clust_id="4 wavelength" expt_id="1" set_id="aa" wavelength="1.4013">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:f_double_prime>3.80</mmCIF:f_double_prime>
<mmCIF:f_prime>-12.48</mmCIF:f_prime>
<mmCIF:wavelength_details>pre-edge</mmCIF:wavelength_details>
</mmCIF:phasing_MAD_set>
<mmCIF:phasing_MAD_set clust_id="4 wavelength" expt_id="1" set_id="bb" wavelength="1.3857">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:f_double_prime>17.20</mmCIF:f_double_prime>
<mmCIF:f_prime>-31.22</mmCIF:f_prime>
<mmCIF:wavelength_details>peak</mmCIF:wavelength_details>
</mmCIF:phasing_MAD_set>
<mmCIF:phasing_MAD_set clust_id="4 wavelength" expt_id="1" set_id="cc" wavelength="1.3852">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:f_double_prime>29.17</mmCIF:f_double_prime>
<mmCIF:f_prime>-13.97</mmCIF:f_prime>
<mmCIF:wavelength_details>edge</mmCIF:wavelength_details>
</mmCIF:phasing_MAD_set>
<mmCIF:phasing_MAD_set clust_id="4 wavelength" expt_id="1" set_id="dd" wavelength="1.3847">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:f_double_prime>17.34</mmCIF:f_double_prime>
<mmCIF:f_prime>-6.67</mmCIF:f_prime>
<mmCIF:wavelength_details>remote</mmCIF:wavelength_details>
</mmCIF:phasing_MAD_set>
<mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="1" set_id="ee" wavelength="1.3857">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:f_double_prime>14.84</mmCIF:f_double_prime>
<mmCIF:f_prime>-28.33</mmCIF:f_prime>
<mmCIF:wavelength_details>ascending edge</mmCIF:wavelength_details>
</mmCIF:phasing_MAD_set>
<mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="1" set_id="ff" wavelength="1.3852">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:f_double_prime>30.23</mmCIF:f_double_prime>
<mmCIF:f_prime>-21.50</mmCIF:f_prime>
<mmCIF:wavelength_details>peak</mmCIF:wavelength_details>
</mmCIF:phasing_MAD_set>
<mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="1" set_id="gg" wavelength="1.3847">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:f_double_prime>20.35</mmCIF:f_double_prime>
<mmCIF:f_prime>-10.71</mmCIF:f_prime>
<mmCIF:wavelength_details>descending edge</mmCIF:wavelength_details>
</mmCIF:phasing_MAD_set>
<mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="1" set_id="hh" wavelength="1.3784">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:f_double_prime>11.84</mmCIF:f_double_prime>
<mmCIF:f_prime>-14.45</mmCIF:f_prime>
<mmCIF:wavelength_details>remote 1</mmCIF:wavelength_details>
</mmCIF:phasing_MAD_set>
<mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="1" set_id="ii" wavelength="1.2862">
<mmCIF:d_res_high>3.00</mmCIF:d_res_high>
<mmCIF:d_res_low>20.00</mmCIF:d_res_low>
<mmCIF:f_double_prime>9.01</mmCIF:f_double_prime>
<mmCIF:f_prime>-9.03</mmCIF:f_prime>
<mmCIF:wavelength_details>remote 2</mmCIF:wavelength_details>
</mmCIF:phasing_MAD_set>
<mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="2" set_id="jj" wavelength="0.7263">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:f_double_prime>4.08</mmCIF:f_double_prime>
<mmCIF:f_prime>-21.10</mmCIF:f_prime>
<mmCIF:wavelength_details>pre-edge</mmCIF:wavelength_details>
</mmCIF:phasing_MAD_set>
<mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="2" set_id="kk" wavelength="0.7251">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:f_double_prime>7.92</mmCIF:f_double_prime>
<mmCIF:f_prime>-34.72</mmCIF:f_prime>
<mmCIF:wavelength_details>edge</mmCIF:wavelength_details>
</mmCIF:phasing_MAD_set>
<mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="2" set_id="ll" wavelength="0.7248">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:f_double_prime>10.30</mmCIF:f_double_prime>
<mmCIF:f_prime>-24.87</mmCIF:f_prime>
<mmCIF:wavelength_details>peak</mmCIF:wavelength_details>
</mmCIF:phasing_MAD_set>
<mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="2" set_id="mm" wavelength="0.7246">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:f_double_prime>9.62</mmCIF:f_double_prime>
<mmCIF:f_prime>-17.43</mmCIF:f_prime>
<mmCIF:wavelength_details>descending edge</mmCIF:wavelength_details>
</mmCIF:phasing_MAD_set>
<mmCIF:phasing_MAD_set clust_id="5 wavelength" expt_id="2" set_id="nn" wavelength="0.7217">
<mmCIF:d_res_high>1.90</mmCIF:d_res_high>
<mmCIF:d_res_low>15.00</mmCIF:d_res_low>
<mmCIF:f_double_prime>8.40</mmCIF:f_double_prime>
<mmCIF:f_prime>-13.26</mmCIF:f_prime>
<mmCIF:wavelength_details>remote</mmCIF:wavelength_details>
</mmCIF:phasing_MAD_set>
</mmCIF:phasing_MAD_setCategory>
The lowest value for the interplanar spacings for the
reflection data used for this set of data. This is called
the highest resolution.
The highest value for the interplanar spacings for the
reflection data used for this set of data. This is called
the lowest resolution.
The f'' component of the anomalous scattering factor for this
wavelength.
The f' component of the anomalous scattering factor for this
wavelength.
A descriptor for this wavelength in this cluster of data sets.
peak
remote
ascending edge
This data item is a pointer to attribute id in category phasing_MAD_clust in
the PHASING_MAD_CLUST category.
This data item is a pointer to attribute id in category phasing_MAD_expt in the
PHASING_MAD_EXPT category.
This data item is a pointer to attribute id in category phasing_set in the
PHASING_SET category.
The wavelength at which this data set was measured.
Data items in the PHASING_MIR category record details about
the phasing of the structure where methods involving isomorphous
replacement are involved.
All isomorphous-replacement-based techniques are covered
by this category, including single isomorphous replacement (SIR),
multiple isomorphous replacement (MIR) and single or multiple
isomorphous replacement plus anomalous scattering (SIRAS, MIRAS).
Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem.
(1993), 268, 10728-10738].
The mean value of the figure of merit m for all reflections
phased in the native data set.
int P~alpha~ exp(i*alpha) dalpha
m = --------------------------------
int P~alpha~ dalpha
P~a~ = the probability that the phase angle a is correct
the integral is taken over the range alpha = 0 to 2 pi.
The mean value of the figure of merit m for the acentric
reflections phased in the native data set.
int P~alpha~ exp(i*alpha) dalpha
m = --------------------------------
int P~alpha~ dalpha
P~a~ = the probability that the phase angle a is correct
the integral is taken over the range alpha = 0 to 2 pi.
The mean value of the figure of merit m for the centric
reflections phased in the native data set.
int P~alpha~ exp(i*alpha) dalpha
m = --------------------------------
int P~alpha~ dalpha
P~a~ = the probability that the phase angle a is correct
the integral is taken over the range alpha = 0 to 2 pi.
The lowest value in angstroms for the interplanar spacings
for the reflection data used for the native data set. This is
called the highest resolution.
The highest value in angstroms for the interplanar spacings
for the reflection data used for the native data set. This is
called the lowest resolution.
A description of special aspects of the isomorphous-replacement
phasing.
A description of the MIR phasing method applied to phase this
structure.
Note that this is not the computer program used, which is
described in the SOFTWARE category, but rather the method
itself.
This data item should be used to describe significant
methodological options used within the MIR phasing program.
The total number of reflections phased in the native data set.
The number of acentric reflections phased in the native data
set.
The number of centric reflections phased in the native data
set.
Criterion used to limit the reflections used in the phasing
calculations.
> 4 \s(I)
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the PHASING_MIR_DER category record details
about individual derivatives used in the phasing of the
structure when methods involving isomorphous replacement are
involved.
A derivative in this context does not necessarily equate with
a data set; for instance, the same data set could be used to
one resolution limit as an isomorphous scatterer and to a
different resolution (and with a different sigma cutoff) as an
anomalous scatterer. These would be treated as two distinct
derivatives, although both derivatives would point to the same
data sets via attribute der_set_id in category phasing_MIR_der and
attribute native_set_id in category phasing_MIR_der.
Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem.
(1993), 268, 10728-10738].
<mmCIF:phasing_MIR_derCategory>
<mmCIF:phasing_MIR_der id="KAu(CN)2">
<mmCIF:details>major site interpreted in difference Patterson</mmCIF:details>
<mmCIF:number_of_sites>3</mmCIF:number_of_sites>
</mmCIF:phasing_MIR_der>
<mmCIF:phasing_MIR_der id="K2HgI4">
<mmCIF:details>sites found in cross-difference Fourier</mmCIF:details>
<mmCIF:number_of_sites>6</mmCIF:number_of_sites>
</mmCIF:phasing_MIR_der>
<mmCIF:phasing_MIR_der id="K3IrCl6">
<mmCIF:details>sites found in cross-difference Fourier</mmCIF:details>
<mmCIF:number_of_sites>2</mmCIF:number_of_sites>
</mmCIF:phasing_MIR_der>
<mmCIF:phasing_MIR_der id="All">
<mmCIF:details>data for all three derivatives combined</mmCIF:details>
<mmCIF:number_of_sites>11</mmCIF:number_of_sites>
</mmCIF:phasing_MIR_der>
</mmCIF:phasing_MIR_derCategory>
Residual factor R~cullis,acen~ for acentric reflections for this
derivative.
The Cullis R factor was originally defined only for centric
reflections. It is, however, also a useful statistical
measure for acentric reflections, which is how it is used in
this data item.
sum| |Fph~obs~ +/- Fp~obs~| - Fh~calc~ |
R~cullis,acen~ = ----------------------------------------
sum|Fph~obs~ - Fp~obs~|
Fp~obs~ = the observed structure-factor amplitude of the native
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fh~calc~ = the calculated structure-factor amplitude from the
heavy-atom model
sum is taken over the specified reflections
Ref: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G.
& North, A. C. T. (1961). Proc. R. Soc. London Ser. A,
265, 15-38.
Residual factor R~cullis,ano~ for anomalous reflections for this
derivative.
The Cullis R factor was originally defined only for centric
reflections. It is, however, also a useful statistical
measure for anomalous reflections, which is how it is used in
this data item.
This is tabulated for acentric terms. A value less than 1.0
means there is some contribution to the phasing from the
anomalous data.
sum |Fph+~obs~Fph-~obs~ - Fh+~calc~ - Fh-~calc~|
R~cullis,ano~ = ------------------------------------------------
sum|Fph+~obs~ - Fph-~obs~|
Fph+~obs~ = the observed positive Friedel structure-factor
amplitude for the derivative
Fph-~obs~ = the observed negative Friedel structure-factor
amplitude for the derivative
Fh+~calc~ = the calculated positive Friedel structure-factor
amplitude from the heavy-atom model
Fh-~calc~ = the calculated negative Friedel structure-factor
amplitude from the heavy-atom model
sum is taken over the specified reflections
Ref: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G.
& North, A. C. T. (1961). Proc. R. Soc. London Ser. A,
265, 15-38.
Residual factor R~cullis~ for centric reflections for this
derivative.
sum| |Fph~obs~ +/- Fp~obs~| - Fh~calc~ |
R~cullis~ = ----------------------------------------
sum|Fph~obs~ - Fp~obs~|
Fp~obs~ = the observed structure-factor amplitude of the native
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fh~calc~ = the calculated structure-factor amplitude from the
heavy-atom model
sum is taken over the specified reflections
Ref: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G.
& North, A. C. T. (1961). Proc. R. Soc. London Ser. A,
265, 15-38.
The lowest value for the interplanar spacings for the
reflection data used for this derivative. This is called the
highest resolution.
The highest value for the interplanar spacings for the
reflection data used for this derivative. This is called the
lowest resolution.
The data set that was treated as the derivative in this
experiment.
This data item is a pointer to attribute id in category phasing_set in the
PHASING_SET category.
A description of special aspects of this derivative, its data,
its solution or its use in phasing.
The data set that was treated as the native in this
experiment.
This data item is a pointer to attribute id in category phasing_set in the
PHASING_SET category.
The number of heavy-atom sites in this derivative.
The mean phasing power P for acentric reflections for this
derivative.
sum|Fh~calc~^2^|
P = (----------------------------)^1/2^
sum|Fph~obs~ - Fph~calc~|^2^
Fph~obs~ = the observed structure-factor amplitude of this
derivative
Fph~calc~ = the calculated structure-factor amplitude of this
derivative
Fh~calc~ = the calculated structure-factor amplitude from the
heavy-atom model
sum is taken over the specified reflections
The mean phasing power P for centric reflections for this
derivative.
sum|Fh~calc~^2^|
P = (----------------------------)^1/2^
sum|Fph~obs~ - Fph~calc~|^2^
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fph~calc~ = the calculated structure-factor amplitude of the
derivative
Fh~calc~ = the calculated structure-factor amplitude from the
heavy-atom model
sum is taken over the specified reflections
The number of acentric reflections used in phasing for this
derivative.
The number of anomalous reflections used in phasing for this
derivative.
The number of centric reflections used in phasing for this
derivative.
Criteria used to limit the reflections used in the phasing
calculations.
> 4 \s(I)
The value of attribute id in category phasing_MIR_der must uniquely identify
a record in the PHASING_MIR_DER list.
Note that this item need not be a number; it can be any unique
identifier.
KAu(CN)2
K2HgI4_anom
K2HgI4_iso
Data items in the PHASING_MIR_DER_REFLN category record details
about the calculated structure factors obtained in an MIR
phasing experiment.
This list may contain information from a number of different
derivatives; attribute der_id in category phasing_MIR_der_refln indicates to which
derivative a given record corresponds. (A derivative in this
context does not necessarily equate with a data set; see the
definition of the PHASING_MIR_DER category for a
discussion of the meaning of derivative.)
It is not necessary for the data items describing the measured
value of F to appear in this list, as they will be
given in the PHASING_SET_REFLN category. However, these
items can also be listed here for completeness.
Example 1 - based on laboratory records for the 6,1,25 reflection
of an Hg/Pt derivative of protein NS1.
<mmCIF:phasing_MIR_der_reflnCategory>
<mmCIF:phasing_MIR_der_refln der_id="HGPT1" index_h="6" index_k="1" index_l="25" set_id="NS1-96">
<mmCIF:F_calc_au>106.66</mmCIF:F_calc_au>
<mmCIF:F_meas_au>204.67</mmCIF:F_meas_au>
<mmCIF:F_meas_sigma>6.21</mmCIF:F_meas_sigma>
<mmCIF:HL_A_iso>-3.15</mmCIF:HL_A_iso>
<mmCIF:HL_B_iso>-0.76</mmCIF:HL_B_iso>
<mmCIF:HL_C_iso>0.65</mmCIF:HL_C_iso>
<mmCIF:HL_D_iso>0.23</mmCIF:HL_D_iso>
<mmCIF:phase_calc>194.48</mmCIF:phase_calc>
</mmCIF:phasing_MIR_der_refln>
</mmCIF:phasing_MIR_der_reflnCategory>
The calculated value of the structure factor for this derivative,
in electrons.
The calculated value of the structure factor for this derivative,
in arbitrary units.
The measured value of the structure factor for this derivative,
in electrons.
The measured value of the structure factor for this derivative,
in arbitrary units.
The standard uncertainty (estimated standard deviation)
of attribute F_meas in category phasing_MIR_der_refln, in electrons.
The standard uncertainty (estimated standard deviation)
of attribute F_meas_au in category phasing_MIR_der_refln, in arbitrary units.
The isomorphous Hendrickson-Lattman coefficient A~iso~ for this
reflection for this derivative.
-2.0 * (Fp~obs~^2^ + Fh~calc~^2^ - Fph~obs~^2^)
* Fp~obs~ * cos(alphah~calc~)
A~iso~ = -----------------------------------------------
E^2^
E = (Fph~obs~ - Fp~obs~ - Fh~calc~)^2^
for centric reflections
= [(Fph~obs~ - Fp~obs~) * 2^1/2^ - Fh~calc~]^2^
for acentric reflections
Fp~obs~ = the observed structure-factor amplitude of the
native
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fh~calc~ = the calculated structure-factor amplitude
from the heavy-atom model
alphah~calc~ = the calculated phase from the heavy-atom model
This coefficient appears in the expression for the phase
probability of each isomorphous derivative:
P~i~(alpha) = exp[k + A * cos(alpha) + B * sin(alpha)
+ C * cos(2 * alpha) + D * sin(2 * alpha)]
Ref: Hendrickson, W. A. & Lattman, E. E. (1970). Acta
Cryst. B26, 136-143.
The isomorphous Hendrickson-Lattman coefficient B~iso~ for this
reflection for this derivative.
-2.0 * (Fp~obs~^2^ + Fh~calc~^2^ - Fph~obs~^2^)
* Fp~obs~ * sin(alphah~calc~)
B~iso~ = -----------------------------------------------
E^2^
E = (Fph~obs~ - Fp~obs~ - Fh~calc~)^2^
for centric reflections
= [(Fph~obs~ - Fp~obs~) * 2^1/2^ - Fh~calc~]^2^
for acentric reflections
Fp~obs~ = the observed structure-factor amplitude of the
native
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fh~calc~ = the calculated structure-factor amplitude
from the heavy-atom model
alphah~calc~ = the phase calculated from the heavy-atom model
This coefficient appears in the expression for the phase
probability of each isomorphous derivative:
P~i~(alpha) = exp[k + A * cos(alpha) + B * sin(alpha)
+ C * cos(2 * alpha) + D * sin(2 * alpha)]
Ref: Hendrickson, W. A. & Lattman, E. E. (1970). Acta
Cryst. B26, 136-143.
The isomorphous Hendrickson-Lattman coefficient C~iso~ for this
reflection for this derivative.
-Fp~obs~^2^ * [sin(alphah~calc~)^2^
- cos(alphah~calc~)^2^]
C~iso~ = ------------------------------------
E^2^
E = (Fph~obs~ - Fp~obs~ - Fh~calc~)^2^
for centric reflections
= [(Fph~obs~ - Fp~obs~) * 2^1/2^ - Fh~calc~]^2^
for acentric reflections
Fp~obs~ = the observed structure-factor amplitude of the
native
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fh~calc~ = the calculated structure-factor amplitude
from the heavy-atom model
alphah~calc~ = the phase calculated from the heavy-atom model
This coefficient appears in the expression for the phase
probability of each isomorphous derivative:
P~i~(alpha) = exp[k + A * cos(alpha) + B * sin(alpha)
+ C * cos(2 * alpha) + D * sin(2 * alpha)]
Ref: Hendrickson, W. A. & Lattman, E. E. (1970). Acta
Cryst. B26, 136-143.
The isomorphous Hendrickson-Lattman coefficient D~iso~ for this
reflection for this derivative.
-2.0 * Fp~obs~^2^ * sin(alphah~calc~)^2^
* cos(alphah~calc~)^2^
D~iso~ = ----------------------------------------
E^2^
E = (Fph~obs~ - Fp~obs~ - Fh~calc~)^2^
for centric reflections
= [(Fph~obs~ - Fp~obs~) * 2^1/2^ - Fh~calc~]^2^
for acentric reflections
Fp~obs~ = the observed structure-factor amplitude of the
native
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fh~calc~ = the calculated structure-factor amplitude
from the heavy-atom model
alphah~calc~ = the phase calculated from the heavy-atom model
This coefficient appears in the expression for the phase
probability of each isomorphous derivative:
P~i~(alpha) = exp[k + A * cos(alpha) + B * sin(alpha)
+ C * cos(2 * alpha) + D * sin(2 * alpha)]
Ref: Hendrickson, W. A. & Lattman, E. E. (1970). Acta
Cryst. B26, 136-143.
The calculated value of the structure-factor phase based on the
heavy-atom model for this derivative in degrees.
This data item is a pointer to attribute id in category phasing_MIR_der in the
PHASING_MIR_DER category.
Miller index h for this reflection for this derivative.
Miller index k for this reflection for this derivative.
Miller index l for this reflection for this derivative.
This data item is a pointer to attribute id in category phasing_set in the
PHASING_SET category.
Data items in the PHASING_MIR_DER_SHELL category record
statistics, broken down into shells of resolution, for an MIR
phasing experiment.
This list may contain information from a number of different
derivatives; attribute der_id in category phasing_MIR_der_shell indicates to which
derivative a given record corresponds. (A derivative in this
context does not necessarily equate with a data set; see the
definition of the PHASING_MIR_DER category for a
discussion of the meaning of derivative.)
Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem.
(1993), 268, 10728-10738]
with addition of an arbitrary low-resolution limit.
<mmCIF:phasing_MIR_der_shellCategory>
<mmCIF:phasing_MIR_der_shell d_res_high="8.3" d_res_low="15.0" der_id="KAu(CN)2">
<mmCIF:ha_ampl>54</mmCIF:ha_ampl>
<mmCIF:loc>26</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="6.4" d_res_low="8.3" der_id="KAu(CN)2">
<mmCIF:ha_ampl>54</mmCIF:ha_ampl>
<mmCIF:loc>20</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="5.2" d_res_low="6.4" der_id="KAu(CN)2">
<mmCIF:ha_ampl>50</mmCIF:ha_ampl>
<mmCIF:loc>20</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="4.4" d_res_low="5.2" der_id="KAu(CN)2">
<mmCIF:ha_ampl>44</mmCIF:ha_ampl>
<mmCIF:loc>23</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="3.8" d_res_low="4.4" der_id="KAu(CN)2">
<mmCIF:ha_ampl>39</mmCIF:ha_ampl>
<mmCIF:loc>23</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="3.4" d_res_low="3.8" der_id="KAu(CN)2">
<mmCIF:ha_ampl>33</mmCIF:ha_ampl>
<mmCIF:loc>21</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="3.0" d_res_low="3.4" der_id="KAu(CN)2">
<mmCIF:ha_ampl>28</mmCIF:ha_ampl>
<mmCIF:loc>17</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="3.0" d_res_low="15.0" der_id="KAu(CN)2">
<mmCIF:ha_ampl>38</mmCIF:ha_ampl>
<mmCIF:loc>21</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="8.3" d_res_low="15.0" der_id="K2HgI4">
<mmCIF:ha_ampl>149</mmCIF:ha_ampl>
<mmCIF:loc>87</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="6.4" d_res_low="8.3" der_id="K2HgI4">
<mmCIF:ha_ampl>121</mmCIF:ha_ampl>
<mmCIF:loc>73</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="5.2" d_res_low="6.4" der_id="K2HgI4">
<mmCIF:ha_ampl>95</mmCIF:ha_ampl>
<mmCIF:loc>61</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="4.4" d_res_low="5.2" der_id="K2HgI4">
<mmCIF:ha_ampl>80</mmCIF:ha_ampl>
<mmCIF:loc>60</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="3.8" d_res_low="4.4" der_id="K2HgI4">
<mmCIF:ha_ampl>73</mmCIF:ha_ampl>
<mmCIF:loc>63</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="3.4" d_res_low="3.8" der_id="K2HgI4">
<mmCIF:ha_ampl>68</mmCIF:ha_ampl>
<mmCIF:loc>57</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="3.0" d_res_low="3.4" der_id="K2HgI4">
<mmCIF:ha_ampl>63</mmCIF:ha_ampl>
<mmCIF:loc>46</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="3.0" d_res_low="15.0" der_id="K2HgI4">
<mmCIF:ha_ampl>79</mmCIF:ha_ampl>
<mmCIF:loc>58</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="8.3" d_res_low="15.0" der_id="K3IrCl6">
<mmCIF:ha_ampl>33</mmCIF:ha_ampl>
<mmCIF:loc>27</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="6.4" d_res_low="8.3" der_id="K3IrCl6">
<mmCIF:ha_ampl>40</mmCIF:ha_ampl>
<mmCIF:loc>23</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="5.2" d_res_low="6.4" der_id="K3IrCl6">
<mmCIF:ha_ampl>31</mmCIF:ha_ampl>
<mmCIF:loc>22</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="4.4" d_res_low="5.2" der_id="K3IrCl6">
<mmCIF:ha_ampl>27</mmCIF:ha_ampl>
<mmCIF:loc>23</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="3.8" d_res_low="4.4" der_id="K3IrCl6">
<mmCIF:ha_ampl>22</mmCIF:ha_ampl>
<mmCIF:loc>23</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="3.4" d_res_low="3.8" der_id="K3IrCl6">
<mmCIF:ha_ampl>19</mmCIF:ha_ampl>
<mmCIF:loc>20</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="3.0" d_res_low="3.4" der_id="K3IrCl6">
<mmCIF:ha_ampl>16</mmCIF:ha_ampl>
<mmCIF:loc>20</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
<mmCIF:phasing_MIR_der_shell d_res_high="3.0" d_res_low="15.0" der_id="K3IrCl6">
<mmCIF:ha_ampl>23</mmCIF:ha_ampl>
<mmCIF:loc>21</mmCIF:loc>
</mmCIF:phasing_MIR_der_shell>
</mmCIF:phasing_MIR_der_shellCategory>
Residual factor R~cullis~ for centric reflections for this
derivative in this shell.
sum| |Fph~obs~ +/- Fp~obs~| - Fh~calc~ |
R~cullis~ = ----------------------------------------
sum|Fph~obs~ - Fp~obs~|
Fp~obs~ = the observed structure-factor amplitude of the native
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fh~calc~ = the calculated structure-factor amplitude from the
heavy-atom model
sum is taken over the specified reflections
Ref: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G.
& North, A. C. T. (1961). Proc. R. Soc. London Ser. A,
265, 15-38.
Residual factor R~kraut~ for general reflections for this
derivative in this shell.
sum|Fph~obs~ - Fph~calc~|
R~kraut~ = -------------------------
sum|Fph~obs~|
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fph~calc~ = the calculated structure-factor amplitude of the
derivative
sum is taken over the specified reflections
Ref: Kraut, J., Sieker, L. C., High, D. F. & Freer, S. T.
(1962). Proc. Natl Acad. Sci. USA, 48, 1417-1424.
The mean value of the figure of merit m for reflections for this
derivative in this shell.
int P~alpha~ exp(i*alpha) dalpha
m = --------------------------------
int P~alpha~ dalpha
P~alpha~ = the probability that the phase angle alpha is correct
int is taken over the range alpha = 0 to 2 pi.
The mean heavy-atom amplitude for reflections for this
derivative in this shell.
The mean lack-of-closure error loc for reflections for this
derivative in this shell.
loc = sum|Fph~obs~ - Fph~calc~|
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fph~calc~ = the calculated structure-factor amplitude of the
derivative
sum is taken over the specified reflections
The mean of the phase values for reflections for this
derivative in this shell.
The mean phasing power P for reflections for this derivative
in this shell.
sum|Fh~calc~^2^|
P = (----------------------------)^1/2^
sum|Fph~obs~ - Fph~calc~|^2^
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fph~calc~ = the calculated structure-factor amplitude of the
derivative
Fh~calc~ = the calculated structure-factor amplitude from the
heavy-atom model
sum is taken over the specified reflections
The number of reflections in this shell.
The lowest value for the interplanar spacings for the
reflection data for this derivative in this shell. This is called
the highest resolution.
The highest value for the interplanar spacings for the
reflection data for this derivative in this shell. This is called
the lowest resolution.
This data item is a pointer to attribute id in category phasing_MIR_der in the
PHASING_MIR_DER category.
Data items in the PHASING_MIR_DER_SITE category record details
about the heavy-atom sites in an MIR phasing experiment.
This list may contain information from a number of different
derivatives; attribute der_id in category phasing_MIR_der_site indicates to which
derivative a given record corresponds. (A derivative in this
context does not necessarily equate with a data set; see the
definition of the PHASING_MIR_DER category for a
discussion of the meaning of derivative.)
Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem.
(1993), 268, 10728-10738]
with occupancies converted from electrons to fractional.
<mmCIF:phasing_MIR_der_siteCategory>
<mmCIF:phasing_MIR_der_site der_id="KAu(CN)2" id="1">
<mmCIF:B_iso>33.0</mmCIF:B_iso>
<mmCIF:atom_type_symbol>Au</mmCIF:atom_type_symbol>
<mmCIF:fract_x>0.082</mmCIF:fract_x>
<mmCIF:fract_y>0.266</mmCIF:fract_y>
<mmCIF:fract_z>0.615</mmCIF:fract_z>
<mmCIF:occupancy>0.40</mmCIF:occupancy>
</mmCIF:phasing_MIR_der_site>
<mmCIF:phasing_MIR_der_site der_id="KAu(CN)2" id="2">
<mmCIF:B_iso>25.9</mmCIF:B_iso>
<mmCIF:atom_type_symbol>Au</mmCIF:atom_type_symbol>
<mmCIF:fract_x>0.607</mmCIF:fract_x>
<mmCIF:fract_y>0.217</mmCIF:fract_y>
<mmCIF:fract_z>0.816</mmCIF:fract_z>
<mmCIF:occupancy>0.03</mmCIF:occupancy>
</mmCIF:phasing_MIR_der_site>
<mmCIF:phasing_MIR_der_site der_id="KAu(CN)2" id="3">
<mmCIF:B_iso>15.7</mmCIF:B_iso>
<mmCIF:atom_type_symbol>Au</mmCIF:atom_type_symbol>
<mmCIF:fract_x>0.263</mmCIF:fract_x>
<mmCIF:fract_y>0.782</mmCIF:fract_y>
<mmCIF:fract_z>0.906</mmCIF:fract_z>
<mmCIF:occupancy>0.02</mmCIF:occupancy>
</mmCIF:phasing_MIR_der_site>
<mmCIF:phasing_MIR_der_site der_id="K2HgI4" id="1">
<mmCIF:B_iso>33.7</mmCIF:B_iso>
<mmCIF:atom_type_symbol>Hg</mmCIF:atom_type_symbol>
<mmCIF:fract_x>0.048</mmCIF:fract_x>
<mmCIF:fract_y>0.286</mmCIF:fract_y>
<mmCIF:fract_z>0.636</mmCIF:fract_z>
<mmCIF:occupancy>0.63</mmCIF:occupancy>
</mmCIF:phasing_MIR_der_site>
<mmCIF:phasing_MIR_der_site der_id="K2HgI4" id="2">
<mmCIF:B_iso>36.7</mmCIF:B_iso>
<mmCIF:atom_type_symbol>Hg</mmCIF:atom_type_symbol>
<mmCIF:fract_x>0.913</mmCIF:fract_x>
<mmCIF:fract_y>0.768</mmCIF:fract_y>
<mmCIF:fract_z>0.889</mmCIF:fract_z>
<mmCIF:occupancy>0.34</mmCIF:occupancy>
</mmCIF:phasing_MIR_der_site>
<mmCIF:phasing_MIR_der_site der_id="K2HgI4" id="3">
<mmCIF:B_iso>24.2</mmCIF:B_iso>
<mmCIF:atom_type_symbol>Hg</mmCIF:atom_type_symbol>
<mmCIF:fract_x>0.974</mmCIF:fract_x>
<mmCIF:fract_y>0.455</mmCIF:fract_y>
<mmCIF:fract_z>0.974</mmCIF:fract_z>
<mmCIF:occupancy>0.23</mmCIF:occupancy>
</mmCIF:phasing_MIR_der_site>
<mmCIF:phasing_MIR_der_site der_id="K2HgI4" id="4">
<mmCIF:B_iso>14.7</mmCIF:B_iso>
<mmCIF:atom_type_symbol>Hg</mmCIF:atom_type_symbol>
<mmCIF:fract_x>0.903</mmCIF:fract_x>
<mmCIF:fract_y>0.836</mmCIF:fract_y>
<mmCIF:fract_z>0.859</mmCIF:fract_z>
<mmCIF:occupancy>0.28</mmCIF:occupancy>
</mmCIF:phasing_MIR_der_site>
<mmCIF:phasing_MIR_der_site der_id="K2HgI4" id="5">
<mmCIF:B_iso>6.4</mmCIF:B_iso>
<mmCIF:atom_type_symbol>Hg</mmCIF:atom_type_symbol>
<mmCIF:fract_x>0.489</mmCIF:fract_x>
<mmCIF:fract_y>0.200</mmCIF:fract_y>
<mmCIF:fract_z>0.885</mmCIF:fract_z>
<mmCIF:occupancy>0.07</mmCIF:occupancy>
</mmCIF:phasing_MIR_der_site>
<mmCIF:phasing_MIR_der_site der_id="K2HgI4" id="6">
<mmCIF:B_iso>32.9</mmCIF:B_iso>
<mmCIF:atom_type_symbol>Hg</mmCIF:atom_type_symbol>
<mmCIF:fract_x>0.162</mmCIF:fract_x>
<mmCIF:fract_y>0.799</mmCIF:fract_y>
<mmCIF:fract_z>0.889</mmCIF:fract_z>
<mmCIF:occupancy>0.07</mmCIF:occupancy>
</mmCIF:phasing_MIR_der_site>
<mmCIF:phasing_MIR_der_site der_id="K3IrCl6" id="1">
<mmCIF:B_iso>40.8</mmCIF:B_iso>
<mmCIF:atom_type_symbol>Ir</mmCIF:atom_type_symbol>
<mmCIF:fract_x>0.209</mmCIF:fract_x>
<mmCIF:fract_y>0.739</mmCIF:fract_y>
<mmCIF:fract_z>0.758</mmCIF:fract_z>
<mmCIF:occupancy>0.26</mmCIF:occupancy>
</mmCIF:phasing_MIR_der_site>
<mmCIF:phasing_MIR_der_site der_id="K3IrCl6" id="2">
<mmCIF:B_iso>24.9</mmCIF:B_iso>
<mmCIF:atom_type_symbol>Ir</mmCIF:atom_type_symbol>
<mmCIF:fract_x>0.279</mmCIF:fract_x>
<mmCIF:fract_y>0.613</mmCIF:fract_y>
<mmCIF:fract_z>0.752</mmCIF:fract_z>
<mmCIF:occupancy>0.05</mmCIF:occupancy>
</mmCIF:phasing_MIR_der_site>
</mmCIF:phasing_MIR_der_siteCategory>
Isotropic displacement parameter for this heavy-atom site in this
derivative.
The standard uncertainty (estimated standard deviation)
of attribute B_iso in category phasing_MIR_der_site.
The x coordinate of this heavy-atom position in this derivative
specified as orthogonal angstroms. The orthogonal Cartesian axes
are related to the cell axes as specified by the description
given in attribute Cartn_transform_axes in category atom_sites.
The standard uncertainty (estimated standard deviation)
of attribute Cartn_x in category phasing_MIR_der_site.
The y coordinate of this heavy-atom position in this derivative
specified as orthogonal angstroms. The orthogonal Cartesian axes
are related to the cell axes as specified by the description
given in attribute Cartn_transform_axes in category atom_sites.
The standard uncertainty (estimated standard deviation)
of attribute Cartn_y in category phasing_MIR_der_site.
The z coordinate of this heavy-atom position in this derivative
specified as orthogonal angstroms. The orthogonal Cartesian axes
are related to the cell axes as specified by the description
given in attribute Cartn_transform_axes in category atom_sites.
The standard uncertainty (estimated standard deviation)
of attribute Cartn_z in category phasing_MIR_der_site.
This data item is a pointer to attribute symbol in category atom_type in the
ATOM_TYPE category.
The scattering factors referenced via this data item should be
those used in the refinement of the heavy-atom data; in some
cases this is the scattering factor for the single heavy
atom, in other cases these are the scattering factors for an
atomic cluster.
A description of special aspects of the derivative site.
binds to His 117
minor site obtained from difference Fourier
same as site 2 in the K2HgI4 derivative
The x coordinate of this heavy-atom position in this derivative
specified as a fraction of attribute length_a in category cell.
The standard uncertainty (estimated standard deviation)
of attribute fract_x in category phasing_MIR_der_site.
The y coordinate of this heavy-atom position in this derivative
specified as a fraction of attribute length_b in category cell.
The standard uncertainty (estimated standard deviation)
of attribute fract_y in category phasing_MIR_der_site.
The z coordinate of this heavy-atom position in this derivative
specified as a fraction of attribute length_c in category cell.
The standard uncertainty (estimated standard deviation)
of attribute fract_z in category phasing_MIR_der_site.
The fraction of the atom type present at this heavy-atom site
in a given derivative. The sum of the occupancies of all the
atom types at this site may not significantly exceed 1.0 unless
it is a dummy site.
The relative anomalous occupancy of the atom type
present at this heavy-atom site in a given derivative.
This atom occupancy will probably be on an arbitrary scale.
The standard uncertainty (estimated standard deviation) of
attribute occupancy_anom in category phasing_MIR_der_site.
The relative real isotropic occupancy of the atom type
present at this heavy-atom site in a given derivative.
This atom occupancy will probably be on an arbitrary scale.
The standard uncertainty (estimated standard deviation) of
attribute occupancy_iso in category phasing_MIR_der_site.
This data item is a pointer to attribute id in category phasing_MIR_der in the
PHASING_MIR_DER category.
The value of attribute id in category phasing_MIR_der_site must uniquely identify each
site in each derivative in the PHASING_MIR_DER_SITE list.
The atom identifiers need not be unique over all sites in all
derivatives; they need only be unique for each site in each
derivative.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the PHASING_MIR_SHELL category record statistics
for an isomorphous replacement phasing experiment.broken
down into shells of resolution.
Example 1 - based on a paper by Zanotti et al. [J. Biol. Chem.
(1993), 268, 10728-10738]
with addition of an arbitrary low-resolution limit.
<mmCIF:phasing_MIR_shellCategory>
<mmCIF:phasing_MIR_shell d_res_high="8.3" d_res_low="15.0">
<mmCIF:FOM>0.69</mmCIF:FOM>
<mmCIF:reflns>80</mmCIF:reflns>
</mmCIF:phasing_MIR_shell>
<mmCIF:phasing_MIR_shell d_res_high="6.4" d_res_low="8.3">
<mmCIF:FOM>0.73</mmCIF:FOM>
<mmCIF:reflns>184</mmCIF:reflns>
</mmCIF:phasing_MIR_shell>
<mmCIF:phasing_MIR_shell d_res_high="5.2" d_res_low="6.4">
<mmCIF:FOM>0.72</mmCIF:FOM>
<mmCIF:reflns>288</mmCIF:reflns>
</mmCIF:phasing_MIR_shell>
<mmCIF:phasing_MIR_shell d_res_high="4.4" d_res_low="5.2">
<mmCIF:FOM>0.65</mmCIF:FOM>
<mmCIF:reflns>406</mmCIF:reflns>
</mmCIF:phasing_MIR_shell>
<mmCIF:phasing_MIR_shell d_res_high="3.8" d_res_low="4.4">
<mmCIF:FOM>0.54</mmCIF:FOM>
<mmCIF:reflns>554</mmCIF:reflns>
</mmCIF:phasing_MIR_shell>
<mmCIF:phasing_MIR_shell d_res_high="3.4" d_res_low="3.8">
<mmCIF:FOM>0.53</mmCIF:FOM>
<mmCIF:reflns>730</mmCIF:reflns>
</mmCIF:phasing_MIR_shell>
<mmCIF:phasing_MIR_shell d_res_high="3.0" d_res_low="3.4">
<mmCIF:FOM>0.50</mmCIF:FOM>
<mmCIF:reflns>939</mmCIF:reflns>
</mmCIF:phasing_MIR_shell>
</mmCIF:phasing_MIR_shellCategory>
The mean value of the figure of merit m for reflections in this
shell.
int P~alpha~ exp(i*alpha) dalpha
m = --------------------------------
int P~alpha~ dalpha
P~alpha~ = the probability that the phase angle alpha is correct
the integral is taken over the range alpha = 0 to 2 pi.
The mean value of the figure of merit m for acentric reflections
in this shell.
int P~alpha~ exp(i*alpha) dalpha
m = --------------------------------
int P~alpha~ dalpha
P~a~ = the probability that the phase angle a is correct
the integral is taken over the range alpha = 0 to 2 pi.
The mean value of the figure of merit m for centric reflections
in this shell.
int P~alpha~ exp(i*alpha) dalpha
m = --------------------------------
int P~alpha~ dalpha
P~a~ = the probability that the phase angle a is correct
the integral is taken over the range alpha = 0 to 2 pi.
Residual factor R~cullis~ for centric reflections in this shell.
sum| |Fph~obs~ +/- Fp~obs~| - Fh~calc~ |
R~cullis~ = ----------------------------------------
sum|Fph~obs~ - Fp~obs~|
Fp~obs~ = the observed structure-factor amplitude of the native
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fh~calc~ = the calculated structure-factor amplitude from the
heavy-atom model
sum is taken over the specified reflections
Ref: Cullis, A. F., Muirhead, H., Perutz, M. F., Rossmann, M. G.
& North, A. C. T. (1961). Proc. R. Soc. London Ser. A,
265, 15-38.
Residual factor R~kraut~ for general reflections in this shell.
sum|Fph~obs~ - Fph~calc~|
R~kraut~ = -------------------------
sum|Fph~obs~|
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fph~calc~ = the calculated structure-factor amplitude of the
derivative
sum is taken over the specified reflections
Ref: Kraut, J., Sieker, L. C., High, D. F. & Freer, S. T.
(1962). Proc. Natl Acad. Sci. USA, 48, 1417-1424.
The mean lack-of-closure error loc for reflections in this shell.
loc = sum|Fph~obs~ - Fph~calc~|
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fph~calc~ = the calculated structure-factor amplitude of the
derivative
sum is taken over the specified reflections
The mean of the phase values for all reflections in this shell.
The mean phasing power P for reflections in this shell.
sum|Fh~calc~^2^|
P = (----------------------------)^1/2^
sum|Fph~obs~ - Fph~calc~|^2^
Fph~obs~ = the observed structure-factor amplitude of the
derivative
Fph~calc~ = the calculated structure-factor amplitude of the
derivative
Fh~calc~ = the calculated structure-factor amplitude from the
heavy-atom model
sum is taken over the specified reflections
The number of reflections in this shell.
The number of acentric reflections in this shell.
The number of anomalous reflections in this shell.
The number of centric reflections in this shell.
The lowest value for the interplanar spacings for the
reflection data in this shell. This is called the highest
resolution. Note that the resolution limits of shells in
the items attribute d_res_high in category phasing_MIR_shell and
attribute d_res_low in category phasing_MIR_shell are independent of the resolution
limits of shells in the items attribute d_res_high in category reflns_shell and
attribute d_res_low in category reflns_shell.
The highest value for the interplanar spacings for the
reflection data in this shell. This is called the lowest
resolution. Note that the resolution limits of shells in the
items attribute d_res_high in category phasing_MIR_shell and
attribute d_res_low in category phasing_MIR_shell are independent of the resolution
limits of shells in the items attribute d_res_high in category reflns_shell and
attribute d_res_low in category reflns_shell.
Data items in the PHASING_AVERAGING category record details
about the phasing of the structure where methods involving
averaging of multiple observations of the molecule in the
asymmetric unit are involved.
Example 1 - hypothetical example.
<mmCIF:phasing_averagingCategory>
<mmCIF:phasing_averaging entry_id="EXAMHYPO">
<mmCIF:details> The position of the threefold axis was redetermined every
five cycles.</mmCIF:details>
<mmCIF:method> Iterative threefold averaging alternating with phase
extensions by 0.5 reciprocal lattice units per cycle.</mmCIF:method>
</mmCIF:phasing_averaging>
</mmCIF:phasing_averagingCategory>
A description of special aspects of the averaging process.
A description of the phase-averaging phasing method used to
phase this structure.
Note that this is not the computer program used, which is
described in the SOFTWARE category, but rather the method
itself.
This data item should be used to describe significant
methodological options used within the phase-averaging program.
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the PHASING_ISOMORPHOUS category record details
about the phasing of the structure where a model isomorphous
to the structure being phased was used to generate the initial
phases.
Example 1 - based on PDB entry 4PHV and laboratory records for the
structure corresponding to PDB entry 4PHV.
A description of special aspects of the isomorphous phasing.
Residues 13-18 were eliminated from the
starting model as it was anticipated that
binding of the inhibitor would cause a
structural rearrangement in this part of the
structure.
A description of the isomorphous-phasing method used to
phase this structure.
Note that this is not the computer program used, which is
described in the SOFTWARE category, but rather the method
itself.
This data item should be used to describe significant
methodological options used within the isomorphous phasing
program.
Iterative threefold averaging alternating with
phase extension by 0.5 reciprocal lattice
units per cycle.
Reference to the structure used to generate starting phases
if the structure referenced in this data block was phased
by virtue of being isomorphous to a known structure (e.g.
a mutant that crystallizes in the same space group as the
wild-type protein.)
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the PHASING_SET category record details about
the data sets used in a phasing experiment. A given data set
may be used in a number of different ways; for instance, a
single data set could be used both as an isomorphous derivative
and as a component of a multiple-wavelength calculation. This
category establishes identifiers for each data set and permits
the archiving of a subset of experimental information for each
data set (cell constants, wavelength, temperature etc.).
This and related categories of data items are provided so that
derivative intensity and phase information can be stored in
the same data block as the information for the refined
structure.
If all the possible experimental information for each data
set (raw data sets, crystal growth conditions etc.) is to be
archived, these data items should be recorded in a separate
data block.
Example 1 - based on laboratory records for an Hg/Pt derivative of
protein NS1.
<mmCIF:phasing_setCategory>
<mmCIF:phasing_set id="NS1-96">
<mmCIF:cell_angle_alpha>90.0</mmCIF:cell_angle_alpha>
<mmCIF:cell_angle_beta>90.0</mmCIF:cell_angle_beta>
<mmCIF:cell_angle_gamma>90.0</mmCIF:cell_angle_gamma>
<mmCIF:cell_length_a>38.63</mmCIF:cell_length_a>
<mmCIF:cell_length_b>38.63</mmCIF:cell_length_b>
<mmCIF:cell_length_c>82.88</mmCIF:cell_length_c>
<mmCIF:detector_specific>RXII</mmCIF:detector_specific>
<mmCIF:detector_type>image plate</mmCIF:detector_type>
<mmCIF:radiation_wavelength>1.5145</mmCIF:radiation_wavelength>
</mmCIF:phasing_set>
</mmCIF:phasing_setCategory>
Unit-cell angle alpha for this data set in degrees.
Unit-cell angle beta for this data set in degrees.
Unit-cell angle gamma for this data set in degrees.
Unit-cell length a for this data set in angstroms.
Unit-cell length b for this data set in angstroms.
Unit-cell length c for this data set in angstroms.
The particular radiation detector. In general, this will be a
manufacturer, description, model number or some combination of
these.
Siemens model x
Kodak XG
MAR Research model y
The general class of the radiation detector.
multiwire
imaging plate
CCD
film
The particular source of radiation. In general, this will be a
manufacturer, description, or model number (or some combination
of these) for laboratory sources and an institution name and
beamline name for synchrotron sources.
Rigaku RU200
Philips fine focus Mo
NSLS beamline X8C
The mean wavelength of the radiation used to measure this
data set.
The temperature in kelvins at which the data set was
measured.
The value of attribute id in category phasing_set must uniquely identify
a record in the PHASING_SET list.
Note that this item need not be a number; it can be any unique
identifier.
KAu(CN)2
K2HgI4
Data items in the PHASING_SET_REFLN category record the values
of the measured structure factors used in a phasing experiment.
This list may contain information from a number of different
data sets; attribute set_id in category phasing_set_refln indicates the data set
to which a given record corresponds.
Example 1 - based on laboratory records for the 15,15,32
reflection of an Hg/Pt derivative of protein NS1.
<mmCIF:phasing_set_reflnCategory>
<mmCIF:phasing_set_refln index_h="15" index_k="15" index_l="32" set_id="NS1-96">
<mmCIF:F_meas_au>181.79</mmCIF:F_meas_au>
<mmCIF:F_meas_sigma_au>3.72</mmCIF:F_meas_sigma_au>
</mmCIF:phasing_set_refln>
</mmCIF:phasing_set_reflnCategory>
The measured value of the structure factor for this reflection
in this data set in electrons.
The measured value of the structure factor for this reflection
in this data set in arbitrary units.
The standard uncertainty (estimated standard deviation)
of attribute F_meas in category phasing_set_refln in electrons.
The standard uncertainty (estimated standard deviation)
of attribute F_meas_au in category phasing_set_refln in arbitrary units.
Miller index h of this reflection in this data set.
Miller index k of this reflection in this data set.
Miller index l of this reflection in this data set.
This data item is a pointer to attribute id in category phasing_set in the
PHASING_SET category.
Data items in the PUBL category are used when submitting a
manuscript for publication.
Example 1 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
Example 2 - based on C~31~H~48~N~4~O~4~, reported by Coleman, Patrick,
Andersen & Rettig [Acta Cryst. (1996), C52, 1525-1527].
The name and address of the author submitting the manuscript and
data block. This is the person contacted by the journal
editorial staff. It is preferable to use the separate data items
_publ.contact_author_name and _publ.contact_author_address.
Professor George Ferguson
Department of Chemistry and Biochemistry
University of Guelph
Ontario
Canada
N1G 2W1
The address of the author submitting the manuscript and data
block. This is the person contacted by the journal editorial
staff.
Department of Chemistry and Biochemistry
University of Guelph
Ontario
Canada
N1G 2W1
E-mail address in a form recognizable to international networks.
The format of e-mail addresses is given in Section 3.4, Address
Specification, of Internet Message Format, RFC 2822, P. Resnick
(Editor), Network Standards Group, April 2001.
name@host.domain.country
uur5@banjo.bitnet
Facsimile telephone number of the author submitting the
manuscript and data block.
The recommended style starts with the international dialing
prefix, followed by the area code in parentheses, followed by the
local number with no spaces. The earlier convention of including
the international dialing prefix in parentheses is no longer
recommended.
12(34)9477330
12()349477330
The name of the author submitting the manuscript and data
block. This is the person contacted by the journal editorial
staff.
Professor George Ferguson
Telephone number of the author submitting the manuscript and
data block.
The recommended style starts with the international dialing
prefix, followed by the area code in parentheses, followed by the
local number and any extension number prefixed by 'x',
with no spaces. The earlier convention of including
the international dialing prefix in parentheses is no longer
recommended.
12(34)9477330
12()349477330
12(34)9477330x5543
A letter submitted to the journal editor by the contact author.
A description of the word-processor package and computer used to
create the word-processed manuscript stored as
attribute manuscript_processed in category publ.
Tex file created by FrameMaker on a Sun 3/280
The full manuscript of a paper (excluding possibly the figures
and the tables) output in ASCII characters from a word processor.
Information about the generation of this data item must be
specified in the data item attribute manuscript_creation in category publ.
The full manuscript of a paper (excluding figures and possibly
the tables) output as standard ASCII text.
The category of paper submitted. For submission to
Acta Crystallographica Section C or
Acta Crystallographica Section E, ONLY the codes indicated
for use with these journals should be used.
The name of the co-editor whom the authors would like to
handle the submitted manuscript.
The name of the journal to which the manuscript is being
submitted.
The abstract section of a manuscript if the manuscript is
submitted in parts. As an alternative see attribute manuscript_text
in category publ and attribute manuscript_processed in category publ.
The acknowledgements section of a manuscript if the manuscript is
submitted in parts. As an alternative see attribute manuscript_text
in category publ and attribute manuscript_processed in category publ.
The comment section of a manuscript if the manuscript is
submitted in parts. As an alternative see attribute manuscript_text
in category publ and attribute manuscript_processed in category publ.
The discussion section of a manuscript if the manuscript is
submitted in parts. As an alternative see attribute manuscript_text
in category publ and attribute manuscript_processed in category publ.
The experimental section of a manuscript if the manuscript is
submitted in parts. As an alternative see attribute manuscript_text
in category publ and attribute manuscript_processed.
in category publ The _publ.section_exptl_prep, _publ.section_exptl_solution and
attribute section_exptl_refinement in category publ items are preferred for
separating the chemical preparation, structure solution and
refinement aspects of the description of the experiment.
The experimental preparation section of a manuscript if the
manuscript is submitted in parts. As an alternative see
_publ.manuscript_text and _publ.manuscript_processed.
The experimental refinement section of a manuscript if the
manuscript is submitted in parts. As an alternative see
_publ.manuscript_text and _publ.manuscript_processed.
The experimental solution section of a manuscript if the
manuscript is submitted in parts. As an alternative see
_publ.manuscript_text and _publ.manuscript_processed.
The figure captions section of a manuscript if the manuscript is
submitted in parts. As an alternative see attribute manuscript_text
in category publ and attribute manuscript_processed in category publ.
The introduction section of a manuscript if the manuscript is
submitted in parts. As an alternative see attribute manuscript_text
in category publ and attribute manuscript_processed in category publ.
The references section of a manuscript if the manuscript is
submitted in parts. As an alternative see attribute manuscript_text
in category publ and attribute manuscript_processed in category publ.
The synopsis section of a manuscript if the manuscript is
submitted in parts. As an alternative see attribute manuscript_text
in category publ and attribute manuscript_processed in category publ.
The table legends section of a manuscript if the manuscript
is submitted in parts. As an alternative see
_publ.manuscript_text and _publ.manuscript_processed.
The title of a manuscript if the manuscript is submitted in
parts. As an alternative see attribute manuscript_text in category publ and
attribute manuscript_processed in category publ.
The footnote to the title of a manuscript if the manuscript
is submitted in parts. As an alternative see
_publ.manuscript_text and _publ.manuscript_processed.
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the PUBL_AUTHOR category record details of
the authors of a manuscript submitted for publication.
Example 1 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
<mmCIF:publ_authorCategory>
<mmCIF:publ_author name="Willis, Anthony C.">
<mmCIF:address> Research School of Chemistry
Australian National University
GPO Box 4
Canberra, A.C.T.
Australia 2601</mmCIF:address>
</mmCIF:publ_author>
</mmCIF:publ_authorCategory>
The address of a publication author. If there is more than one
author this is looped with attribute name in category publ_author.
Department
Institute
Street
City and postcode
COUNTRY
The e-mail address of a publication author. If there is more
than one author, this will be looped with attribute name.
in category publ_author The format of e-mail addresses is given in Section 3.4, Address
Specification, of Internet Message Format, RFC 2822, P. Resnick
(Editor), Network Standards Group, April 2001.
name@host.domain.country
bm@iucr.org
A footnote accompanying an author's name in the list of authors
of a paper. Typically indicates sabbatical address, additional
affiliations or date of decease.
On leave from U. Western Australia
Also at Department of Biophysics
Identifier in the IUCr contact database of a publication
author. This identifier may be available from the World
Directory of Crystallographers (http://wdc.iucr.org).
2985
The name of a publication author. If there are multiple authors
this will be looped with attribute address in category publ_author. The family
name(s), followed by a comma and including any dynastic
components, precedes the first names or initials.
Bleary, Percival R.
O'Neil, F.K.
Van den Bossche, G.
Yang, D.-L.
Simonov, Yu.A
Data items in the PUBL_BODY category permit the labelling of
different text sections within the body of a paper.
Note that these should not be used in a paper which has
a standard format with sections tagged by specific data names
(such as in Acta Crystallographica Section C). Typically,
each journal will supply a list of the specific items it
requires in its Notes for Authors.
Example 1 - based on a paper by R. Restori & D. Schwarzenbach
[Acta Cryst. (1996), A52, 369-378].
<mmCIF:publ_bodyCategory>
<mmCIF:publ_body element="section" label="1">
<mmCIF:contents> X-ray diffraction from a crystalline material provides
information on the thermally and spatially averaged
electron density in the crystal...</mmCIF:contents>
<mmCIF:format>cif</mmCIF:format>
<mmCIF:title>Introduction</mmCIF:title>
</mmCIF:publ_body>
<mmCIF:publ_body element="section" label="2">
<mmCIF:contents> In the rigid-atom approximation, the dynamic electron
density of an atom is described by the convolution
product of the static atomic density and a probability
density function,
$\rho_{dyn}(\bf r) = \rho_{stat}(\bf r) * P(\bf r). \eqno(1)$</mmCIF:contents>
<mmCIF:format>tex</mmCIF:format>
<mmCIF:title>Theory</mmCIF:title>
</mmCIF:publ_body>
</mmCIF:publ_bodyCategory>
Example 2 - based on a paper by R. J. Papoular, Y. Vekhter & P. Coppens
[Acta Cryst. (1996), A52, 397-407].
<mmCIF:publ_bodyCategory>
<mmCIF:publ_body element="section" label="3">
<mmCIF:contents xsi:nil="true" />
<mmCIF:title> The two-channel method for retrieval of the deformation
electron density</mmCIF:title>
</mmCIF:publ_body>
<mmCIF:publ_body element="subsection" label="3.1">
<mmCIF:contents> As the wide dynamic range involved in the total electron
density...</mmCIF:contents>
<mmCIF:title>The two-channel entropy S[\D\r(r)]</mmCIF:title>
</mmCIF:publ_body>
<mmCIF:publ_body element="subsection" label="3.2">
<mmCIF:contents xsi:nil="true" />
<mmCIF:title>Uniform vs informative prior model densities</mmCIF:title>
</mmCIF:publ_body>
<mmCIF:publ_body element="subsubsection" label="3.2.1">
<mmCIF:contents> Straightforward algebra leads to expressions analogous
to...</mmCIF:contents>
<mmCIF:title>Use of uniform models</mmCIF:title>
</mmCIF:publ_body>
</mmCIF:publ_bodyCategory>
A text section of a paper.
Code indicating the appropriate typesetting conventions
for accented characters and special symbols in the text
section.
Title of the associated section of text.
The functional role of the associated text section.
Code identifying the section of text.
1
1.1
2.1.3
Data items in the PUBL_MANUSCRIPT_INCL category allow
the authors of a manuscript submitted for publication to list
data names that should be added to the standard request list
used by the journal printing software.
Example 1 - hypothetical example.
<mmCIF:publ_manuscript_inclCategory>
<mmCIF:publ_manuscript_incl entry_id="EXAMHYPO">
<mmCIF:extra_defn>yes</mmCIF:extra_defn>
<mmCIF:extra_info>to emphasise special sites</mmCIF:extra_info>
<mmCIF:extra_item>_atom_site.symmetry_multiplicity</mmCIF:extra_item>
</mmCIF:publ_manuscript_incl>
</mmCIF:publ_manuscript_inclCategory>
Flags whether the corresponding data item marked for inclusion
in a journal request list is a standard CIF definition or not.
A short note indicating the reason why the author wishes the
corresponding data item marked for inclusion in the journal
request list to be published.
to emphasise very special sites
rare material from unusual source
the limited data is a problem here
a new data quantity needed here
Specifies the inclusion of specific data into a manuscript
which are not normally requested by the journal. The values
of this item are the extra data names (which MUST be enclosed
in single quotes) that will be added to the journal request list.
_atom_site.symmetry_multiplicity
_chemical.compound_source
_reflns.d_resolution_high
_crystal.magnetic_permeability
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the REFINE category record details about the
structure-refinement parameters.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:refineCategory>
<mmCIF:refine entry_id="5HVP">
<mmCIF:ls_R_factor_obs>0.176</mmCIF:ls_R_factor_obs>
<mmCIF:ls_number_parameters>7032</mmCIF:ls_number_parameters>
<mmCIF:ls_number_reflns_obs>12901</mmCIF:ls_number_reflns_obs>
<mmCIF:ls_number_restraints>6609</mmCIF:ls_number_restraints>
<mmCIF:ls_weighting_details> Sigdel model of Konnert-Hendrickson:
Sigdel: Afsig + Bfsig*(sin(theta)/lambda-1/6)
Afsig = 22.0, Bfsig = -150.0 at beginning of refinement
Afsig = 15.5, Bfsig = -50.0 at end of refinement</mmCIF:ls_weighting_details>
<mmCIF:ls_weighting_scheme>calc</mmCIF:ls_weighting_scheme>
</mmCIF:refine>
</mmCIF:refineCategory>
Example 2 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
The maximum isotropic displacement parameter (B value)
found in the coordinate set.
The mean isotropic displacement parameter (B value)
for the coordinate set.
The minimum isotropic displacement parameter (B value)
found in the coordinate set.
The [1][1] element of the matrix that defines the overall
anisotropic displacement model if one was refined for this
structure.
The [1][2] element of the matrix that defines the overall
anisotropic displacement model if one was refined for this
structure.
The [1][3] element of the matrix that defines the overall
anisotropic displacement model if one was refined for this
structure.
The [2][2] element of the matrix that defines the overall
anisotropic displacement model if one was refined for this
structure.
The [2][3] element of the matrix that defines the overall
anisotropic displacement model if one was refined for this
structure.
The [3][3] element of the matrix that defines the overall
anisotropic displacement model if one was refined for this
structure.
The correlation coefficient between the observed and
calculated structure factors for reflections included in
the refinement.
The correlation coefficient is scale-independent and gives
an idea of the quality of the refined model.
sum~i~(Fo~i~ Fc~i~ - <Fo><Fc>)
R~corr~ = ------------------------------------------------------------
SQRT{sum~i~(Fo~i~)^2^-<Fo>^2^} SQRT{sum~i~(Fc~i~)^2^-<Fc>^2^}
Fo = observed structure factors
Fc = calculated structure factors
<> denotes average value
summation is over reflections included in the refinement
The correlation coefficient between the observed and
calculated structure factors for reflections not included
in the refinement (free reflections).
The correlation coefficient is scale-independent and gives
an idea of the quality of the refined model.
sum~i~(Fo~i~ Fc~i~ - <Fo><Fc>)
R~corr~ = ------------------------------------------------------------
SQRT{sum~i~(Fo~i~)^2^-<Fo>^2^} SQRT{sum~i~(Fc~i~)^2^-<Fc>^2^}
Fo = observed structure factors
Fc = calculated structure factors
<> denotes average value
summation is over reflections not included
in the refinement (free reflections)
Description of special aspects of the refinement process.
The maximum value of the electron density in the final difference
Fourier map.
The standard uncertainty (estimated standard deviation)
of attribute diff_density_max in category refine.
The minimum value of the electron density in the final difference
Fourier map.
The standard uncertainty (estimated standard deviation)
of attribute diff_density_min in category refine.
The root-mean-square-deviation of the electron density in the
final difference Fourier map. This value is measured with respect
to the arithmetic mean density and is derived from summations
over each grid point in the asymmetric unit of the cell. This
quantity is useful for assessing the significance of the values
of _refine.diff_density_min and _refine.diff_density_max, and
also for defining suitable contour levels.
The standard uncertainty (estimated standard deviation)
of attribute diff_density_rms in category refine.
Residual factor R(Fsqd) for reflections that satisfy the
resolution limits established by attribute ls_d_res_high in category refine and
attribute ls_d_res_low in category refine and the observation limit established by
attribute observed_criterion in category reflns, calculated on the squares of the
observed and calculated structure-factor amplitudes.
sum|F~obs~^2^ - F~calc~^2^|
R(Fsqd) = ---------------------------
sum|F~obs~^2^|
F~obs~^2^ = squares of the observed structure-factor amplitudes
F~calc~^2^ = squares of the calculated structure-factor
amplitudes
sum is taken over the specified reflections
Residual factor R(I) for reflections that satisfy the
resolution limits established by attribute ls_d_res_high in category refine and
attribute ls_d_res_low in category refine and the observation limit established by
attribute observed_criterion in category reflns, calculated on the estimated
reflection intensities.
This is most often calculated in Rietveld refinements against
powder data, where it is referred to as R~B~ or R~Bragg~.
sum|I~obs~ - I~calc~|
R(I) = ---------------------
sum|I~obs~|
I~obs~ = the net observed intensities
I~calc~ = the net calculated intensities
sum is taken over the specified reflections
Residual factor R for reflections that satisfy the resolution
limits established by attribute ls_d_res_high in category refine and
attribute ls_d_res_low in category refine and the observation limit established by
attribute observed_criterion in category reflns, and that were used as the test
reflections (i.e. were excluded from the refinement) when the
refinement included the calculation of a 'free' R factor.
Details of how reflections were assigned to the working and
test sets are given in attribute R_free_details.
in category reflns
sum|F~obs~ - F~calc~|
R = ---------------------
sum|F~obs~|
F~obs~ = the observed structure-factor amplitudes
F~calc~ = the calculated structure-factor amplitudes
sum is taken over the specified reflections
The estimated error in attribute ls_R_factor_R_free.
in category refine The method used to estimate the error is described in the
item attribute ls_R_factor_R_free_error_details in category refine.
Special aspects of the method used to estimated the error in
attribute ls_R_factor_R_free in category refine.
Residual factor R for reflections that satisfy the resolution
limits established by attribute ls_d_res_high in category refine and
attribute ls_d_res_low in category refine and the observation limit established by
attribute observed_criterion in category reflns, and that were used as the working
reflections (i.e. were included in the refinement) when the
refinement included the calculation of a 'free' R factor.
Details of how reflections were assigned to the working and
test sets are given in attribute R_free_details.
in category reflns
attribute ls_R_factor_obs in category refine should not be confused with
attribute ls_R_factor_R_work in category refine; the former reports the results of a
refinement in which all observed reflections were used, the
latter a refinement in which a subset of the observed
reflections were excluded from refinement for the calculation
of a 'free' R factor. However, it would be meaningful to quote
both values if a 'free' R factor were calculated for most of
the refinement, but all of the observed reflections were used
in the final rounds of refinement; such a protocol should be
explained in attribute details.
in category refine
sum|F~obs~ - F~calc~|
R = ---------------------
sum|F~obs~|
F~obs~ = the observed structure-factor amplitudes
F~calc~ = the calculated structure-factor amplitudes
sum is taken over the specified reflections
Residual factor R for all reflections that satisfy the resolution
limits established by attribute ls_d_res_high in category refine and
attribute ls_d_res_low.
in category refine
sum|F~obs~ - F~calc~|
R = ---------------------
sum|F~obs~|
F~obs~ = the observed structure-factor amplitudes
F~calc~ = the calculated structure-factor amplitudes
sum is taken over the specified reflections
Residual factor for the reflections (with number given by
attribute number_gt) in category reflns judged significantly intense (i.e. satisfying
the threshold specified by attribute threshold_expression)
in category reflns and included in the refinement. The reflections also satisfy
the resolution limits established by attribute ls_d_res_high in category refine and
attribute ls_d_res_low in category refine. This is the conventional R
factor. See also attribute ls_wR_factor_ in category refine definitions.
sum | F(obs) - F(calc) |
R = ------------------------
sum | F(obs) |
F(obs) = the observed structure-factor amplitudes
F(calc) = the calculated structure-factor amplitudes
and the sum is taken over the specified reflections
Residual factor R for reflections that satisfy the resolution
limits established by attribute ls_d_res_high in category refine and
attribute ls_d_res_low in category refine and the observation limit established by
attribute observed_criterion.
in category reflns
attribute ls_R_factor_obs in category refine should not be confused with
attribute ls_R_factor_R_work in category refine; the former reports the results of a
refinement in which all observed reflections were used, the
latter a refinement in which a subset of the observed
reflections were excluded from refinement for the calculation
of a 'free' R factor. However, it would be meaningful to quote
both values if a 'free' R factor were calculated for most of
the refinement, but all of the observed reflections were used
in the final rounds of refinement; such a protocol should be
explained in attribute details.
in category refine
sum|F~obs~ - F~calc~|
R = ---------------------
sum|F~obs~|
F~obs~ = the observed structure-factor amplitudes
F~calc~ = the calculated structure-factor amplitudes
sum is taken over the specified reflections
The measure of absolute structure (enantiomorph or polarity) as
defined by Flack (1983).
For centrosymmetric structures, the only permitted value, if the
data name is present, is 'inapplicable', represented by '.' .
For noncentrosymmetric structures the value must lie in the
99.97% Gaussian confidence interval -3u =< x =< 1 + 3u and a
standard uncertainty (estimated standard deviation) u must
be supplied. The item range of [0.0:1.0] is correctly
interpreted as meaning (0.0 - 3u) =< x =< (1.0 + 3u).
Ref: Flack, H. D. (1983). Acta Cryst. A39, 876-881.
The standard uncertainty (estimated standard deviation)
of attribute ls_abs_structure_Flack in category refine.
The measure of absolute structure (enantiomorph or polarity) as
defined by Rogers.
The value must lie in the 99.97% Gaussian confidence interval
-1 -3u =< \h =< 1 + 3u and a standard uncertainty (estimated
standard deviation) u must be supplied. The item range of
[-1.0, 1.0] is correctly interpreted as meaning
(-1.0 - 3u) =< \h =< (1.0 + 3u).
Ref: Rogers, D. (1981). Acta Cryst. A37, 734-741.
The standard uncertainty (estimated standard deviation)
of attribute ls_abs_structure_Rogers in category refine.
The nature of the absolute structure and how it was determined.
For example, this may describe the Friedel pairs used.
The smallest value for the interplanar spacings for the
reflection data used in the refinement in angstroms. This is
called the highest resolution.
The largest value for the interplanar spacings for
the reflection data used in the refinement in angstroms.
This is called the lowest resolution.
The extinction coefficient used to calculate the correction
factor applied to the structure-factor data. The nature of the
extinction coefficient is given in the definitions of
attribute ls_extinction_expression in category refine and
attribute ls_extinction_method.
in category refine
For the 'Zachariasen' method it is the r* value; for the
'Becker-Coppens type 1 isotropic' method it is the 'g' value,
and for 'Becker-Coppens type 2 isotropic' corrections it is
the 'rho' value. Note that the magnitude of these values is
usually of the order of 10000.
Ref: Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30,
129-47, 148-153.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Zachariasen coefficient r* = 0.347 E04
3472
The standard uncertainty (estimated standard deviation)
of attribute ls_extinction_coef in category refine.
A description of or reference to the extinction-correction
equation used to apply the data item
attribute ls_extinction_coef in category refine. This information must be sufficient
to reproduce the extinction-correction factors applied to the
structure factors.
Larson, A. C. (1970). "Crystallographic Computing", edited by
F. R. Ahmed. Eq. (22), p.292. Copenhagen: Munksgaard.
A description of the extinction-correction method applied.
This description should
include information about the correction method, either
'Becker-Coppens' or 'Zachariasen'. The latter is sometimes
referred to as the 'Larson' method even though it employs
Zachariasen's formula.
The Becker-Coppens procedure is referred to as 'type 1' when
correcting secondary extinction dominated by the mosaic spread;
as 'type 2' when secondary extinction is dominated by particle
size and includes a primary extinction component; and as 'mixed'
when there is a mixture of types 1 and 2.
For the Becker-Coppens method, it is also necessary to set the
mosaic distribution as either 'Gaussian' or 'Lorentzian' and the
nature of the extinction as 'isotropic' or 'anisotropic'. Note
that if either the 'mixed' or 'anisotropic' corrections are
applied, the multiple coefficients cannot be contained in
*_extinction_coef and must be listed in attribute details.
in category refine
Ref: Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30,
129-147, 148-153.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558- 564.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
B-C type 2 Gaussian isotropic
The least-squares goodness-of-fit parameter S for all data
after the final cycle of refinement. Ideally, account should be
taken of parameters restrained in the least-squares refinement.
See also the definition of attribute ls_restrained_S_all.
in category refine
( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^
S = ( ---------------------------- )
( N~ref~ - N~param~ )
Y~obs~ = the observed coefficients
(see attribute ls_structure_factor_coef)
in category refine Y~calc~ = the calculated coefficients
(see attribute ls_structure_factor_coef)
in category refine w = the least-squares reflection weight
[1/(e.s.d. squared)]
N~ref~ = the number of reflections used in the refinement
N~param~ = the number of refined parameters
sum is taken over the specified reflections
The standard uncertainty (estimated standard deviation)
of attribute ls_goodness_of_fit_all in category refine.
The least-squares goodness-of-fit parameter S for
significantly intense reflections (see
attribute threshold_expression) in category reflns after the final cycle of
refinement. Ideally, account should be taken of parameters
restrained in the least-squares refinement. See also
attribute ls_restrained_S_ in category refine definitions.
{ sum { w [ Y(obs) - Y(calc) ]^2^ } }^1/2^
S = { ----------------------------------- }
{ Nref - Nparam }
Y(obs) = the observed coefficients
(see _refine_ls_structure_factor_coef)
Y(calc) = the calculated coefficients
(see _refine_ls_structure_factor_coef)
w = the least-squares reflection weight
[1/(u^2^)]
u = standard uncertainty
Nref = the number of reflections used in the refinement
Nparam = the number of refined parameters
and the sum is taken over the specified reflections
The least-squares goodness-of-fit parameter S for reflection data
classified as 'observed' (see attribute observed_criterion) in category reflns after
the final cycle of refinement. Ideally, account should be taken
of parameters restrained in the least-squares refinement.
See also the definition of attribute ls_restrained_S_obs.
in category refine
( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^
S = ( ---------------------------- )
( N~ref~ - N~param~ )
Y~obs~ = the observed coefficients
(see attribute ls_structure_factor_coef)
in category refine Y~calc~ = the calculated coefficients
(see attribute ls_structure_factor_coef)
in category refine w = the least-squares reflection weight
[1/(e.s.d. squared)]
N~ref~ = the number of reflections used in the refinement
N~param~ = the number of refined parameters
sum is taken over the specified reflections
The standard uncertainty (estimated standard deviation)
of attribute ls_goodness_of_fit_obs in category refine.
The least-squares goodness-of-fit parameter S for all
reflections included in the refinement after the final cycle
of refinement. Ideally, account should be taken of parameters
restrained in the least-squares refinement. See also
_refine_ls_restrained_S_ definitions.
{ sum | w | Y(obs) - Y(calc) |^2^ | }^1/2^
S = { ----------------------------------- }
{ Nref - Nparam }
Y(obs) = the observed coefficients
(see _refine_ls_structure_factor_coef)
Y(calc) = the calculated coefficients
(see _refine_ls_structure_factor_coef)
w = the least-squares reflection weight
[1/(u^2^)]
u = standard uncertainty
Nref = the number of reflections used in the refinement
Nparam = the number of refined parameters
and the sum is taken over the specified reflections
Treatment of hydrogen atoms in the least-squares refinement.
Type of matrix used to accumulate the least-squares derivatives.
The number of constrained (non-refined or dependent) parameters
in the least-squares process. These may be due to symmetry or any
other constraint process (e.g. rigid-body refinement). See also
_atom_site.constraints and _atom_site.refinement_flags. A general
description of constraints may appear in attribute details in category refine.
The number of parameters refined in the least-squares process.
If possible, this number should include some contribution from
the restrained parameters. The restrained parameters are
distinct from the constrained parameters (where one or more
parameters are linearly dependent on the refined value of
another). Least-squares restraints often depend on geometry or
energy considerations and this makes their direct contribution
to this number, and to the goodness-of-fit calculation,
difficult to assess.
The number of reflections that satisfy the resolution limits
established by _refine.ls_d_res_high and _refine.ls_d_res_low
and the observation limit established by
attribute observed_criterion in category reflns, and that were used as the test
reflections (i.e. were excluded from the refinement) when the
refinement included the calculation of a 'free' R factor.
Details of how reflections were assigned to the working and
test sets are given in attribute R_free_details in category reflns.
The number of reflections that satisfy the resolution limits
established by _refine.ls_d_res_high and _refine.ls_d_res_low
and the observation limit established by
attribute observed_criterion in category reflns, and that were used as the working
reflections (i.e. were included in the refinement) when the
refinement included the calculation of a 'free' R factor.
Details of how reflections were assigned to the working and
test sets are given in attribute R_free_details in category reflns.
The number of reflections that satisfy the resolution limits
established by _refine.ls_d_res_high and _refine.ls_d_res_low.
The number of reflections that satisfy the resolution limits
established by _refine.ls_d_res_high and _refine.ls_d_res_low
and the observation limit established by
attribute observed_criterion in category reflns.
The number of restrained parameters. These are parameters which
are not directly dependent on another refined parameter.
Restrained parameters often involve geometry or energy
dependencies.
See also _atom_site.constraints and _atom_site.refinement_flags.
A general description of refinement constraints may appear in
attribute details in category refine.
The number of reflections that satisfy the resolution limits
established by _refine.ls_d_res_high and _refine.ls_d_res_low
and the observation limit established by
attribute observed_criterion in category reflns, and that were used as the test
reflections (i.e. were excluded from the refinement) when the
refinement included the calculation of a 'free' R factor,
expressed as a percentage of the number of geometrically
observable reflections that satisfy the resolution limits.
The number of reflections that satisfy the resolution limits
established by _refine.ls_d_res_high and _refine.ls_d_res_low
and the observation limit established by
attribute observed_criterion in category reflns, expressed as a percentage of the
number of geometrically observable reflections that satisfy
the resolution limits.
The ratio of the total number of observations of the
reflections that satisfy the resolution limits established by
_refine.ls_d_res_high and _refine.ls_d_res_low to the number
of crystallographically unique reflections that satisfy the
same limits.
The ratio of the total number of observations of the
reflections that satisfy the resolution limits established by
_refine.ls_d_res_high and _refine.ls_d_res_low and the
observation limit established by attribute observed_criterion in category reflns to
the number of crystallographically unique reflections that
satisfy the same limits.
The least-squares goodness-of-fit parameter S' for all
reflections after the final cycle of least-squares refinement.
This parameter explicitly includes the restraints applied
in the least-squares process. See also the definition of
attribute ls_goodness_of_fit_all.
in category refine
( sum |w |Y~obs~ - Y~calc~|^2^| )^1/2^
( + sum~r~|w~r~ |P~calc~ - P~targ~|^2^| )
S' = ( ------------------------------------- )
( N~ref~ + N~restr~ - N~param~ )
Y~obs~ = the observed coefficients
(see attribute ls_structure_factor_coef)
in category refine Y~calc~ = the calculated coefficients
(see attribute ls_structure_factor_coef)
in category refine w = the least-squares reflection weight
[1/(e.s.d. squared)]
P~calc~ = the calculated restraint values
P~targ~ = the target restraint values
w~r~ = the restraint weight
N~ref~ = the number of reflections used in the refinement
(see attribute ls_number_reflns_obs)
in category refine N~restr~ = the number of restraints
(see attribute ls_number_restraints)
in category refine N~param~ = the number of refined parameters
(see attribute ls_number_parameters)
in category refine
sum is taken over the specified reflections
sumr is taken over the restraints
The least-squares goodness-of-fit parameter S' for reflection
data classified as observed (see attribute observed_criterion)
in category reflns after the final cycle of least-squares refinement. This
parameter explicitly includes the restraints applied in
the least-squares process. See also the definition of
attribute ls_goodness_of_fit_obs.
in category refine
( sum |w |Y~obs~ - Y~calc~|^2^| )^1/2^
( + sum~r~|w~r~ |P~calc~ - P~targ~|^2^| )
S' = ( ------------------------------------- )
( N~ref~ + N~restr~ - N~param~ )
Y~obs~ = the observed coefficients
(see attribute ls_structure_factor_coef)
in category refine Y~calc~ = the calculated coefficients
(see attribute ls_structure_factor_coef)
in category refine w = the least-squares reflection weight
[1/(e.s.d. squared)]
P~calc~ = the calculated restraint values
P~targ~ = the target restraint values
w~r~ = the restraint weight
N~ref~ = the number of reflections used in the refinement
(see attribute ls_number_reflns_obs)
in category refine N~restr~ = the number of restraints
(see attribute ls_number_restraints)
in category refine N~param~ = the number of refined parameters
(see attribute ls_number_parameters)
in category refine
sum is taken over the specified reflections
sumr is taken over the restraints
The largest ratio of the final least-squares parameter shift
to the final standard uncertainty (estimated standard
deviation).
The average ratio of the final least-squares parameter shift
to the final standard uncertainty (estimated standard
deviation).
The largest ratio of the final least-squares parameter
shift to the final standard uncertainty.
An upper limit for the largest ratio of the final
least-squares parameter shift to the final
standard uncertainty. This item is used when the largest
value of the shift divided by the final standard uncertainty
is too small to measure.
The average ratio of the final least-squares parameter
shift to the final standard uncertainty.
An upper limit for the average ratio of the final
least-squares parameter shift to the
final standard uncertainty. This
item is used when the average value of the shift divided by
the final standard uncertainty is too small to measure.
Structure-factor coefficient |F|, F^2^ or I used in the least-
squares refinement process.
Weighted residual factor wR for reflections that satisfy the
resolution limits established by attribute ls_d_res_high in category refine and
attribute ls_d_res_low in category refine and the observation limit established by
attribute observed_criterion in category reflns, and that were used as the test
reflections (i.e. were excluded from the refinement) when the
refinement included the calculation of a 'free' R factor.
Details of how reflections were assigned to the working and
test sets are given in attribute R_free_details.
in category reflns
( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^
wR = ( ---------------------------- )
( sum|w Y~obs~^2^| )
Y~obs~ = the observed amplitude specified by
attribute ls_structure_factor_coef
in category refine Y~calc~ = the calculated amplitude specified by
attribute ls_structure_factor_coef
in category refine w = the least-squares weight
sum is taken over the specified reflections
Weighted residual factor wR for reflections that satisfy the
resolution limits established by attribute ls_d_res_high in category refine and
attribute ls_d_res_low in category refine and the observation limit established by
attribute observed_criterion in category reflns, and that were used as the working
reflections (i.e. were included in the refinement) when the
refinement included the calculation of a 'free' R factor.
Details of how reflections were assigned to the working and
test sets are given in attribute R_free_details.
in category reflns
( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^
wR = ( ---------------------------- )
( sum|w Y~obs~^2^| )
Y~obs~ = the observed amplitude specified by
attribute ls_structure_factor_coef
in category refine Y~calc~ = the calculated amplitude specified by
attribute ls_structure_factor_coef
in category refine w = the least-squares weight
sum is taken over the specified reflections
Weighted residual factor wR for all reflections that satisfy the
resolution limits established by attribute ls_d_res_high in category refine and
attribute ls_d_res_low.
in category refine
( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^
wR = ( ---------------------------- )
( sum|w Y~obs~^2^| )
Y~obs~ = the observed amplitude specified by
attribute ls_structure_factor_coef
in category refine Y~calc~ = the calculated amplitude specified by
attribute ls_structure_factor_coef
in category refine w = the least-squares weight
sum is taken over the specified reflections
Weighted residual factor wR for reflections that satisfy the
resolution limits established by attribute ls_d_res_high in category refine and
attribute ls_d_res_low in category refine and the observation limit established by
attribute observed_criterion.
in category reflns
( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^
wR = ( ---------------------------- )
( sum|w Y~obs~^2^| )
Y~obs~ = the observed amplitude specified by
attribute ls_structure_factor_coef
in category refine Y~calc~ = the calculated amplitude specified by
attribute ls_structure_factor_coef
in category refine w = the least-squares weight
sum is taken over the specified reflections
A description of special aspects of the weighting scheme used
in least-squares refinement. Used to describe the weighting
when the value of attribute ls_weighting_scheme in category refine is specified
as 'calc'.
Sigdel model of Konnert-Hendrickson:
Sigdel =
Afsig + Bfsig*(sin(theta)/lambda-1/6)
Afsig = 22.0, Bfsig = 150.0
at the beginning of refinement.
Afsig = 16.0, Bfsig = 60.0
at the end of refinement.
The weighting scheme applied in the least-squares process. The
standard code may be followed by a description of the weight
(but see attribute ls_weighting_details in category refine for a preferred approach).
The maximum value for occupancy found in the coordinate set.
The minimum value for occupancy found in the coordinate set.
Average figure of merit of phases of reflections not included
in the refinement.
This value is derived from the likelihood function.
FOM = I_1(X)/I_0(X)
I_0, I_1 = zero- and first-order modified Bessel functions
of the first kind
X = sigma_A |E_o| |E_c|/SIGMA
E_o, E_c = normalized observed and calculated structure
factors
sigma_A = <cos 2 pi s delta_x> SQRT(Sigma_P/Sigma_N)
estimated using maximum likelihood
Sigma_P = sum_{atoms in model} f^2
Sigma_N = sum_{atoms in crystal} f^2
f = form factor of atoms
delta_x = expected error
SIGMA = (sigma_{E;exp})^2 + epsilon [1-(sigma_A)^2]
sigma_{E;exp} = uncertainties of normalized observed
structure factors
epsilon = multiplicity of the diffracting plane
Ref: Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997).
Acta Cryst. D53, 240-255.
Average figure of merit of phases of reflections included in
the refinement.
This value is derived from the likelihood function
FOM = I_1(X)/I_0(X)
I_0, I_1 = zero- and first-order modified Bessel functions
of the first kind
X = sigma_A |E_o| |E_c|/SIGMA
E_o, E_c = normalized observed and calculated structure
factors
sigma_A = <cos 2 pi s delta_x> SQRT(Sigma_P/Sigma_N)
estimated using maximum likelihood
Sigma_P = sum_{atoms in model} f^2
Sigma_N = sum_{atoms in crystal} f^2
f = form factor of atoms
delta_x = expected error
SIGMA = (sigma_{E;exp})^2 + epsilon [1-(sigma_A)^2]
sigma_{E;exp} = uncertainties of normalized observed
structure factors
epsilon = multiplicity of diffracting plane
Ref: Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997).
Acta Cryst. D53, 240-255.
The overall standard uncertainty (estimated standard deviation)
of the displacement parameters based on a maximum-likelihood
residual.
The overall standard uncertainty (sigma~B~)^2 gives an idea
of the uncertainty in the B values of averagely defined
atoms (atoms with B values equal to the average B value).
N_a
(sigma~B~)^2 = 8 ----------------------------------------------
sum~i~ {[1/Sigma - (E_o)^2 (1-m^2)](SUM_AS)s^4}
SUM_AS = (sigma_A)^2/Sigma^2
N_a = number of atoms
Sigma = (sigma_{E;exp})^2 + epsilon [1-(sigma_A)^2]
E_o = normalized structure factors
sigma_{E;exp} = experimental uncertainties of normalized
structure factors
sigma_A = <cos 2 pi s delta_x> SQRT(Sigma_P/Sigma_N)
estimated using maximum likelihood
Sigma_P = sum_{atoms in model} f^2
Sigma_N = sum_{atoms in crystal} f^2
f = form factor of atoms
delta_x = expected error
m = figure of merit of phases of reflections
included in the summation
s = reciprocal-space vector
epsilon = multiplicity of diffracting plane
summation is over all reflections included in refinement
Ref: (sigma_A estimation) "Refinement of macromolecular
structures by the maximum-likelihood method",
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997).
Acta Cryst. D53, 240-255.
(SU ML estimation) Murshudov, G. N. & Dodson,
E. J. (1997). Simplified error estimation a la
Cruickshank in macromolecular crystallography.
CCP4 Newsletter on Protein Crystallography, No. 33,
January 1997, pp. 31-39.
http://www.ccp4.ac.uk/newsletters/newsletter33/murshudov.html
The overall standard uncertainty (estimated standard deviation)
of the positional parameters based on a maximum likelihood
residual.
The overall standard uncertainty (sigma~X~)^2 gives an
idea of the uncertainty in the position of averagely
defined atoms (atoms with B values equal to average B value)
3 N_a
(sigma~X~)^2 = -----------------------------------------------------
8 pi^2 sum~i~ {[1/Sigma - (E_o)^2 (1-m^2)](SUM_AS)s^2}
SUM_AS = (sigma_A)^2/Sigma^2)
N_a = number of atoms
Sigma = (sigma_{E;exp})^2 + epsilon [1-{sigma_A)^2]
E_o = normalized structure factors
sigma_{E;exp} = experimental uncertainties of normalized
structure factors
sigma_A = <cos 2 pi s delta_x> SQRT(Sigma_P/Sigma_N)
estimated using maximum likelihood
Sigma_P = sum_{atoms in model} f^2
Sigma_N = sum_{atoms in crystal} f^2
f = form factor of atoms
delta_x = expected error
m = figure of merit of phases of reflections
included in the summation
s = reciprocal-space vector
epsilon = multiplicity of the diffracting plane
summation is over all reflections included in refinement
Ref: (sigma_A estimation) "Refinement of macromolecular
structures by the maximum-likelihood method",
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997).
Acta Cryst. D53, 240-255.
(SU ML estimation) Murshudov, G. N. & Dodson,
E. J. (1997). Simplified error estimation a la
Cruickshank in macromolecular crystallography.
CCP4 Newsletter on Protein Crystallography, No. 33,
January 1997, pp. 31-39.
http://www.ccp4.ac.uk/newsletters/newsletter33/murshudov.html
The overall standard uncertainty (estimated standard deviation)
of the displacement parameters based on the crystallographic
R value, expressed in a formalism known as the dispersion
precision indicator (DPI).
The overall standard uncertainty (sigma~B~) gives an idea
of the uncertainty in the B values of averagely defined
atoms (atoms with B values equal to the average B value).
N_a
(sigma_B)^2 = 0.65 --------- (R_value)^2 (D_min)^2 C^(-2/3)
(N_o-N_p)
N_a = number of atoms
N_o = number of reflections included in refinement
N_p = number of refined parameters
R_value = conventional crystallographic R value
D_min = maximum resolution
C = completeness of data
Ref: Cruickshank, D. W. J. (1999). Acta Cryst. D55, 583-601.
Murshudov, G. N. & Dodson,
E. J. (1997). Simplified error estimation a la
Cruickshank in macromolecular crystallography.
CCP4 Newsletter on Protein Crystallography, No. 33,
January 1997, pp. 31-39.
http://www.ccp4.ac.uk/newsletters/newsletter33/murshudov.html
The overall standard uncertainty (estimated standard deviation)
of the displacement parameters based on the free R value.
The overall standard uncertainty gives an idea of the
uncertainty in the B values of averagely defined atoms
(atoms with B values equal to the average B value).
N_a
(sigma_B)^2 = 0.65 ----- (R_free)^2 (D_min)^2 C^(-2/3)
N_o
N_a = number of atoms
N_o = number of reflections included in refinement
R_free = conventional free crystallographic R value calculated
using reflections not included in refinement
D_min = maximum resolution
C = completeness of data
Ref: Cruickshank, D. W. J. (1999). Acta Cryst. D55, 583-601.
Murshudov, G. N. & Dodson,
E. J. (1997). Simplified error estimation a la
Cruickshank in macromolecular crystallography.
CCP4 Newsletter on Protein Crystallography, No. 33,
January 1997, pp. 31-39.
http://www.ccp4.ac.uk/newsletters/newsletter33/murshudov.html
Special aspects of the solvent model used during refinement.
The value of the BSOL solvent-model parameter describing
the average isotropic displacement parameter of disordered
solvent atoms.
This is one of the two parameters (the other is
attribute solvent_model_param_ksol) in category refine in Tronrud's method of
modelling the contribution of bulk solvent to the
scattering. The standard scale factor is modified according
to the expression
k0 exp(-B0 * s^2^)[1-KSOL * exp(-BSOL * s^2^)]
where k0 and B0 are the scale factors for the protein.
Ref: Tronrud, D. E. (1997). Methods Enzymol. 277, 243-268.
The value of the KSOL solvent-model parameter describing
the ratio of the electron density in the bulk solvent to the
electron density in the molecular solute.
This is one of the two parameters (the other is
attribute solvent_model_param_bsol) in category refine in Tronrud's method of
modelling the contribution of bulk solvent to the
scattering. The standard scale factor is modified according
to the expression
k0 exp(-B0 * s^2^)[1-KSOL * exp(-BSOL * s^2^)]
where k0 and B0 are the scale factors for the protein.
Ref: Tronrud, D. E. (1997). Methods Enzymol. 277, 243-268.
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the REFINE_B_ISO category record details about
the treatment of isotropic B factors (displacement parameters)
during refinement.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:refine_B_isoCategory>
<mmCIF:refine_B_iso class="protein">
<mmCIF:treatment>isotropic</mmCIF:treatment>
</mmCIF:refine_B_iso>
<mmCIF:refine_B_iso class="solvent">
<mmCIF:treatment>isotropic</mmCIF:treatment>
</mmCIF:refine_B_iso>
<mmCIF:refine_B_iso class="inhibitor">
<mmCIF:treatment>isotropic</mmCIF:treatment>
</mmCIF:refine_B_iso>
</mmCIF:refine_B_isoCategory>
A description of special aspects of the isotropic B-factor
(displacement-parameter) refinement for the class of atoms
described in attribute class in category refine_B_iso.
The temperature factors of atoms in the side
chain of Arg 92 were held fixed due to
unstable behavior in refinement.
The treatment of isotropic B-factor (displacement-parameter)
refinement for a class of atoms defined in attribute class in category refine_B_iso.
The value of the isotropic B factor (displacement parameter)
assigned to a class of atoms defined in attribute class.
in category refine_B_iso Meaningful only for atoms with fixed isotropic B factors.
A class of atoms treated similarly for isotropic B-factor
(displacement-parameter) refinement.
all
protein
solvent
sugar-phosphate backbone
Data items in the REFINE_ANALYZE category record details
about the refined structure that are often used to analyze the
refinement and assess its quality. A given computer program
may or may not produce values corresponding to these data
names.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:refine_analyzeCategory>
<mmCIF:refine_analyze entry_id="5HVP">
<mmCIF:Luzzati_coordinate_error_obs>0.056</mmCIF:Luzzati_coordinate_error_obs>
<mmCIF:Luzzati_d_res_low_obs>2.51</mmCIF:Luzzati_d_res_low_obs>
</mmCIF:refine_analyze>
</mmCIF:refine_analyzeCategory>
The estimated coordinate error obtained from the plot of
the R value versus sin(theta)/lambda for the reflections
treated as a test set during refinement.
Ref: Luzzati, V. (1952). Traitement statistique des erreurs
dans la determination des structures cristallines. Acta
Cryst. 5, 802-810.
The estimated coordinate error obtained from the plot of
the R value versus sin(theta)/lambda for reflections classified
as observed.
Ref: Luzzati, V. (1952). Traitement statistique des erreurs
dans la determination des structures cristallines. Acta
Cryst. 5, 802-810.
The value of the low-resolution cutoff used in constructing the
Luzzati plot for reflections treated as a test set during
refinement.
Ref: Luzzati, V. (1952). Traitement statistique des erreurs
dans la determination des structures cristallines. Acta
Cryst. 5, 802-810.
The value of the low-resolution cutoff used in
constructing the Luzzati plot for reflections classified as
observed.
Ref: Luzzati, V. (1952). Traitement statistique des erreurs
dans la determination des structures cristallines. Acta
Cryst. 5, 802-810.
The value of sigma~a~ used in constructing the Luzzati plot for
the reflections treated as a test set during refinement.
Details of the estimation of sigma~a~ can be specified
in attribute Luzzati_sigma_a_free_details.
in category refine_analyze
Ref: Luzzati, V. (1952). Traitement statistique des erreurs
dans la determination des structures cristallines. Acta
Cryst. 5, 802-810.
Details of the estimation of sigma~a~ for the reflections
treated as a test set during refinement.
Ref: Luzzati, V. (1952). Traitement statistique des erreurs
dans la determination des structures cristallines. Acta
Cryst. 5, 802-810.
The value of sigma~a~ used in constructing the Luzzati plot for
reflections classified as observed. Details of the
estimation of sigma~a~ can be specified in
attribute Luzzati_sigma_a_obs_details.
in category refine_analyze
Ref: Luzzati, V. (1952). Traitement statistique des erreurs
dans la determination des structures cristallines. Acta
Cryst. 5, 802-810.
Special aspects of the estimation of sigma~a~ for the
reflections classified as observed.
Ref: Luzzati, V. (1952). Traitement statistique des erreurs
dans la determination des structures cristallines. Acta
Cryst. 5, 802-810.
The value of the high-resolution cutoff in angstroms
used in the calculation of the Hamilton generalized
R factor (RG) stored in attribute RG_work in category refine_analyze and
attribute RG_free.
in category refine_analyze
Ref: Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
The value of the low-resolution cutoff in angstroms
used in the calculation of the Hamilton generalized
R factor (RG) stored in attribute RG_work in category refine_analyze and
attribute RG_free.
in category refine_analyze
Ref: Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
The Hamilton generalized R factor for all reflections that
satisfy the resolution limits established by
attribute RG_d_res_high in category refine_analyze and
attribute RG_d_res_low in category refine_analyze for the free R set of
reflections that were excluded from the refinement.
sum_i sum_j w_{i,j}(|Fobs|_i - G|Fcalc|_i)(|Fobs|_j - G|Fcalc|_j)
RG = Sqrt( ----------------------------------------------------------------- )
sum_i sum_j w_{i,j} |Fobs|_i |Fobs|_j
where
|Fobs| = the observed structure-factor amplitudes
|Fcalc| = the calculated structure-factor amplitudes
G = the scale factor which puts |Fcalc| on the
same scale as |Fobs|
w_{i,j} = the weight for the combination of the reflections
i and j.
sum_i and sum_j are taken over the specified reflections
When the covariance of the amplitudes of reflection i and
reflection j is zero (i.e. the reflections are independent)
w{i,i} can be redefined as w_i and the nested sums collapsed
into one sum.
sum_i w_i(|Fobs|_i - G|Fcalc|_i)^2
RG = Sqrt( ----------------------------------- )
sum_i w_i |Fobs|_i^2
Ref: Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
The observed ratio of RGfree to RGwork. The expected RG ratio
is the value that should be achievable at the end of a structure
refinement when only random uncorrelated errors exist in the data
and the model provided that the observations are properly
weighted. When compared with the observed RG ratio it may
indicate that a structure has not reached convergence or a
model has been over-refined with no corresponding improvement
in the model.
In an unrestrained refinement, the ratio of RGfree to RGwork with
only random uncorrelated errors at convergence depends only
on the number of reflections and the number of parameters
according to
sqrt[(f + m) / (f - m) ]
where f = the number of included structure amplitudes and
target distances, and
m = the number of parameters being refined.
In the restrained case, RGfree is calculated from a random
selection of residuals including both structure amplitudes
and restraints. When restraints are included in the refinement,
the RG ratio requires a term for the contribution to the
minimized residual at convergence, D~restr~, due to those
restraints:
D~restr~ = r - sum [w_i . (a_i)^t . (H)^-1 a_i]
where
r is the number of geometrical, displacement-parameter and
other restraints
H is the (m,m) normal matrix given by A^t.W.A
W is the (n,n) symmetric weight matrix of the included
observations
A is the least-squares design matrix of derivatives of
order (n,m)
a_i is the ith row of A
Then the expected RGratio becomes
sqrt [ (f + (m - r + D~restr~))/ (f - (m - r + D~restr~)) ]
There is no data name for the expected value of RGfree/RGwork yet.
Ref: Tickle, I. J., Laskowski, R. A. & Moss, D. S. (1998).
Acta Cryst. D54, 547-557.
The Hamilton generalized R factor for all reflections
that satisfy the resolution limits established by
attribute RG_d_res_high in category refine_analyze and
attribute RG_d_res_low in category refine_analyze and for those
reflections included in the working set when a free R set
of reflections is omitted from the refinement.
sum_i sum_j w_{i,j}(|Fobs|_i - G|Fcalc|_i)(|Fobs|_j - G|Fcalc|_j)
RG = Sqrt( ----------------------------------------------------------------- )
sum_i sum_j w_{i,j} |Fobs|_i |Fobs|_j
where
|Fobs| = the observed structure-factor amplitudes
|Fcalc| = the calculated structure-factor amplitudes
G = the scale factor which puts |Fcalc| on the
same scale as |Fobs|
w_{i,j} = the weight for the combination of the reflections
i and j.
sum_i and sum_j are taken over the specified reflections
When the covariance of the amplitudes of reflection i and
reflection j is zero (i.e. the reflections are independent)
w{i,i} can be redefined as w_i and the nested sums collapsed
into one sum.
sum_i w_i(|Fobs|_i - G|Fcalc|_i)^2
RG = Sqrt( ----------------------------------- )
sum_i w_i |Fobs|_i^2
Ref: Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
The number of discretely disordered residues in the refined
model.
The sum of the occupancies of the hydrogen atoms in the refined
model.
The sum of the occupancies of the non-hydrogen atoms in the
refined model.
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the REFINE_FUNCT_MINIMIZED category record
details about the individual terms of the function minimized
during refinement.
Example 1 - based on RESTRAIN refinement for the CCP4 test data set
toxd.
<mmCIF:refine_funct_minimizedCategory>
<mmCIF:refine_funct_minimized type="sum(W*Delta(Amplitude)^2">
<mmCIF:number_terms>3009</mmCIF:number_terms>
<mmCIF:residual>1621.3</mmCIF:residual>
</mmCIF:refine_funct_minimized>
<mmCIF:refine_funct_minimized type="sum(W*Delta(Plane+Rigid)^2">
<mmCIF:number_terms>85</mmCIF:number_terms>
<mmCIF:residual>56.68</mmCIF:residual>
</mmCIF:refine_funct_minimized>
<mmCIF:refine_funct_minimized type="sum(W*Delta(Distance)^2">
<mmCIF:number_terms>1219</mmCIF:number_terms>
<mmCIF:residual>163.59</mmCIF:residual>
</mmCIF:refine_funct_minimized>
<mmCIF:refine_funct_minimized type="sum(W*Delta(U-tempfactors)^2">
<mmCIF:number_terms>1192</mmCIF:number_terms>
<mmCIF:residual>69.338</mmCIF:residual>
</mmCIF:refine_funct_minimized>
</mmCIF:refine_funct_minimizedCategory>
The number of observations in this term. For example, if the
term is a residual of the X-ray intensities, this item would
contain the number of reflections used in the refinement.
The residual for this term of the function that was minimized
during the refinement.
The weight applied to this term of the function that was
minimized during the refinement.
The type of the function being minimized.
Data items in the REFINE_HIST category record details about the
steps during the refinement of the structure.
These data items are not meant to be as thorough a description
of the refinement as is provided for the final model in other
categories; rather, these data items provide a mechanism for
sketching out the progress of the refinement, supported by a
small set of representative statistics.
Example 1 - based on laboratory records for the collagen-like
peptide [(POG)4 EKG (POG)5]3.
<mmCIF:refine_histCategory>
<mmCIF:refine_hist cycle_id="C134">
<mmCIF:R_factor_R_free>.274</mmCIF:R_factor_R_free>
<mmCIF:R_factor_R_work>.160</mmCIF:R_factor_R_work>
<mmCIF:R_factor_all>.265</mmCIF:R_factor_all>
<mmCIF:R_factor_obs>.195</mmCIF:R_factor_obs>
<mmCIF:d_res_high>1.85</mmCIF:d_res_high>
<mmCIF:d_res_low>20.0</mmCIF:d_res_low>
<mmCIF:details> Add majority of solvent molecules. B factors refined by
group. Continued to remove misplaced water molecules.</mmCIF:details>
<mmCIF:number_atoms_solvent>217</mmCIF:number_atoms_solvent>
<mmCIF:number_atoms_total>808</mmCIF:number_atoms_total>
<mmCIF:number_reflns_R_free>476</mmCIF:number_reflns_R_free>
<mmCIF:number_reflns_R_work>4410</mmCIF:number_reflns_R_work>
<mmCIF:number_reflns_all>6174</mmCIF:number_reflns_all>
<mmCIF:number_reflns_obs>4886</mmCIF:number_reflns_obs>
</mmCIF:refine_hist>
</mmCIF:refine_histCategory>
Residual factor R for reflections that satisfy the resolution
limits established by attribute d_res_high in category refine_hist and
attribute d_res_low in category refine_hist and the observation limit
established by attribute observed_criterion in category reflns, and that were used
as the test reflections (i.e. were excluded from the refinement)
when the refinement included the calculation of a 'free'
R factor. Details of how reflections were assigned to the
working and test sets are given in attribute R_free_details.
in category reflns
sum|F~obs~ - F~calc~|
R = ---------------------
sum|F~obs~|
F~obs~ = the observed structure-factor amplitudes
F~calc~ = the calculated structure-factor amplitudes
sum is taken over the specified reflections
Residual factor R for reflections that satisfy the resolution
limits established by attribute d_res_high in category refine_hist and
attribute d_res_low in category refine_hist and the observation limit
established by attribute observed_criterion in category reflns, and that were used
as the working reflections (i.e. were included in the refinement)
when the refinement included the calculation of a 'free'
R factor. Details of how reflections were assigned to the
working and test sets are given in attribute R_free_details.
in category reflns
sum|F~obs~ - F~calc~|
R = ---------------------
sum|F~obs~|
F~obs~ = the observed structure-factor amplitudes
F~calc~ = the calculated structure-factor amplitudes
sum is taken over the specified reflections
Residual factor R for reflections that satisfy the resolution
limits established by attribute d_res_high in category refine_hist and
attribute d_res_low.
in category refine_hist
sum|F~obs~ - F~calc~|
R = ---------------------
sum|F~obs~|
F~obs~ = the observed structure-factor amplitudes
F~calc~ = the calculated structure-factor amplitudes
sum is taken over the specified reflections
Residual factor R for reflections that satisfy the resolution
limits established by attribute d_res_high in category refine_hist and
attribute d_res_low in category refine_hist and the observation criterion
established by attribute observed_criterion.
in category reflns
sum|F~obs~ - F~calc~|
R = ---------------------
sum|F~obs~|
F~obs~ = the observed structure-factor amplitudes
F~calc~ = the calculated structure-factor amplitudes
sum is taken over the specified reflections
The lowest value for the interplanar spacings for the
reflection data for this cycle of refinement. This is called
the highest resolution.
The highest value for the interplanar spacings for the
reflection data for this cycle of refinement. This is
called the lowest resolution.
A description of special aspects of this cycle of the refinement
process.
Residues 13-17 fit and added to model;
substantial rebuilding of loop containing
residues 43-48; addition of first atoms to
solvent model; ten cycles of Prolsq
refinement.
The number of solvent atoms that were included in the model at
this cycle of the refinement.
The total number of atoms that were included in the model at
this cycle of the refinement.
The number of reflections that satisfy the resolution limits
established by attribute d_res_high in category refine_hist and
attribute d_res_low in category refine_hist and the observation limit
established by attribute observed_criterion in category reflns, and that were used
as the test reflections (i.e. were excluded from the refinement)
when the refinement included the calculation of a 'free'
R factor. Details of how reflections were assigned to the
working and test sets are given in attribute R_free_details in category reflns.
The number of reflections that satisfy the resolution limits
established by attribute d_res_high in category refine_hist and
attribute d_res_low in category refine_hist and the observation limit
established by attribute observed_criterion in category reflns, and that were used
as the working reflections (i.e. were included in the
refinement) when the refinement included the calculation
of a 'free' R factor. Details of how reflections were
assigned to the working and test sets are given in
attribute R_free_details in category reflns.
The number of reflections that satisfy the resolution limits
established by attribute d_res_high in category refine_hist and
attribute d_res_low in category refine_hist.
The number of reflections that satisfy the resolution limits
established by attribute d_res_high in category refine_hist and
attribute d_res_low in category refine_hist and the observation criterion
established by attribute observed_criterion in category reflns.
The value of attribute cycle_id in category refine_hist must uniquely identify a
record in the REFINE_HIST list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the REFINE_LS_CLASS category record details
about the reflections used for the structure refinement
for each reflection class separately.
Example 1 - data for a modulated structure from van Smaalen
[J. Phys. Condens. Matter (1991), 3, 1247-1263].
<mmCIF:refine_ls_classCategory>
<mmCIF:refine_ls_class code="Main">
<mmCIF:R_factor_gt>0.057</mmCIF:R_factor_gt>
</mmCIF:refine_ls_class>
<mmCIF:refine_ls_class code="Com">
<mmCIF:R_factor_gt>0.074</mmCIF:R_factor_gt>
</mmCIF:refine_ls_class>
<mmCIF:refine_ls_class code="NbRefls">
<mmCIF:R_factor_gt>0.064</mmCIF:R_factor_gt>
</mmCIF:refine_ls_class>
<mmCIF:refine_ls_class code="LaRefls">
<mmCIF:R_factor_gt>0.046</mmCIF:R_factor_gt>
</mmCIF:refine_ls_class>
<mmCIF:refine_ls_class code="Sat1">
<mmCIF:R_factor_gt>0.112</mmCIF:R_factor_gt>
</mmCIF:refine_ls_class>
<mmCIF:refine_ls_class code="Sat2">
<mmCIF:R_factor_gt>0.177</mmCIF:R_factor_gt>
</mmCIF:refine_ls_class>
</mmCIF:refine_ls_classCategory>
For each reflection class, the residual factor R(F^2^) calculated
on the squared amplitudes of the observed and calculated
structure factors, for the reflections judged significantly
intense (i.e. satisfying the threshold specified by
attribute threshold_expression) in category reflns and included in the refinement.
The reflections also satisfy the resolution limits established
by _refine_ls_class.d_res_high and _refine_ls_class.d_res_low.
sum | F(obs)^2^ - F(calc)^2^ |
R(Fsqd) = -------------------------------
sum F(obs)^2^
F(obs)^2^ = squares of the observed structure-factor amplitudes
F(calc)^2^ = squares of the calculated structure-factor
amplitudes
and the sum is taken over the reflections of this class.
For each reflection class, the residual factor R(I) for the
reflections judged significantly intense (i.e. satisfying the
threshold specified by attribute threshold_expression) in category reflns and
included in the refinement.
This is most often calculated in Rietveld refinements
against powder data, where it is referred to as R~B~ or R~Bragg~
sum | I(obs) - I(calc) |
R(I) = ------------------------
sum | I(obs) |
I(obs) = the net observed intensities
I(calc) = the net calculated intensities
and the sum is taken over the reflections of this class.
For each reflection class, the residual factor for all
reflections satisfying the resolution limits established by
_refine_ls_class.d_res_high and _refine_ls_class.d_res_low.
This is the conventional R factor. See also the
definition of attribute wR_factor_all.
in category refine_ls_class
sum | F(obs) - F(calc) |
R = ------------------------
sum | F(obs) |
F(obs) = the observed structure-factor amplitudes
F(calc) = the calculated structure-factor amplitudes
and the sum is taken over the reflections of this class.
For each reflection class, the residual factor for significantly
intense reflections (see attribute threshold_expression) in category reflns included
in the refinement.
The reflections also satisfy the resolution limits established by
_refine_ls_class.d_res_high and _refine_ls_class.d_res_low.
This is the conventional R factor. See also the definition of
attribute wR_factor_all.
in category refine_ls_class
sum | F(obs) - F(calc) |
R = ------------------------
sum | F(obs) |
F(obs) = the observed structure-factor amplitudes
F(calc) = the calculated structure-factor amplitudes
and the sum is taken over the reflections of this class.
For each reflection class, the lowest value in angstroms
for the interplanar spacings for the reflections used in the
refinement. This is called the highest resolution.
For each reflection class, the highest value in angstroms
for the interplanar spacings for the reflections used in the
refinement. This is called the lowest resolution.
For each reflection class, the weighted residual factor for all
reflections included in the refinement. The reflections also
satisfy the resolution limits established by
_refine_ls_class.d_res_high and _refine_ls_class.d_res_low.
See also the attribute R_factor_ in category refine_ls_class definitions.
( sum w [ Y(obs) - Y(calc) ]^2^ )^1/2^
wR = ( ------------------------------ )
( sum w Y(obs)^2^ )
Y(obs) = the observed amplitude specified by
attribute ls_structure_factor_coef
in category refine Y(calc) = the calculated amplitude specified by
attribute ls_structure_factor_coef
in category refine w = the least-squares weight
and the sum is taken over the reflections of this class.
The code identifying a certain reflection class. This code must
match a attribute code in category reflns_class.
1
m1
s2
Data items in the REFINE_LS_RESTR category record details about
the restraints applied to various classes of parameters during
the least-squares refinement.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:refine_ls_restrCategory>
<mmCIF:refine_ls_restr type="bond_d">
<mmCIF:criterion>> 2\s</mmCIF:criterion>
<mmCIF:dev_ideal>0.018</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>0.020</mmCIF:dev_ideal_target>
<mmCIF:number>1654</mmCIF:number>
<mmCIF:rejects>22</mmCIF:rejects>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="angle_d">
<mmCIF:criterion>> 2\s</mmCIF:criterion>
<mmCIF:dev_ideal>0.038</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>0.030</mmCIF:dev_ideal_target>
<mmCIF:number>2246</mmCIF:number>
<mmCIF:rejects>139</mmCIF:rejects>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="planar_d">
<mmCIF:criterion>> 2\s</mmCIF:criterion>
<mmCIF:dev_ideal>0.043</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>0.040</mmCIF:dev_ideal_target>
<mmCIF:number>498</mmCIF:number>
<mmCIF:rejects>21</mmCIF:rejects>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="planar">
<mmCIF:criterion>> 2\s</mmCIF:criterion>
<mmCIF:dev_ideal>0.015</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>0.020</mmCIF:dev_ideal_target>
<mmCIF:number>270</mmCIF:number>
<mmCIF:rejects>1</mmCIF:rejects>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="chiral">
<mmCIF:criterion>> 2\s</mmCIF:criterion>
<mmCIF:dev_ideal>0.177</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>0.150</mmCIF:dev_ideal_target>
<mmCIF:number>278</mmCIF:number>
<mmCIF:rejects>2</mmCIF:rejects>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="singtor_nbd">
<mmCIF:criterion>> 2\s</mmCIF:criterion>
<mmCIF:dev_ideal>0.216</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>0.500</mmCIF:dev_ideal_target>
<mmCIF:number>582</mmCIF:number>
<mmCIF:rejects>0</mmCIF:rejects>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="multtor_nbd">
<mmCIF:criterion>> 2\s</mmCIF:criterion>
<mmCIF:dev_ideal>0.207</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>0.500</mmCIF:dev_ideal_target>
<mmCIF:number>419</mmCIF:number>
<mmCIF:rejects>0</mmCIF:rejects>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="xyhbond_nbd">
<mmCIF:criterion>> 2\s</mmCIF:criterion>
<mmCIF:dev_ideal>0.245</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>0.500</mmCIF:dev_ideal_target>
<mmCIF:number>149</mmCIF:number>
<mmCIF:rejects>0</mmCIF:rejects>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="planar_tor">
<mmCIF:criterion>> 2\s</mmCIF:criterion>
<mmCIF:dev_ideal>2.6</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>3.0</mmCIF:dev_ideal_target>
<mmCIF:number>203</mmCIF:number>
<mmCIF:rejects>9</mmCIF:rejects>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="staggered_tor">
<mmCIF:criterion>> 2\s</mmCIF:criterion>
<mmCIF:dev_ideal>17.4</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>15.0</mmCIF:dev_ideal_target>
<mmCIF:number>298</mmCIF:number>
<mmCIF:rejects>31</mmCIF:rejects>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="orthonormal_tor">
<mmCIF:criterion>> 2\s</mmCIF:criterion>
<mmCIF:dev_ideal>18.1</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>20.0</mmCIF:dev_ideal_target>
<mmCIF:number>12</mmCIF:number>
<mmCIF:rejects>1</mmCIF:rejects>
</mmCIF:refine_ls_restr>
</mmCIF:refine_ls_restrCategory>
A criterion used to define a parameter value that deviates
significantly from its ideal value in the model obtained by
restrained least-squares refinement.
> 3\s
For the given parameter type, the root-mean-square deviation
between the ideal values used as restraints in the least-squares
refinement and the values obtained by refinement. For instance,
bond distances may deviate by 0.018 \%A (r.m.s.) from ideal
values in the current model.
For the given parameter type, the target root-mean-square
deviation between the ideal values used as restraints in the
least-squares refinement and the values obtained by refinement.
The number of parameters of this type subjected to restraint in
least-squares refinement.
The number of parameters of this type that deviate from ideal
values by more than the amount defined in
attribute criterion in category refine_ls_restr in the model obtained by restrained
least-squares refinement.
The weighting value applied to this type of restraint in
the least-squares refinement.
The type of the parameter being restrained.
Explicit sets of data values are provided for the programs
PROTIN/PROLSQ (beginning with p_) and RESTRAIN (beginning with
RESTRAIN_). As computer programs change, these data values
are given as examples, not as an enumeration list. Computer
programs that convert a data block to a refinement table will
expect the exact form of the data values given here to be used.
bond distance
p_bond_d
bond angle expressed as a distance
p_angle_d
planar 1,4 distance
p_planar_d
X-H bond distance
p_xhbond_d
X-H bond angle expressed as a distance
p_xhangle_d
hydrogen distance
p_hydrog_d
special distance
p_special_d
planes
p_planar
chiral centres
p_chiral
single-torsion non-bonded contact
p_singtor_nbd
multiple-torsion non-bonded contact
p_multtor_nbd
possible (X...Y) hydrogen bond
p_xyhbond_nbd
possible (X-H...Y) hydrogen bond
p_xhyhbond_nbd
special torsion angle
p_special_tor
planar torsion angle
p_planar_tor
staggered torsion angle
p_staggered_tor
orthonormal torsion angle
p_orthonormal_tor
main-chain bond isotropic displacement parameter
p_mcbond_it
main-chain angle isotropic displacement parameter
p_mcangle_it
side-chain bond isotropic displacement parameter
p_scbond_it
side-chain angle isotropic displacement parameter
p_scangle_it
X-H bond isotropic displacement parameter
p_xhbond_it
X-H angle isotropic displacement parameter
p_xhangle_it
special isotropic displacement parameter
p_special_it
The root-mean-square deviation
of the difference between the values calculated from the structures
used to compile the restraints dictionary parameters and the dictionary
values themselves in the distance range less than 2.12 Angstroms.
RESTRAIN_Distances < 2.12
The root-mean-square deviation
of the difference between the values calculated from the structures
used to compile the restraints dictionary parameters and the dictionary
values themselves in the distance range 2.12 - 2.625 Angstroms.
RESTRAIN_Distances 2.12 < D < 2.625
The root-mean-square deviation
of the difference between the values calculated from the structures
used to compile the restraints dictionary parameters and the dictionary
values themselves in the distance range greater than 2.625 Angstroms.
RESTRAIN_Distances > 2.625
The root-mean-square deviation
of the difference between the values calculated from the structures
used to compile the restraints dictionary parameters and the dictionary
values themselves for peptide planes.
RESTRAIN_Peptide Planes
The root-mean-square deviation
of the difference between the values calculated from the structures
used to compile the restraints dictionary parameters and the dictionary
values themselves for rings and planes other than peptide planes.
RESTRAIN_Ring and other planes
RESTRAIN_rms diffs for Uiso atoms at dist 1.2-1.4
RESTRAIN_rms diffs for Uiso atoms at dist 1.4-1.6
RESTRAIN_rms diffs for Uiso atoms at dist 1.8-2.0
RESTRAIN_rms diffs for Uiso atoms at dist 2.0-2.2
RESTRAIN_rms diffs for Uiso atoms at dist 2.2-2.4
RESTRAIN_rms diffs for Uiso atoms at dist >2.4
Data items in the REFINE_LS_RESTR_NCS category record details
about the restraints applied to atom positions in domains
related by noncrystallographic symmetry during least-squares
refinement, and also about the deviation of the restrained
atomic parameters at the end of the refinement. It is
expected that these values will only be reported once for each
set of restrained domains.
Example 1 - based on laboratory records for the collagen-like
peptide, HYP-.
<mmCIF:refine_ls_restr_ncsCategory>
<mmCIF:refine_ls_restr_ncs dom_id="d2">
<mmCIF:ncs_model_details>
NCS restraint for pseudo-twofold symmetry between domains
d1 and d2. Position weight coefficient given in
Kcal/(mol \%A^2^) and isotropic B weight coefficient given
in \%A^2^.</mmCIF:ncs_model_details>
<mmCIF:rms_dev_B_iso>0.16</mmCIF:rms_dev_B_iso>
<mmCIF:rms_dev_position>0.09</mmCIF:rms_dev_position>
<mmCIF:weight_B_iso>2.0</mmCIF:weight_B_iso>
<mmCIF:weight_position>300.0</mmCIF:weight_position>
</mmCIF:refine_ls_restr_ncs>
</mmCIF:refine_ls_restr_ncsCategory>
Special aspects of the manner in which noncrystallographic
restraints were applied to atomic parameters in the domain
specified by attribute dom_id in category refine_ls_restr_ncs and equivalent
atomic parameters in the domains against which it was restrained.
The root-mean-square deviation in equivalent isotropic
displacement parameters in the domain specified by
attribute dom_id
in category refine_ls_restr_ncs and in the domains against which it was restrained.
The root-mean-square deviation in equivalent atom positions in
the domain specified by attribute dom_id in category refine_ls_restr_ncs and in the
domains against which it was restrained.
The value of the weighting coefficient used in
noncrystallographic symmetry restraint of isotropic displacement
parameters in the domain specified by
attribute dom_id in category refine_ls_restr_ncs to equivalent isotropic
displacement parameters in the domains against
which it was restrained.
The value of the weighting coefficient used in
noncrystallographic symmetry restraint of atom positions in the
domain specified by attribute dom_id in category refine_ls_restr_ncs to equivalent
atom positions in the domains against which it was restrained.
This data item is a pointer to attribute id in category struct_ncs_dom in the
STRUCT_NCS_DOM category.
Data items in the REFINE_LS_RESTR_TYPE category record details
about the restraint types used in the least-squares refinement.
Example 1 - based on RESTRAIN refinement for the CCP4 test data set
toxd.
<mmCIF:refine_ls_restrCategory>
<mmCIF:refine_ls_restr type="RESTRAIN_Distances < 2.12">
<mmCIF:dev_ideal>0.005</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>0.022</mmCIF:dev_ideal_target>
<mmCIF:number>509</mmCIF:number>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="RESTRAIN_Distances 2.12 < D < 2.625">
<mmCIF:dev_ideal>0.016</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>0.037</mmCIF:dev_ideal_target>
<mmCIF:number>671</mmCIF:number>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="RESTRAIN_Distances > 2.625">
<mmCIF:dev_ideal>0.034</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>0.043</mmCIF:dev_ideal_target>
<mmCIF:number>39</mmCIF:number>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="RESTRAIN_Peptide Planes">
<mmCIF:dev_ideal>0.002</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>0.010</mmCIF:dev_ideal_target>
<mmCIF:number>59</mmCIF:number>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="RESTRAIN_Ring and other planes">
<mmCIF:dev_ideal>0.014</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target>0.010</mmCIF:dev_ideal_target>
<mmCIF:number>26</mmCIF:number>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="RESTRAIN_rms diffs for Uiso atoms at dist 1.2-1.4">
<mmCIF:dev_ideal>0.106</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target xsi:nil="true" />
<mmCIF:number>212</mmCIF:number>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="RESTRAIN_rms diffs for Uiso atoms at dist 1.4-1.6">
<mmCIF:dev_ideal>0.101</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target xsi:nil="true" />
<mmCIF:number>288</mmCIF:number>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="RESTRAIN_rms diffs for Uiso atoms at dist 1.8-2.0">
<mmCIF:dev_ideal>0.077</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target xsi:nil="true" />
<mmCIF:number>6</mmCIF:number>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="RESTRAIN_rms diffs for Uiso atoms at dist 2.0-2.2">
<mmCIF:dev_ideal>0.114</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target xsi:nil="true" />
<mmCIF:number>10</mmCIF:number>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="RESTRAIN_rms diffs for Uiso atoms at dist 2.2-2.4">
<mmCIF:dev_ideal>0.119</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target xsi:nil="true" />
<mmCIF:number>215</mmCIF:number>
</mmCIF:refine_ls_restr>
<mmCIF:refine_ls_restr type="RESTRAIN_rms diffs for Uiso atoms at dist >2.4">
<mmCIF:dev_ideal>0.106</mmCIF:dev_ideal>
<mmCIF:dev_ideal_target xsi:nil="true" />
<mmCIF:number>461</mmCIF:number>
</mmCIF:refine_ls_restr>
</mmCIF:refine_ls_restrCategory>
<mmCIF:refine_ls_restr_typeCategory>
<mmCIF:refine_ls_restr_type type="RESTRAIN_Distances < 2.12">
<mmCIF:distance_cutoff_high>2.12</mmCIF:distance_cutoff_high>
<mmCIF:distance_cutoff_low xsi:nil="true" />
</mmCIF:refine_ls_restr_type>
<mmCIF:refine_ls_restr_type type="RESTRAIN_Distances 2.12 < D < 2.625">
<mmCIF:distance_cutoff_high>2.625</mmCIF:distance_cutoff_high>
<mmCIF:distance_cutoff_low>2.12</mmCIF:distance_cutoff_low>
</mmCIF:refine_ls_restr_type>
<mmCIF:refine_ls_restr_type type="RESTRAIN_Distances > 2.625">
<mmCIF:distance_cutoff_high xsi:nil="true" />
<mmCIF:distance_cutoff_low>2.625</mmCIF:distance_cutoff_low>
</mmCIF:refine_ls_restr_type>
<mmCIF:refine_ls_restr_type type="RESTRAIN_Peptide Planes">
<mmCIF:distance_cutoff_high xsi:nil="true" />
<mmCIF:distance_cutoff_low xsi:nil="true" />
</mmCIF:refine_ls_restr_type>
<mmCIF:refine_ls_restr_type type="RESTRAIN_Ring and other planes">
<mmCIF:distance_cutoff_high xsi:nil="true" />
<mmCIF:distance_cutoff_low xsi:nil="true" />
</mmCIF:refine_ls_restr_type>
<mmCIF:refine_ls_restr_type type="RESTRAIN_rms diffs for Uiso atoms at dist 1.2-1.4">
<mmCIF:distance_cutoff_high>1.4</mmCIF:distance_cutoff_high>
<mmCIF:distance_cutoff_low>1.2</mmCIF:distance_cutoff_low>
</mmCIF:refine_ls_restr_type>
<mmCIF:refine_ls_restr_type type="RESTRAIN_rms diffs for Uiso atoms at dist 1.4-1.6">
<mmCIF:distance_cutoff_high>1.6</mmCIF:distance_cutoff_high>
<mmCIF:distance_cutoff_low>1.4</mmCIF:distance_cutoff_low>
</mmCIF:refine_ls_restr_type>
<mmCIF:refine_ls_restr_type type="RESTRAIN_rms diffs for Uiso atoms at dist 1.8-2.0">
<mmCIF:distance_cutoff_high>2.0</mmCIF:distance_cutoff_high>
<mmCIF:distance_cutoff_low>1.8</mmCIF:distance_cutoff_low>
</mmCIF:refine_ls_restr_type>
<mmCIF:refine_ls_restr_type type="RESTRAIN_rms diffs for Uiso atoms at dist 2.0-2.2">
<mmCIF:distance_cutoff_high>2.2</mmCIF:distance_cutoff_high>
<mmCIF:distance_cutoff_low>2.0</mmCIF:distance_cutoff_low>
</mmCIF:refine_ls_restr_type>
<mmCIF:refine_ls_restr_type type="RESTRAIN_rms diffs for Uiso atoms at dist 2.2-2.4">
<mmCIF:distance_cutoff_high>2.4</mmCIF:distance_cutoff_high>
<mmCIF:distance_cutoff_low>2.2</mmCIF:distance_cutoff_low>
</mmCIF:refine_ls_restr_type>
<mmCIF:refine_ls_restr_type type="RESTRAIN_rms diffs for Uiso atoms at dist >2.4">
<mmCIF:distance_cutoff_high xsi:nil="true" />
<mmCIF:distance_cutoff_low>2.4</mmCIF:distance_cutoff_low>
</mmCIF:refine_ls_restr_type>
</mmCIF:refine_ls_restr_typeCategory>
The upper limit in angstroms of the distance range applied to
the current restraint type.
The lower limit in angstroms of the distance range applied to
the current restraint type.
This data item is a pointer to attribute type in category refine_ls_restr in the
REFINE_LS_RESTR category.
Data items in the REFINE_LS_SHELL category record details about
the results of the least-squares refinement broken down into
shells of resolution.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:refine_ls_shellCategory>
<mmCIF:refine_ls_shell d_res_high="4.51" d_res_low="8.00">
<mmCIF:R_factor_obs>0.196</mmCIF:R_factor_obs>
<mmCIF:number_reflns_obs>1226</mmCIF:number_reflns_obs>
</mmCIF:refine_ls_shell>
<mmCIF:refine_ls_shell d_res_high="3.48" d_res_low="4.51">
<mmCIF:R_factor_obs>0.146</mmCIF:R_factor_obs>
<mmCIF:number_reflns_obs>1679</mmCIF:number_reflns_obs>
</mmCIF:refine_ls_shell>
<mmCIF:refine_ls_shell d_res_high="2.94" d_res_low="3.48">
<mmCIF:R_factor_obs>0.160</mmCIF:R_factor_obs>
<mmCIF:number_reflns_obs>2014</mmCIF:number_reflns_obs>
</mmCIF:refine_ls_shell>
<mmCIF:refine_ls_shell d_res_high="2.59" d_res_low="2.94">
<mmCIF:R_factor_obs>0.182</mmCIF:R_factor_obs>
<mmCIF:number_reflns_obs>2147</mmCIF:number_reflns_obs>
</mmCIF:refine_ls_shell>
<mmCIF:refine_ls_shell d_res_high="2.34" d_res_low="2.59">
<mmCIF:R_factor_obs>0.193</mmCIF:R_factor_obs>
<mmCIF:number_reflns_obs>2127</mmCIF:number_reflns_obs>
</mmCIF:refine_ls_shell>
<mmCIF:refine_ls_shell d_res_high="2.15" d_res_low="2.34">
<mmCIF:R_factor_obs>0.203</mmCIF:R_factor_obs>
<mmCIF:number_reflns_obs>2061</mmCIF:number_reflns_obs>
</mmCIF:refine_ls_shell>
<mmCIF:refine_ls_shell d_res_high="2.00" d_res_low="2.15">
<mmCIF:R_factor_obs>0.188</mmCIF:R_factor_obs>
<mmCIF:number_reflns_obs>1647</mmCIF:number_reflns_obs>
</mmCIF:refine_ls_shell>
</mmCIF:refine_ls_shellCategory>
Residual factor R for reflections that satisfy the resolution
limits established by attribute d_res_high in category refine_ls_shell and
attribute d_res_low in category refine_ls_shell and the observation limit
established by attribute observed_criterion in category reflns, and that were
used as the test reflections (i.e. were excluded from the
refinement) when the refinement included the calculation
of a 'free' R factor. Details of how reflections were assigned
to the working and test sets are given in attribute R_free_details.
in category reflns
sum|F~obs~ - F~calc~|
R = ---------------------
sum|F~obs~|
F~obs~ = the observed structure-factor amplitudes
F~calc~ = the calculated structure-factor amplitudes
sum is taken over the specified reflections
The estimated error in attribute R_factor_R_free.
in category refine_ls_shell The method used to estimate the error is described in the
item attribute ls_R_factor_R_free_error_details in category refine.
Residual factor R for reflections that satisfy the resolution
limits established by attribute d_res_high in category refine_ls_shell and
attribute d_res_low in category refine_ls_shell and the observation limit
established by attribute observed_criterion in category reflns, and that were used
as the working reflections (i.e. were included in the
refinement) when the refinement included the calculation of
a 'free' R factor. Details of how reflections were assigned
to the working and test sets are given in attribute R_free_details.
in category reflns
sum|F~obs~ - F~calc~|
R = ---------------------
sum|F~obs~|
F~obs~ = the observed structure-factor amplitudes
F~calc~ = the calculated structure-factor amplitudes
sum is taken over the specified reflections
Residual factor R for reflections that satisfy the resolution
limits established by attribute d_res_high in category refine_ls_shell and
attribute d_res_low.
in category refine_ls_shell
sum|F~obs~ - F~calc~|
R = ---------------------
sum|F~obs~|
F~obs~ = the observed structure-factor amplitudes
F~calc~ = the calculated structure-factor amplitudes
sum is taken over the specified reflections
Residual factor R for reflections that satisfy the resolution
limits established by attribute d_res_high in category refine_ls_shell and
attribute d_res_low in category refine_ls_shell and the observation criterion
established by attribute observed_criterion.
in category reflns
sum|F~obs~ - F~calc~|
R = ---------------------
sum|F~obs~|
F~obs~ = the observed structure-factor amplitudes
F~calc~ = the calculated structure-factor amplitudes
sum is taken over the specified reflections
The number of reflections that satisfy the resolution limits
established by attribute d_res_high in category refine_ls_shell and
attribute d_res_low in category refine_ls_shell and the observation limit
established by attribute observed_criterion in category reflns, and that were used
as the test reflections (i.e. were excluded from the refinement)
when the refinement included the calculation of a 'free'
R factor. Details of how reflections were assigned to the
working and test sets are given in attribute R_free_details in category reflns.
The number of reflections that satisfy the resolution limits
established by attribute d_res_high in category refine_ls_shell and
attribute d_res_low in category refine_ls_shell and the observation limit
established by attribute observed_criterion in category reflns, and that were used
as the working reflections (i.e. were included in the
refinement) when the refinement included the calculation of
a 'free' R factor. Details of how reflections were assigned
to the working and test sets are given in attribute R_free_details in category reflns.
The number of reflections that satisfy the resolution limits
established by attribute d_res_high in category refine_ls_shell and
attribute d_res_low in category refine_ls_shell.
The number of reflections that satisfy the resolution limits
established by attribute d_res_high in category refine_ls_shell and
attribute d_res_low in category refine_ls_shell and the observation criterion
established by attribute observed_criterion in category reflns.
The number of reflections that satisfy the resolution limits
established by attribute d_res_high in category refine_ls_shell and
attribute d_res_low in category refine_ls_shell and the observation limit
established by attribute observed_criterion in category reflns, and that were used
as the test reflections (i.e. were excluded from the refinement)
when the refinement included the calculation of a 'free'
R factor, expressed as a percentage of the number of
geometrically observable reflections that satisfy the
reflection limits.
The number of reflections that satisfy the resolution limits
established by attribute d_res_high in category refine_ls_shell and
attribute d_res_low in category refine_ls_shell and the observation criterion
established by attribute observed_criterion in category reflns, expressed as a
percentage of the number of geometrically observable
reflections that satisfy the resolution limits.
The ratio of the total number of observations of the reflections
that satisfy the resolution limits established by
_refine_ls_shell.d_res_high and _refine_ls_shell.d_res_low
to the number of crystallographically unique reflections that
satisfy the same limits.
The ratio of the total number of observations of the
reflections that satisfy the resolution limits established by
_refine_ls_shell.d_res_high and _refine_ls_shell.d_res_low and
the observation criterion established by
attribute observed_criterion in category reflns to the number of crystallographically
unique reflections that satisfy the same limits.
Weighted residual factor wR for reflections that satisfy the
resolution limits established by attribute d_res_high
in category refine_ls_shell and attribute d_res_low in category refine_ls_shell and the observation limit
established by attribute observed_criterion in category reflns, and that were used
as the test reflections (i.e. were excluded from the refinement)
when the refinement included the calculation of a 'free'
R factor. Details of how reflections were assigned to the
working and test sets are given in attribute R_free_details.
in category reflns
( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^
wR = ( ---------------------------- )
( sum|w Y~obs~^2^| )
Y~obs~ = the observed amplitude specified by
attribute ls_structure_factor_coef
in category refine Y~calc~ = the calculated amplitude specified by
attribute ls_structure_factor_coef
in category refine w = the least-squares weight
sum is taken over the specified reflections
Weighted residual factor wR for reflections that satisfy the
resolution limits established by attribute d_res_high
in category refine_ls_shell and attribute d_res_low in category refine_ls_shell and the observation limit
established by attribute observed_criterion in category reflns, and that were used
as the working reflections (i.e. were included in the
refinement) when the refinement included the calculation of
a 'free' R factor. Details of how reflections were assigned
to the working and test sets are given in attribute R_free_details.
in category reflns
( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^
wR = ( ---------------------------- )
( sum|w Y~obs~^2^| )
Y~obs~ = the observed amplitude specified by
attribute ls_structure_factor_coef
in category refine Y~calc~ = the calculated amplitude specified by
attribute ls_structure_factor_coef
in category refine w = the least-squares weight
sum is taken over the specified reflections
Weighted residual factor wR for reflections that satisfy the
resolution limits established by attribute d_res_high
in category refine_ls_shell and attribute d_res_low.
in category refine_ls_shell
( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^
wR = ( ---------------------------- )
( sum|w Y~obs~^2^| )
Y~obs~ = the observed amplitude specified by
attribute ls_structure_factor_coef
in category refine Y~calc~ = the calculated amplitude specified by
attribute ls_structure_factor_coef
in category refine w = the least-squares weight
sum is taken over the specified reflections
Weighted residual factor wR for reflections that satisfy the
resolution limits established by attribute d_res_high
in category refine_ls_shell and attribute d_res_low in category refine_ls_shell and the observation criterion
established by attribute observed_criterion.
in category reflns
( sum|w |Y~obs~ - Y~calc~|^2^| )^1/2^
wR = ( ---------------------------- )
( sum|w Y~obs~^2^| )
Y~obs~ = the observed amplitude specified by
attribute ls_structure_factor_coef
in category refine Y~calc~ = the calculated amplitude specified by
attribute ls_structure_factor_coef
in category refine w = the least-squares weight
sum is taken over the specified reflections
The lowest value for the interplanar spacings for the
reflection data in this shell. This is called
the highest resolution.
The highest value for the interplanar spacings for the
reflection data in this shell. This is called the lowest
resolution.
Data items in the REFINE_OCCUPANCY category record details
about the treatment of atom occupancies during refinement.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:refine_occupancyCategory>
<mmCIF:refine_occupancy class="protein">
<mmCIF:details xsi:nil="true" />
<mmCIF:treatment>fix</mmCIF:treatment>
<mmCIF:value>1.00</mmCIF:value>
</mmCIF:refine_occupancy>
<mmCIF:refine_occupancy class="solvent">
<mmCIF:details xsi:nil="true" />
<mmCIF:treatment>fix</mmCIF:treatment>
<mmCIF:value>1.00</mmCIF:value>
</mmCIF:refine_occupancy>
<mmCIF:refine_occupancy class="inhibitor orientation 1">
<mmCIF:details xsi:nil="true" />
<mmCIF:treatment>fix</mmCIF:treatment>
<mmCIF:value>0.65</mmCIF:value>
</mmCIF:refine_occupancy>
<mmCIF:refine_occupancy class="inhibitor orientation 2">
<mmCIF:details> The inhibitor binds to the enzyme in two alternative
conformations. The occupancy of each conformation was
adjusted so as to result in approximately equal mean
thermal factors for the atoms in each conformation.</mmCIF:details>
<mmCIF:treatment>fix</mmCIF:treatment>
<mmCIF:value>0.35</mmCIF:value>
</mmCIF:refine_occupancy>
</mmCIF:refine_occupancyCategory>
A description of special aspects of the occupancy refinement for
a class of atoms described in attribute class in category refine_occupancy.
The inhibitor binds to the enzyme in two
alternative conformations. The occupancy of
each conformation was adjusted so as to result
in approximately equal mean thermal factors
for the atoms in each conformation.
The treatment of occupancies for a class of atoms
described in attribute class in category refine_occupancy.
The value of occupancy assigned to a class of atoms defined in
attribute class in category refine_occupancy. Meaningful only for atoms with fixed
occupancy.
1.0
0.41
The class of atoms treated similarly for occupancy refinement.
all
protein
solvent
sugar-phosphate backbone
Data items in the REFLN category record details about the
reflection data used to determine the ATOM_SITE data items.
The REFLN data items refer to individual reflections and must
be included in looped lists.
The REFLNS data items specify the parameters that apply to all
reflections. The REFLNS data items are not looped.
Example 1 - based on data set fetod of Todres, Yanovsky, Ermekov & Struchkov
[Acta Cryst. (1993), C49, 1352-1354].
<mmCIF:reflnCategory>
<mmCIF:refln index_h="2" index_k="0" index_l="0">
<mmCIF:F_squared_calc>85.57</mmCIF:F_squared_calc>
<mmCIF:F_squared_meas>58.90</mmCIF:F_squared_meas>
<mmCIF:F_squared_sigma>1.45</mmCIF:F_squared_sigma>
<mmCIF:status>o</mmCIF:status>
</mmCIF:refln>
<mmCIF:refln index_h="3" index_k="0" index_l="0">
<mmCIF:F_squared_calc>15718.18</mmCIF:F_squared_calc>
<mmCIF:F_squared_meas>15631.06</mmCIF:F_squared_meas>
<mmCIF:F_squared_sigma>30.40</mmCIF:F_squared_sigma>
<mmCIF:status>o</mmCIF:status>
</mmCIF:refln>
<mmCIF:refln index_h="4" index_k="0" index_l="0">
<mmCIF:F_squared_calc>55613.11</mmCIF:F_squared_calc>
<mmCIF:F_squared_meas>49840.09</mmCIF:F_squared_meas>
<mmCIF:F_squared_sigma>61.86</mmCIF:F_squared_sigma>
<mmCIF:status>o</mmCIF:status>
</mmCIF:refln>
<mmCIF:refln index_h="5" index_k="0" index_l="0">
<mmCIF:F_squared_calc>246.85</mmCIF:F_squared_calc>
<mmCIF:F_squared_meas>241.86</mmCIF:F_squared_meas>
<mmCIF:F_squared_sigma>10.02</mmCIF:F_squared_sigma>
<mmCIF:status>o</mmCIF:status>
</mmCIF:refln>
<mmCIF:refln index_h="6" index_k="0" index_l="0">
<mmCIF:F_squared_calc>82.16</mmCIF:F_squared_calc>
<mmCIF:F_squared_meas>69.97</mmCIF:F_squared_meas>
<mmCIF:F_squared_sigma>1.93</mmCIF:F_squared_sigma>
<mmCIF:status>o</mmCIF:status>
</mmCIF:refln>
<mmCIF:refln index_h="7" index_k="0" index_l="0">
<mmCIF:F_squared_calc>1133.62</mmCIF:F_squared_calc>
<mmCIF:F_squared_meas>947.79</mmCIF:F_squared_meas>
<mmCIF:F_squared_sigma>11.78</mmCIF:F_squared_sigma>
<mmCIF:status>o</mmCIF:status>
</mmCIF:refln>
<mmCIF:refln index_h="8" index_k="0" index_l="0">
<mmCIF:F_squared_calc>2558.04</mmCIF:F_squared_calc>
<mmCIF:F_squared_meas>2453.33</mmCIF:F_squared_meas>
<mmCIF:F_squared_sigma>20.44</mmCIF:F_squared_sigma>
<mmCIF:status>o</mmCIF:status>
</mmCIF:refln>
<mmCIF:refln index_h="9" index_k="0" index_l="0">
<mmCIF:F_squared_calc>283.88</mmCIF:F_squared_calc>
<mmCIF:F_squared_meas>393.66</mmCIF:F_squared_meas>
<mmCIF:F_squared_sigma>7.79</mmCIF:F_squared_sigma>
<mmCIF:status>o</mmCIF:status>
</mmCIF:refln>
<mmCIF:refln index_h="10" index_k="0" index_l="0">
<mmCIF:F_squared_calc>283.70</mmCIF:F_squared_calc>
<mmCIF:F_squared_meas>171.98</mmCIF:F_squared_meas>
<mmCIF:F_squared_sigma>4.26</mmCIF:F_squared_sigma>
<mmCIF:status>o</mmCIF:status>
</mmCIF:refln>
</mmCIF:reflnCategory>
The calculated value of structure-factor component A in
electrons.
A = |F|cos(phase)
The calculated value of structure-factor component A in
arbitrary units.
A = |F|cos(phase)
The measured value of structure-factor component A in electrons.
A = |F|cos(phase)
The measured value of structure-factor component A in
arbitrary units.
A = |F|cos(phase)
The calculated value of structure-factor component B in
electrons.
B = |F|sin(phase)
The calculated value of structure-factor component B in
arbitrary units.
B = |F|sin(phase)
The measured value of structure-factor component B in electrons.
B = |F|sin(phase)
The measured value of structure-factor component B in
arbitrary units.
B = |F|sin(phase)
The calculated value of the structure factor in electrons.
The calculated value of the structure factor in arbitrary
units.
The measured value of the structure factor in electrons.
The measured value of the structure factor in arbitrary units.
The standard uncertainty (estimated standard deviation) of
attribute F_meas in category refln in electrons.
The standard uncertainty (estimated standard deviation) of
attribute F_meas_au in category refln in arbitrary units.
The calculated value of the squared structure factor in
electrons squared.
The measured value of the squared structure factor in electrons
squared.
The standard uncertainty (derived from measurement) of the
squared structure factor in electrons squared.
The code identifying the class to which this reflection has been
assigned. This code must match a value of attribute code.
in category reflns_class Reflections may be grouped into classes for a variety of
purposes. For example, for modulated structures each reflection
class may be defined by the number m=sum|m~i~|, where the m~i~
are the integer coefficients that, in addition to h,k,l, index
the corresponding diffraction vector in the basis defined
for the reciprocal lattice.
This data item is a pointer to attribute id in category exptl_crystal in the
EXPTL_CRYSTAL category.
The d spacing in angstroms for this reflection. This is related
to the (sin theta)/lambda value by the expression
attribute d_spacing in category refln = 2/(_refln.sint/lambda).
The figure of merit m for this reflection.
int P~alpha~ exp(i*alpha) dalpha
m = --------------------------------
int P~alpha~ dalpha
P~a~ = the probability that the phase angle a is correct
int is taken over the range alpha = 0 to 2 pi.
Classification of a reflection so as to indicate its status with
respect to inclusion in the refinement and the calculation of
R factors.
The calculated value of the intensity in the same units as
attribute intensity_meas in category refln.
The measured value of the intensity.
The standard uncertainty (derived from measurement) of the
intensity in the same units as attribute intensity_meas in category refln.
Mean path length in millimetres through the crystal for this
reflection.
The calculated structure-factor phase in degrees.
The measured structure-factor phase in degrees.
Status of a reflection in the structure-refinement process.
This data item is a pointer to attribute group_code in category reflns_scale in the
REFLNS_SCALE category.
The (sin theta)/lambda value in reciprocal angstroms for this
reflection.
Classification of a reflection so as to indicate its status with
respect to inclusion in the refinement and the calculation of
R factors.
The symmetry reinforcement factor corresponding to the number of
times the reflection indices are generated identically from the
space-group symmetry operations.
The number of symmetry-equivalent reflections. The equivalent
reflections have the same structure-factor magnitudes because
of the space-group symmetry and the Friedel relationship.
The mean wavelength in angstroms of radiation used to measure
this reflection. This is an important parameter for data
collected using energy-dispersive detectors or the Laue
method.
This data item is a pointer to attribute wavelength_id in category diffrn_radiation in
the DIFFRN_RADIATION category.
Miller index h of the reflection. The values of the Miller
indices in the REFLN category must correspond to the cell
defined by cell lengths and cell angles in the CELL category.
Miller index k of the reflection. The values of the Miller
indices in the REFLN category must correspond to the cell
defined by cell lengths and cell angles in the CELL category.
Miller index l of the reflection. The values of the Miller
indices in the REFLN category must correspond to the cell
defined by cell lengths and cell angles in the CELL category.
Data items in the REFLN_SYS_ABS category record details about
the reflection data that should be systematically absent,
given the designated space group.
Example 1 - hypothetical example.
<mmCIF:refln_sys_absCategory>
<mmCIF:refln_sys_abs index_h="0" index_k="3" index_l="0">
<mmCIF:I>28.32</mmCIF:I>
<mmCIF:I_over_sigmaI>1.23</mmCIF:I_over_sigmaI>
<mmCIF:sigmaI>22.95</mmCIF:sigmaI>
</mmCIF:refln_sys_abs>
<mmCIF:refln_sys_abs index_h="0" index_k="5" index_l="0">
<mmCIF:I>14.11</mmCIF:I>
<mmCIF:I_over_sigmaI>0.86</mmCIF:I_over_sigmaI>
<mmCIF:sigmaI>16.38</mmCIF:sigmaI>
</mmCIF:refln_sys_abs>
<mmCIF:refln_sys_abs index_h="0" index_k="7" index_l="0">
<mmCIF:I>114.81</mmCIF:I>
<mmCIF:I_over_sigmaI>5.67</mmCIF:I_over_sigmaI>
<mmCIF:sigmaI>20.22</mmCIF:sigmaI>
</mmCIF:refln_sys_abs>
<mmCIF:refln_sys_abs index_h="0" index_k="9" index_l="0">
<mmCIF:I>32.99</mmCIF:I>
<mmCIF:I_over_sigmaI>1.35</mmCIF:I_over_sigmaI>
<mmCIF:sigmaI>24.51</mmCIF:sigmaI>
</mmCIF:refln_sys_abs>
</mmCIF:refln_sys_absCategory>
The measured value of the intensity in arbitrary units.
The ratio of _refln_sys_abs.I to _refln_sys_abs.sigmaI. Used
to evaluate whether a reflection that should be systematically
absent according to the designated space group is in fact
absent.
The standard uncertainty (estimated standard deviation) of
attribute I in category refln_sys_abs in arbitrary units.
Miller index h of the reflection. The values of the Miller
indices in the REFLN_SYS_ABS category must correspond to
the cell defined by cell lengths and cell angles in the CELL
category.
Miller index k of the reflection. The values of the Miller
indices in the REFLN_SYS_ABS category must correspond to the
cell defined by cell lengths and cell angles in the CELL
category.
Miller index l of the reflection. The values of the Miller
indices in the REFLN_SYS_ABS category must correspond to the
cell defined by cell lengths and cell angles in the CELL
category.
Data items in the REFLNS category record details about the
reflection data used to determine the ATOM_SITE data items.
The REFLN data items refer to individual reflections and must
be included in looped lists.
The REFLNS data items specify the parameters that apply to all
reflections. The REFLNS data items are not looped.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:reflnsCategory>
<mmCIF:reflns entry_id="5HVP">
<mmCIF:d_resolution_high>2.00</mmCIF:d_resolution_high>
<mmCIF:d_resolution_low>8.00</mmCIF:d_resolution_low>
<mmCIF:data_reduction_details> Merging and scaling based on only those reflections
with I > \s(I).</mmCIF:data_reduction_details>
<mmCIF:data_reduction_method> Xengen program scalei. Anomalous pairs were merged. Scaling
proceeded in several passes, beginning with 1-parameter
fit and ending with 3-parameter fit.</mmCIF:data_reduction_method>
<mmCIF:details>none</mmCIF:details>
<mmCIF:limit_h_max>22</mmCIF:limit_h_max>
<mmCIF:limit_h_min>0</mmCIF:limit_h_min>
<mmCIF:limit_k_max>46</mmCIF:limit_k_max>
<mmCIF:limit_k_min>0</mmCIF:limit_k_min>
<mmCIF:limit_l_max>57</mmCIF:limit_l_max>
<mmCIF:limit_l_min>0</mmCIF:limit_l_min>
<mmCIF:number_obs>7228</mmCIF:number_obs>
<mmCIF:observed_criterion>> 1 \s(I)</mmCIF:observed_criterion>
</mmCIF:reflns>
</mmCIF:reflnsCategory>
Example 2 - based on data set TOZ of Willis, Beckwith & Tozer
[Acta Cryst. (1991), C47, 2276-2277].
The value of the overall isotropic displacement parameter
estimated from the slope of the Wilson plot.
The proportion of Friedel-related reflections present in
the number of 'independent' reflections specified by
the item attribute number_all.
in category reflns
This proportion is calculated as the ratio:
[N(Crystal class) - N(Laue symmetry)] / N(Laue symmetry)
where, working from the DIFFRN_REFLN list,
N(Crystal class) is the number of reflections obtained on
averaging under the symmetry of the crystal class
N(Laue symmetry) is the number of reflections obtained on
averaging under the Laue symmetry.
Examples:
(a) For centrosymmetric structures, the value of
attribute Friedel_coverage in category reflns is
necessarily equal to 0.0, as the crystal class
is identical to the Laue symmetry.
(b) For whole-sphere data for a crystal in the space
group P1, attribute Friedel_coverage in category reflns is equal to 1.0,
as no reflection h k l is equivalent to -h -k -l
in the crystal class and all Friedel pairs
{h k l; -h -k -l} have been measured.
(c) For whole-sphere data in space group Pmm2,
attribute Friedel_coverage
in category reflns will be < 1.0 because although reflections h k l and
-h -k -l are not equivalent when h k l indices are
nonzero, they are when l=0.
(d) For a crystal in space group Pmm2, measurements of the
two inequivalent octants h >= 0, k >=0, l lead to the
same value as in (c), whereas measurements of the
two equivalent octants h >= 0, k, l >= 0 will lead to
a zero value for attribute Friedel_coverage in category reflns.
A description of the method by which a subset of reflections was
selected for exclusion from refinement so as to be used in the
calculation of a 'free' R factor.
The data set was sorted with l varying most
rapidly and h varying least rapidly. Every
10th reflection in this sorted list was
excluded from refinement and included in the
calculation of a 'free' R factor.
Residual factor Rmerge for all reflections that satisfy the
resolution limits established by attribute d_resolution_high
in category reflns and attribute d_resolution_low.
in category reflns
sum~i~(sum~j~|F~j~ - <F>|)
Rmerge(F) = --------------------------
sum~i~(sum~j~<F>)
F~j~ = the amplitude of the jth observation of reflection i
<F> = the mean of the amplitudes of all observations of
reflection i
sum~i~ is taken over all reflections
sum~j~ is taken over all observations of each reflection
Residual factor Rmerge for reflections that satisfy the
resolution limits established by attribute d_resolution_high
in category reflns and attribute d_resolution_low in category reflns and the observation limit
established by attribute observed_criterion.
in category reflns
sum~i~(sum~j~|F~j~ - <F>|)
Rmerge(F) = --------------------------
sum~i~(sum~j~<F>)
F~j~ = the amplitude of the jth observation of reflection i
<F> = the mean of the amplitudes of all observations of
reflection i
sum~i~ is taken over all reflections
sum~j~ is taken over all observations of each reflection
The smallest value for the interplanar spacings for
the reflection data. This is called the highest resolution.
The largest value for the interplanar spacings for the
reflection data. This is called the lowest resolution.
A description of special aspects of the data-reduction
procedures.
Merging and scaling based on only those
reflections with I > sig(I).
The method used for data reduction.
Note that this is not the computer program used, which is
described in the SOFTWARE category, but the method
itself.
This data item should be used to describe significant
methodological options used within the data-reduction programs.
Profile fitting by method of Kabsch (1987).
Scaling used spherical harmonic coefficients.
A description of reflection data not covered by other data
names. This should include details of the Friedel pairs.
Maximum value of the Miller index h for the reflection data. This
need not have the same value as attribute limit_h_max in category diffrn_reflns.
Minimum value of the Miller index h for the reflection data. This
need not have the same value as attribute limit_h_min in category diffrn_reflns.
Maximum value of the Miller index k for the reflection data. This
need not have the same value as attribute limit_k_max in category diffrn_reflns.
Minimum value of the Miller index k for the reflection data. This
need not have the same value as attribute limit_k_min in category diffrn_reflns.
Maximum value of the Miller index l for the reflection data. This
need not have the same value as attribute limit_l_max in category diffrn_reflns.
Minimum value of the Miller index l for the reflection data. This
need not have the same value as attribute limit_l_min in category diffrn_reflns.
The total number of reflections in the REFLN list (not the
DIFFRN_REFLN list). This number may contain Friedel-equivalent
reflections according to the nature of the structure and the
procedures used. The item attribute details in category reflns describes the
reflection data.
The number of reflections in the REFLN list (not the
DIFFRN_REFLN list) that are significantly intense, satisfying
the criterion specified by attribute threshold_expression in category reflns. This may
include Friedel-equivalent reflections (i.e. those which are
symmetry-equivalent under the Laue symmetry but inequivalent
under the crystal class) according to the nature of the
structure and the procedures used. Any special characteristics
of the reflections included in the REFLN list should be
described using the item attribute details in category reflns.
The number of reflections in the REFLN list (not the DIFFRN_REFLN
list) classified as observed (see attribute observed_criterion).
in category reflns This number may contain Friedel-equivalent reflections according
to the nature of the structure and the procedures used.
The criterion used to classify a reflection as 'observed'. This
criterion is usually expressed in terms of a sigma(I) or
sigma(F) threshold.
>2sigma(I)
The criterion used to classify a reflection as 'observed'
expressed as an upper limit for the value of F.
The criterion used to classify a reflection as 'observed'
expressed as a lower limit for the value of F.
The criterion used to classify a reflection as 'observed'
expressed as an upper limit for the value of I.
The criterion used to classify a reflection as 'observed'
expressed as a lower limit for the value of I.
The criterion used to classify a reflection as 'observed'
expressed as a multiple of the value of sigma(F).
The criterion used to classify a reflection as 'observed'
expressed as a multiple of the value of sigma(I).
The percentage of geometrically possible reflections represented
by reflections that satisfy the resolution limits established
by _reflns.d_resolution_high and _reflns.d_resolution_low and
the observation limit established by
attribute observed_criterion in category reflns.
The threshold, usually based on multiples of u(I), u(F^2^)
or u(F), that serves to identify significantly intense
reflections, the number of which is given by attribute number_gt.
in category reflns These reflections are used in the calculation of
attribute ls_R_factor_gt in category refine.
I>2u(I)
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the REFLNS_CLASS category record details
of the reflections used to determine the structural
parameters for each reflection class.
Example 1 - example corresponding to the one-dimensional incommensurately
modulated structure of K~2~SeO~4~.
<mmCIF:reflns_classCategory>
<mmCIF:reflns_class code="Main">
<mmCIF:number_gt>584</mmCIF:number_gt>
</mmCIF:reflns_class>
<mmCIF:reflns_class code="Sat1">
<mmCIF:number_gt>226</mmCIF:number_gt>
</mmCIF:reflns_class>
<mmCIF:reflns_class code="Sat2">
<mmCIF:number_gt>50</mmCIF:number_gt>
</mmCIF:reflns_class>
</mmCIF:reflns_classCategory>
For each reflection class, the residual factor R(F^2^) calculated
on the squared amplitudes of the observed and calculated
structure factors for the reflections judged significantly
intense (i.e. satisfying the threshold specified by
attribute threshold_expression) in category reflns and included in the refinement.
The reflections also satisfy the resolution limits established
by _reflns_class.d_res_high and _reflns_class.d_res_low.
sum | F(obs)^2^ - F(calc)^2^ |
R(Fsqd) = -------------------------------
sum F(obs)^2^
F(obs)^2^ = squares of the observed structure-factor amplitudes
F(calc)^2^ = squares of the calculated structure-factor
amplitudes
and the sum is taken over the reflections of this class.
For each reflection class, the residual factor R(I) for the
reflections judged significantly intense (i.e. satisfying the
threshold specified by attribute threshold_expression) in category reflns and
included in the refinement.
This is most often calculated in Rietveld refinements
against powder data, where it is referred to as R~B~ or R~Bragg~.
sum | I(obs) - I(calc) |
R(I) = ------------------------
sum | I(obs) |
I(obs) = the net observed intensities
I(calc) = the net calculated intensities
and the sum is taken over the reflections of this class.
For each reflection class, the residual factor for all
reflections included in the refinement.
The reflections also satisfy the resolution limits established by
_reflns_class.d_res_high and _reflns_class.d_res_low.
This is the conventional R factor. See also the
definition of attribute wR_factor_all.
in category reflns_class
sum | F(obs) - F(calc) |
R = ------------------------
sum | F(obs) |
F(obs) = the observed structure-factor amplitudes
F(calc) = the calculated structure-factor amplitudes
and the sum is taken over the reflections of this class.
For each reflection class, the residual factor for significantly
intense reflections (see attribute threshold_expression) in category reflns included
in the refinement.
The reflections also satisfy the resolution limits established by
_reflns_class.d_res_high and _reflns_class.d_res_low.
This is the conventional R factor. See also the
definition of attribute wR_factor_all.
in category reflns_class
sum | F(obs) - F(calc) |
R = ------------------------
sum | F(obs) |
F(obs) = the observed structure-factor amplitudes
F(calc) = the calculated structure-factor amplitudes
and the sum is taken over the reflections of this class.
For each reflection class, the smallest value in angstroms
for the interplanar spacings for the reflections used in the
refinement. This is called the highest resolution.
For each reflection class, the largest value in angstroms
for the interplanar spacings for the reflections used in the
refinement. This is called the lowest resolution.
Description of each reflection class.
m=1 first order satellites
H0L0 common projection reflections
For each reflection class, the number of significantly intense
reflections (see attribute threshold_expression) in category reflns in the REFLN
list (not the DIFFRN_REFLN list). This may include Friedel-
equivalent reflections (i.e. those which are symmetry-equivalent
under the Laue symmetry but inequivalent under the crystal
class) according to the nature of the structure and the
procedures used. Any special characteristics of the reflections
included in the REFLN list should be described using the item
attribute details in category reflns.
For each reflection class, the total number of reflections
in the REFLN list (not the DIFFRN_REFLN list). This may
include Friedel-equivalent reflections (i.e. those which are
symmetry-equivalent under the Laue symmetry but inequivalent
under the crystal class) according to the nature of the
structure and the procedures used. Any special characteristics
of the reflections included in the REFLN list should be
described using the item attribute details in category reflns.
For each reflection class, the weighted residual factors for all
reflections included in the refinement. The reflections also
satisfy the resolution limits established by
_reflns_class.d_res_high and _reflns_class.d_res_low.
See also attribute R_factor_ in category reflns_class definitions.
( sum w [ Y(obs) - Y(calc) ]^2^ )^1/2^
wR = ( ------------------------------ )
( sum w Y(obs)^2^ )
Y(obs) = the observed amplitude specified by
attribute ls_structure_factor_coef
in category refine Y(calc) = the calculated amplitude specified by
attribute ls_structure_factor_coef
in category refine w = the least-squares weight
and the sum is taken over the reflections of this class.
The code identifying a certain reflection class.
1
m1
s2
Data items in the REFLNS_SCALE category record details about
the structure-factor scales. They are referenced from within
the REFLN list through attribute scale_group_code in category refln.
Example 1 - based on laboratory records for the collagen-like
peptide [(POG)4 EKG (POG)5]3.
<mmCIF:reflns_scaleCategory>
<mmCIF:reflns_scale group_code="SG1">
<mmCIF:meas_F>4.0</mmCIF:meas_F>
</mmCIF:reflns_scale>
</mmCIF:reflns_scaleCategory>
A scale associated with attribute group_code in category reflns_scale.
A scale associated with attribute group_code in category reflns_scale.
A scale associated with attribute group_code in category reflns_scale.
The code identifying a scale attribute meas_F,
in category reflns_scale _reflns_scale.meas_F_squared or _reflns_scale.meas_intensity.
These are linked to the REFLN list by the
attribute scale_group_code in category refln. These codes
need not correspond to those in the DIFFRN_SCALE list.
1
2
c1
c2
Data items in the REFLNS_SHELL category record details about
the reflection data used to determine the ATOM_SITE data items
broken down into shells of resolution.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:reflns_shellCategory>
<mmCIF:reflns_shell d_res_high="31.38" d_res_low="3.82">
<mmCIF:Rmerge_F_obs>1.98</mmCIF:Rmerge_F_obs>
<mmCIF:meanI_over_sigI_obs>69.8</mmCIF:meanI_over_sigI_obs>
<mmCIF:number_measured_obs>9024</mmCIF:number_measured_obs>
<mmCIF:number_unique_obs>2540</mmCIF:number_unique_obs>
<mmCIF:percent_possible_obs>96.8</mmCIF:percent_possible_obs>
</mmCIF:reflns_shell>
<mmCIF:reflns_shell d_res_high="3.82" d_res_low="3.03">
<mmCIF:Rmerge_F_obs>3.85</mmCIF:Rmerge_F_obs>
<mmCIF:meanI_over_sigI_obs>26.1</mmCIF:meanI_over_sigI_obs>
<mmCIF:number_measured_obs>7413</mmCIF:number_measured_obs>
<mmCIF:number_unique_obs>2364</mmCIF:number_unique_obs>
<mmCIF:percent_possible_obs>95.1</mmCIF:percent_possible_obs>
</mmCIF:reflns_shell>
<mmCIF:reflns_shell d_res_high="3.03" d_res_low="2.65">
<mmCIF:Rmerge_F_obs>6.37</mmCIF:Rmerge_F_obs>
<mmCIF:meanI_over_sigI_obs>10.5</mmCIF:meanI_over_sigI_obs>
<mmCIF:number_measured_obs>5640</mmCIF:number_measured_obs>
<mmCIF:number_unique_obs>2123</mmCIF:number_unique_obs>
<mmCIF:percent_possible_obs>86.2</mmCIF:percent_possible_obs>
</mmCIF:reflns_shell>
<mmCIF:reflns_shell d_res_high="2.65" d_res_low="2.41">
<mmCIF:Rmerge_F_obs>8.01</mmCIF:Rmerge_F_obs>
<mmCIF:meanI_over_sigI_obs>6.4</mmCIF:meanI_over_sigI_obs>
<mmCIF:number_measured_obs>4322</mmCIF:number_measured_obs>
<mmCIF:number_unique_obs>1882</mmCIF:number_unique_obs>
<mmCIF:percent_possible_obs>76.8</mmCIF:percent_possible_obs>
</mmCIF:reflns_shell>
<mmCIF:reflns_shell d_res_high="2.41" d_res_low="2.23">
<mmCIF:Rmerge_F_obs>9.86</mmCIF:Rmerge_F_obs>
<mmCIF:meanI_over_sigI_obs>4.3</mmCIF:meanI_over_sigI_obs>
<mmCIF:number_measured_obs>3247</mmCIF:number_measured_obs>
<mmCIF:number_unique_obs>1714</mmCIF:number_unique_obs>
<mmCIF:percent_possible_obs>70.4</mmCIF:percent_possible_obs>
</mmCIF:reflns_shell>
<mmCIF:reflns_shell d_res_high="2.23" d_res_low="2.10">
<mmCIF:Rmerge_F_obs>13.99</mmCIF:Rmerge_F_obs>
<mmCIF:meanI_over_sigI_obs>3.1</mmCIF:meanI_over_sigI_obs>
<mmCIF:number_measured_obs>1140</mmCIF:number_measured_obs>
<mmCIF:number_unique_obs>812</mmCIF:number_unique_obs>
<mmCIF:percent_possible_obs>33.3</mmCIF:percent_possible_obs>
</mmCIF:reflns_shell>
</mmCIF:reflns_shellCategory>
Residual factor Rmerge for all reflections that satisfy the
resolution limits established by attribute d_res_high in category reflns_shell and
attribute d_res_low.
in category reflns_shell
sum~i~(sum~j~|F~j~ - <F>|)
Rmerge(F) = --------------------------
sum~i~(sum~j~<F>)
F~j~ = the amplitude of the jth observation of reflection i
<F> = the mean of the amplitudes of all observations of
reflection i
sum~i~ is taken over all reflections
sum~j~ is taken over all observations of each reflection
The value of Rmerge(F) for significantly intense reflections
(see attribute threshold_expression) in category reflns in a given shell.
sum~i~ ( sum~j~ | F~j~ - <F> | )
Rmerge(F) = --------------------------------
sum~i~ ( sum~j~ <F> )
F~j~ = the amplitude of the jth observation of reflection i
<F> = the mean of the amplitudes of all observations of
reflection i
sum~i~ is taken over all reflections
sum~j~ is taken over all observations of each reflection.
Residual factor Rmerge for reflections that satisfy the
resolution limits established by attribute d_res_high in category reflns_shell and
attribute d_res_low in category reflns_shell and the observation criterion
established by attribute observed_criterion.
in category reflns
sum~i~(sum~j~|F~j~ - <F>|)
Rmerge(F) = --------------------------
sum~i~(sum~j~<F>)
F~j~ = the amplitude of the jth observation of reflection i
<F> = the mean of the amplitudes of all observations of
reflection i
sum~i~ is taken over all reflections
sum~j~ is taken over all observations of each reflection
The value of Rmerge(I) for all reflections in a given shell.
sum~i~(sum~j~|I~j~ - <I>|)
Rmerge(I) = --------------------------
sum~i~(sum~j~<I>)
I~j~ = the intensity of the jth observation of reflection i
<I> = the mean of the intensities of all observations of
reflection i
sum~i~ is taken over all reflections
sum~j~ is taken over all observations of each reflection
The value of Rmerge(I) for significantly intense reflections
(see attribute threshold_expression) in category reflns in a given shell.
sum~i~ ( sum~j~ | I~j~ - <I> | )
Rmerge(I) = --------------------------------
sum~i~ ( sum~j~ <I> )
I~j~ = the intensity of the jth observation of reflection i
<I> = the mean of the intensities of all observations of
reflection i
sum~i~ is taken over all reflections
sum~j~ is taken over all observations of each reflection.
The value of Rmerge(I) for reflections classified as 'observed'
(see attribute observed_criterion) in category reflns in a given shell.
sum~i~(sum~j~|I~j~ - <I>|)
Rmerge(I) = --------------------------
sum~i~(sum~j~<I>)
I~j~ = the intensity of the jth observation of reflection i
<I> = the mean of the intensities of all observations of
reflection i
sum~i~ is taken over all reflections
sum~j~ is taken over all observations of each reflection
The ratio of the mean of the intensities of all reflections
in this shell to the mean of the standard uncertainties of the
intensities of all reflections in this shell.
The ratio of the mean of the intensities of the significantly
intense reflections (see attribute threshold_expression) in category reflns in
this shell to the mean of the standard uncertainties of the
intensities of the significantly intense reflections in this
shell.
The ratio of the mean of the intensities of the reflections
classified as 'observed' (see attribute observed_criterion) in category reflns in
this shell to the mean of the standard uncertainties of the
intensities of the 'observed' reflections in this
shell.
The ratio of the mean of the intensities of all reflections
in this shell to the mean of the standard uncertainties of the
intensities of all reflections in this shell.
The ratio of the mean of the intensities of the significantly
intense reflections (see attribute threshold_expression) in category reflns in
this shell to the mean of the standard uncertainties of the
intensities of the significantly intense reflections in this
shell.
The total number of reflections measured for this
shell.
The number of significantly intense reflections
(see attribute threshold_expression) in category reflns measured for this
shell.
The number of reflections classified as 'observed'
(see attribute observed_criterion) in category reflns for this
shell.
The number of unique reflections it is possible to measure in
this shell.
The total number of measured reflections which are symmetry-
unique after merging for this shell.
The total number of significantly intense reflections
(see attribute threshold_expression) in category reflns resulting from merging
measured symmetry-equivalent reflections for this resolution
shell.
The total number of measured reflections classified as 'observed'
(see attribute observed_criterion) in category reflns which are symmetry-unique
after merging for this shell.
The percentage of geometrically possible reflections represented
by all reflections measured for this shell.
The percentage of geometrically possible reflections
represented by significantly intense reflections
(see attribute threshold_expression) in category reflns measured for this
shell.
The percentage of geometrically possible reflections represented
by reflections classified as 'observed' (see
attribute observed_criterion) in category reflns for this shell.
The smallest value in angstroms for the interplanar spacings
for the reflections in this shell. This is called the highest
resolution.
The highest value in angstroms for the interplanar spacings
for the reflections in this shell. This is called the lowest
resolution.
Data items in the SOFTWARE category record details about
the software used in the structure analysis, which implies
any software used in the generation of any data items
associated with the structure determination and
structure representation.
These data items allow computer programs to be referenced
in more detail than data items in the COMPUTING category do.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:softwareCategory>
<mmCIF:software name="Prolsq" version="unknown">
<mmCIF:citation_id>ref5</mmCIF:citation_id>
<mmCIF:classification>refinement</mmCIF:classification>
<mmCIF:compiler_name>Convex Fortran</mmCIF:compiler_name>
<mmCIF:compiler_version>v8.0</mmCIF:compiler_version>
<mmCIF:contact_author>Wayne A. Hendrickson</mmCIF:contact_author>
<mmCIF:date xsi:nil="true" />
<mmCIF:dependencies>Requires that Protin be run first</mmCIF:dependencies>
<mmCIF:description>restrained least-squares refinement</mmCIF:description>
<mmCIF:hardware>Convex C220</mmCIF:hardware>
<mmCIF:language>Fortran</mmCIF:language>
<mmCIF:location>ftp://rosebud.sdsc.edu/pub/sdsc/xtal/CCP4/ccp4/</mmCIF:location>
<mmCIF:mods>optimized</mmCIF:mods>
<mmCIF:os>ConvexOS</mmCIF:os>
<mmCIF:os_version>v10.1</mmCIF:os_version>
<mmCIF:type>program</mmCIF:type>
</mmCIF:software>
</mmCIF:softwareCategory>
This data item is a pointer to attribute id in category citation in the CITATION
category.
The classification of the program according to its
major function.
data collection
data reduction
phasing
model building
refinement
validation
other
The compiler used to compile the software.
Convex Fortran
gcc
DEC C
The version of the compiler used to compile the software.
3.1
2.1 alpha
The recognized contact author of the software. This could be
the original author, someone who has modified the code or
someone who maintains the code. It should be the person
most commonly associated with the code.
T. Alwyn Jones
Axel Brunger
The e-mail address of the person specified in
attribute contact_author in category software.
bourne@sdsc.edu
The date the software was released.
1991-10-01
1990-04-30
Any prerequisite software required to run attribute name in category software.
PDBlib class library
Description of the software.
Uses method of restrained least squares
The hardware upon which the software was run.
Sun Sparc 10 model 41
Dec Alpha 3000 model 500S
Silicon Graphics Elan
Compaq PC 486/66
The major computing language in which the software is
coded.
The URL for an Internet address at which
details of the software can be found.
http://rosebud.sdsc.edu/projects/pb/IUCr/software.html
ftp://ftp.sdsc.edu/pub/sdsc/biology/
Any noteworthy modifications to the base software, if applicable.
Added support for space group F432
The name of the operating system under which the software
runs.
Ultrix
OpenVMS
DOS
Windows 95
Windows NT
Irix
HPUX
DEC Unix
The version of the operating system under which the software
runs.
3.1
4.2.1
The classification of the software according to the most
common types.
The name of the software.
Merlot
O
Xengen
X-plor
The version of the software.
v1.0
beta
3.1-2
unknown
Contains all the data items that refer to the space group as a
whole, such as its name or crystal system. They may be looped,
for example, in a list of space groups and their properties.
Only a subset of the SPACE_GROUP category items appear in
this dictionary. The remainder are found in the symmetry CIF
dictionary.
Space-group types are identified by their number as given in
International Tables for Crystallography Vol. A. Specific
settings of the space groups can be identified either by their
Hall symbol or by specifying their symmetry operations.
The commonly used Hermann-Mauguin symbol determines the
space-group type uniquely but several different Hermann-Mauguin
symbols may refer to the same space-group type. A Hermann-Mauguin
symbol contains information on the choice of the basis, but not
on the choice of origin. Different formats for the
Hermann-Mauguin symbol are found in the symmetry CIF dictionary.
Example 1 - the monoclinic space group No. 15 with unique axis b.
<mmCIF:space_groupCategory>
<mmCIF:space_group id="1">
<mmCIF:IT_number>15</mmCIF:IT_number>
<mmCIF:crystal_system>monoclinic</mmCIF:crystal_system>
<mmCIF:name_H-M_alt>C 2/c</mmCIF:name_H-M_alt>
<mmCIF:name_Hall>-C 2yc</mmCIF:name_Hall>
</mmCIF:space_group>
</mmCIF:space_groupCategory>
The number as assigned in International Tables for
Crystallography Vol. A, specifying the proper affine class (i.e.
the orientation-preserving affine class) of space groups
(crystallographic space-group type) to which the space group
belongs. This number defines the space-group type but not
the coordinate system in which it is expressed.
The name of the system of geometric crystal classes of space
groups (crystal system) to which the space group belongs.
Note that rhombohedral space groups belong to the
trigonal system.
attribute name_H-M_alt in category space_group allows any Hermann-Mauguin symbol
to be given. The way in which this item is used is determined
by the user and in general is not intended to be interpreted by
computer. It may, for example, be used to give one of the
extended Hermann-Mauguin symbols given in Table 4.3.2.1 of
International Tables for Crystallography Vol. A (2002) or
a Hermann-Mauguin symbol for a conventional or unconventional
setting.
Each component of the space-group name is separated by a
space or an underscore. The use of a space is strongly
recommended. The underscore is only retained because it
was used in old CIFs. It should not be
used in new CIFs. Subscripts should appear without special
symbols. Bars should be given as negative signs before the
numbers to which they apply.
The commonly used Hermann-Mauguin symbol determines the space-
group type uniquely but a given space-group type may be
described by more than one Hermann-Mauguin symbol. The space-
group type is best described using attribute IT_number.
in category space_group
The Hermann-Mauguin symbol may contain information on the
choice of basis, but not on the choice of origin. To
define the setting uniquely, use attribute name_Hall in category space_group or
list the symmetry operations.
three examples for space group No. 63
loop_
_space_group.name_H-M_alt
'C m c m'
'C 2/c 2/m 21/m'
'A m a m'
Space-group symbol defined by Hall.
Each component of the space-group name is separated by a
space or an underscore. The use of a space is strongly
recommended. The underscore is only retained because it
was used in old CIFs. It should not be
used in new CIFs.
attribute name_Hall in category space_group uniquely defines the space group and
its reference to a particular coordinate system.
Ref: Hall, S. R. (1981). Acta Cryst. A37, 517-525; erratum
(1981), A37, 921.
[See also International Tables for Crystallography
Vol. B (2001), Chapter 1.4, Appendix 1.4.2.]
equivalent to Pca21
P 2c -2ac
equivalent to Ia3d
-I 4bd 2ab 3
This is the unique identifier for the SPACE_GROUP category.
Contains information about the symmetry operations of the
space group.
Example 1 - The symmetry operations for the space group P21/c.
<mmCIF:space_group_symopCategory>
<mmCIF:space_group_symop id="1">
<mmCIF:operation_xyz>x,y,z</mmCIF:operation_xyz>
</mmCIF:space_group_symop>
<mmCIF:space_group_symop id="2">
<mmCIF:operation_xyz>-x,-y,-z</mmCIF:operation_xyz>
</mmCIF:space_group_symop>
<mmCIF:space_group_symop id="3">
<mmCIF:operation_xyz>-x,1/2+y,1/2-z</mmCIF:operation_xyz>
</mmCIF:space_group_symop>
<mmCIF:space_group_symop id="4">
<mmCIF:operation_xyz>x,1/2-y,1/2+z</mmCIF:operation_xyz>
</mmCIF:space_group_symop>
</mmCIF:space_group_symopCategory>
A parsable string giving one of the symmetry operations of the
space group in algebraic form. If W is a matrix representation
of the rotational part of the symmetry operation defined by the
positions and signs of x, y and z, and w is a column of
translations defined by the fractions, an equivalent position
X' is generated from a given position X by the equation
X' = WX + w
(Note: X is used to represent bold_italics_x in International
Tables for Crystallography Vol. A, Part 5)
When a list of symmetry operations is given, it must contain
a complete set of coordinate representatives which generates
all the operations of the space group by the addition of
all primitive translations of the space group. Such
representatives are to be found as the coordinates of
the general-equivalent position in International Tables for
Crystallography Vol. A (2002), to which it is necessary to
add any centring translations shown above the
general-equivalent position.
That is to say, it is necessary to list explicity all the
symmetry operations required to generate all the atoms in
the unit cell defined by the setting used.
glide reflection through the plane (x,1/4,z),
with glide vector 1/2 c
x,1/2-y,1/2+z
This must match a particular value of attribute id in category space_group, allowing
the symmetry operation to be identified with a particular space
group.
An arbitrary identifier that uniquely labels each symmetry
operation in the list.
Data items in the STRUCT category record details about the
description of the crystallographic structure.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:structCategory>
<mmCIF:struct entry_id="5HVP">
<mmCIF:title> HIV-1 protease complex with acetyl-pepstatin</mmCIF:title>
</mmCIF:struct>
</mmCIF:structCategory>
A title for the data block. The author should attempt to convey
the essence of the structure archived in the CIF in the title,
and to distinguish this structural result from others.
5'-D(*(I)CP*CP*GP*G)-3
T4 lysozyme mutant - S32A
hen egg white lysozyme at -30 degrees C
quail egg white lysozyme at 2 atmospheres
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the STRUCT_ASYM category record details about the
structural elements in the asymmetric unit.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:struct_asymCategory>
<mmCIF:struct_asym id="A">
<mmCIF:details>one monomer of the dimeric enzyme</mmCIF:details>
<mmCIF:entity_id>1</mmCIF:entity_id>
</mmCIF:struct_asym>
<mmCIF:struct_asym id="B">
<mmCIF:details>one monomer of the dimeric enzyme</mmCIF:details>
<mmCIF:entity_id>1</mmCIF:entity_id>
</mmCIF:struct_asym>
<mmCIF:struct_asym id="C">
<mmCIF:details>one partially occupied position for the inhibitor</mmCIF:details>
<mmCIF:entity_id>2</mmCIF:entity_id>
</mmCIF:struct_asym>
<mmCIF:struct_asym id="D">
<mmCIF:details>one partially occupied position for the inhibitor</mmCIF:details>
<mmCIF:entity_id>2</mmCIF:entity_id>
</mmCIF:struct_asym>
</mmCIF:struct_asymCategory>
A description of special aspects of this portion of the contents
of the asymmetric unit.
The drug binds to this enzyme in two roughly
twofold symmetric modes. Hence this
biological unit (3) is roughly twofold
symmetric to biological unit (2). Disorder in
the protein chain indicated with alternative
ID 2 should be used with this biological unit.
This data item is a pointer to attribute id in category entity in the ENTITY category.
The value of attribute id in category struct_asym must uniquely identify a record in
the STRUCT_ASYM list.
Note that this item need not be a number; it can be any unique
identifier.
1
A
2B3
Data items in the STRUCT_BIOL category record details about
the structural elements that form each structure of biological
significance.
A given crystal structure may contain many different biological
structures. A given structural component in the asymmetric
unit may be part of more than one biological unit. A given
biological structure may involve crystallographic symmetry.
For instance, in a structure of a lysozyme-FAB structure, the
light- and heavy-chain components of the FAB could be one
biological unit, while the two chains of the FAB and the lysozyme
could constitute a second biological unit.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:struct_biolCategory>
<mmCIF:struct_biol id="1">
<mmCIF:details> significant deviations from twofold symmetry exist in this
dimeric enzyme</mmCIF:details>
</mmCIF:struct_biol>
<mmCIF:struct_biol id="2">
<mmCIF:details> The drug binds to this enzyme in two roughly twofold
symmetric modes. Hence this biological unit (2) is roughly
twofold symmetric to biological unit (3). Disorder in the
protein chain indicated with alternative ID 1 should be
used with this biological unit.</mmCIF:details>
</mmCIF:struct_biol>
<mmCIF:struct_biol id="3">
<mmCIF:details> The drug binds to this enzyme in two roughly twofold
symmetric modes. Hence this biological unit (3) is roughly
twofold symmetric to biological unit (2). Disorder in the
protein chain indicated with alternative ID 2 should be
used with this biological unit.</mmCIF:details>
</mmCIF:struct_biol>
</mmCIF:struct_biolCategory>
A description of special aspects of the biological unit.
The drug binds to this enzyme in two roughly
twofold symmetric modes. Hence this
biological unit (3) is roughly twofold
symmetric to biological unit (2). Disorder in
the protein chain indicated with alternative
ID 2 should be used with this biological unit.
The value of attribute id in category struct_biol must uniquely identify a record in
the STRUCT_BIOL list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the STRUCT_BIOL_GEN category record details about
the generation of each biological unit. The STRUCT_BIOL_GEN
data items provide the specifications of the components that
constitute that biological unit, which may include symmetry
elements.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:struct_biol_genCategory>
<mmCIF:struct_biol_gen asym_id="A" biol_id="1" symmetry="1_555"></mmCIF:struct_biol_gen>
<mmCIF:struct_biol_gen asym_id="B" biol_id="1" symmetry="1_555"></mmCIF:struct_biol_gen>
<mmCIF:struct_biol_gen asym_id="A" biol_id="2" symmetry="1_555"></mmCIF:struct_biol_gen>
<mmCIF:struct_biol_gen asym_id="B" biol_id="2" symmetry="1_555"></mmCIF:struct_biol_gen>
<mmCIF:struct_biol_gen asym_id="C" biol_id="2" symmetry="1_555"></mmCIF:struct_biol_gen>
<mmCIF:struct_biol_gen asym_id="A" biol_id="3" symmetry="1_555"></mmCIF:struct_biol_gen>
<mmCIF:struct_biol_gen asym_id="B" biol_id="3" symmetry="1_555"></mmCIF:struct_biol_gen>
<mmCIF:struct_biol_gen asym_id="D" biol_id="3" symmetry="1_555"></mmCIF:struct_biol_gen>
</mmCIF:struct_biol_genCategory>
A description of special aspects of the symmetry generation of
this portion of the biological structure.
The zinc atom lies on a special position;
application of symmetry elements to generate
the insulin hexamer will generate excess zinc
atoms, which must be removed by hand.
This data item is a pointer to attribute id in category struct_asym in the STRUCT_ASYM
category.
This data item is a pointer to attribute id in category struct_biol in the STRUCT_BIOL
category.
Describes the symmetry operation that should be applied to the
atom set specified by attribute asym_id in category struct_biol_gen to generate a
portion of the biological structure.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
Data items in the STRUCT_BIOL_KEYWORDS category record
keywords that describe each biological unit.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:struct_biol_keywordsCategory>
<mmCIF:struct_biol_keywords biol_id="1" text="aspartyl-protease"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="1" text="aspartic-protease"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="1" text="acid-protease"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="1" text="aspartyl-proteinase"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="1" text="aspartic-proteinase"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="1" text="acid-proteinase"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="1" text="enzyme"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="1" text="protease"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="1" text="proteinase"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="1" text="dimer"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="2" text="drug-enzyme complex"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="2" text="inhibitor-enzyme complex"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="2" text="drug-protease complex"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="2" text="inhibitor-protease complex"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="3" text="drug-enzyme complex"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="3" text="inhibitor-enzyme complex"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="3" text="drug-protease complex"></mmCIF:struct_biol_keywords>
<mmCIF:struct_biol_keywords biol_id="3" text="inhibitor-protease complex"></mmCIF:struct_biol_keywords>
</mmCIF:struct_biol_keywordsCategory>
This data item is a pointer to attribute id in category struct_biol in the STRUCT_BIOL
category.
Keywords describing this biological entity.
antibody
antigen
enzyme
cytokine
tRNA
Data items in the STRUCT_BIOL_VIEW category record details
about how to draw and annotate an informative view of the
biological structure.
Example 1 - based on NDB structure GDL001 by Coll, Aymami,
Van Der Marel, Van Boom, Rich & Wang
[Biochemistry, (1989), 28, 310-320].
<mmCIF:struct_biol_viewCategory>
<mmCIF:struct_biol_view biol_id="c1" id="1">
<mmCIF:details> This view highlights the ATAT-Netropsin interaction in the
DNA-drug complex.</mmCIF:details>
<mmCIF:rot_matrix11>0.132</mmCIF:rot_matrix11>
<mmCIF:rot_matrix12>0.922</mmCIF:rot_matrix12>
<mmCIF:rot_matrix13>-0.363</mmCIF:rot_matrix13>
<mmCIF:rot_matrix21>0.131</mmCIF:rot_matrix21>
<mmCIF:rot_matrix22>-0.380</mmCIF:rot_matrix22>
<mmCIF:rot_matrix23>-0.916</mmCIF:rot_matrix23>
<mmCIF:rot_matrix31>-0.982</mmCIF:rot_matrix31>
<mmCIF:rot_matrix32>0.073</mmCIF:rot_matrix32>
<mmCIF:rot_matrix33>-0.172</mmCIF:rot_matrix33>
</mmCIF:struct_biol_view>
</mmCIF:struct_biol_viewCategory>
A description of special aspects of this view of the biological
structure.
This data item can be used as a figure legend.
The enzyme has been oriented with the
molecular twofold axis aligned with the
horizontal axis of the figure.
The [1][1] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_BIOL_GEN category to give a view useful for describing the
structure. The conventions used in the rotation are described in
attribute details.
in category struct_biol_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [1][2] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_BIOL_GEN category to give a view useful for describing the
structure. The conventions used in the rotation are described in
attribute details.
in category struct_biol_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [1][3] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_BIOL_GEN category to give a view useful for describing the
structure. The conventions used in the rotation are described in
attribute details.
in category struct_biol_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [2][1] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_BIOL_GEN category to give a view useful for describing the
structure. The conventions used in the rotation are described in
attribute details.
in category struct_biol_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [2][2] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_BIOL_GEN category to give a view useful for describing the
structure. The conventions used in the rotation are described in
attribute details.
in category struct_biol_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [2][3] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_BIOL_GEN category to give a view useful for describing the
structure. The conventions used in the rotation are described in
attribute details.
in category struct_biol_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [3][1] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_BIOL_GEN category to give a view useful for describing the
structure. The conventions used in the rotation are described in
attribute details.
in category struct_biol_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [3][2] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_BIOL_GEN category to give a view useful for describing the
structure. The conventions used in the rotation are described in
attribute details.
in category struct_biol_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [3][3] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_BIOL_GEN category to give a view useful for describing the
structure. The conventions used in the rotation are described in
attribute details.
in category struct_biol_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
This data item is a pointer to attribute id in category struct_biol in the STRUCT_BIOL
category.
The value of attribute id in category struct_biol_view must uniquely identify a
record in the STRUCT_BIOL_VIEW list.
Note that this item need not be a number; it can be any unique
identifier.
Figure 1
unliganded enzyme
view down enzyme active site
Data items in the STRUCT_CONF category record details about
the backbone conformation of a segment of polymer.
Data items in the STRUCT_CONF_TYPE category define the
criteria used to identify the backbone conformations.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:struct_confCategory>
<mmCIF:struct_conf id="HELX1">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ARG</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>87</mmCIF:beg_label_seq_id>
<mmCIF:conf_type_id>HELX_RH_AL_P</mmCIF:conf_type_id>
<mmCIF:details xsi:nil="true" />
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>GLN</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>92</mmCIF:end_label_seq_id>
</mmCIF:struct_conf>
<mmCIF:struct_conf id="HELX2">
<mmCIF:beg_label_asym_id>B</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ARG</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>287</mmCIF:beg_label_seq_id>
<mmCIF:conf_type_id>HELX_RH_AL_P</mmCIF:conf_type_id>
<mmCIF:details xsi:nil="true" />
<mmCIF:end_label_asym_id>B</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>GLN</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>292</mmCIF:end_label_seq_id>
</mmCIF:struct_conf>
<mmCIF:struct_conf id="STRN1">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>PRO</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>1</mmCIF:beg_label_seq_id>
<mmCIF:conf_type_id>STRN_P</mmCIF:conf_type_id>
<mmCIF:details xsi:nil="true" />
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>LEU</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>5</mmCIF:end_label_seq_id>
</mmCIF:struct_conf>
<mmCIF:struct_conf id="STRN2">
<mmCIF:beg_label_asym_id>B</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>CYS</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>295</mmCIF:beg_label_seq_id>
<mmCIF:conf_type_id>STRN_P</mmCIF:conf_type_id>
<mmCIF:details xsi:nil="true" />
<mmCIF:end_label_asym_id>B</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>PHE</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>299</mmCIF:end_label_seq_id>
</mmCIF:struct_conf>
<mmCIF:struct_conf id="STRN3">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>CYS</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>95</mmCIF:beg_label_seq_id>
<mmCIF:conf_type_id>STRN_P</mmCIF:conf_type_id>
<mmCIF:details xsi:nil="true" />
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>PHE</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>299</mmCIF:end_label_seq_id>
</mmCIF:struct_conf>
<mmCIF:struct_conf id="STRN4">
<mmCIF:beg_label_asym_id>B</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>PRO</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>201</mmCIF:beg_label_seq_id>
<mmCIF:conf_type_id>STRN_P</mmCIF:conf_type_id>
<mmCIF:details xsi:nil="true" />
<mmCIF:end_label_asym_id>B</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>LEU</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>205</mmCIF:end_label_seq_id>
</mmCIF:struct_conf>
<mmCIF:struct_conf id="TURN1">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ILE</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>15</mmCIF:beg_label_seq_id>
<mmCIF:conf_type_id>TURN_TY1P_P</mmCIF:conf_type_id>
<mmCIF:details xsi:nil="true" />
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>GLN</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>18</mmCIF:end_label_seq_id>
</mmCIF:struct_conf>
<mmCIF:struct_conf id="TURN2">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>GLY</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>49</mmCIF:beg_label_seq_id>
<mmCIF:conf_type_id>TURN_TY2_P</mmCIF:conf_type_id>
<mmCIF:details xsi:nil="true" />
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>GLY</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>52</mmCIF:end_label_seq_id>
</mmCIF:struct_conf>
<mmCIF:struct_conf id="TURN3">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ILE</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>55</mmCIF:beg_label_seq_id>
<mmCIF:conf_type_id>TURN_TY1P_P</mmCIF:conf_type_id>
<mmCIF:details xsi:nil="true" />
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>HIS</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>69</mmCIF:end_label_seq_id>
</mmCIF:struct_conf>
<mmCIF:struct_conf id="TURN4">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>THR</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>91</mmCIF:beg_label_seq_id>
<mmCIF:conf_type_id>TURN_TY1_P</mmCIF:conf_type_id>
<mmCIF:details xsi:nil="true" />
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>GLY</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>94</mmCIF:end_label_seq_id>
</mmCIF:struct_conf>
</mmCIF:struct_confCategory>
A component of the identifier for the residue at which the
conformation segment begins.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue at which the
conformation segment begins.
This data item is a pointer to attribute auth_comp_id in category atom_site in
the ATOM_SITE category.
A component of the identifier for the residue at which the
conformation segment begins.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue at which the
conformation segment begins.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue at which the
conformation segment begins.
This data item is a pointer to attribute label_comp_id in category atom_site in
the ATOM_SITE category.
A component of the identifier for the residue at which the
conformation segment begins.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
This data item is a pointer to attribute id in category struct_conf_type in the
STRUCT_CONF_TYPE category.
A description of special aspects of the conformation assignment.
A component of the identifier for the residue at which the
conformation segment ends.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue at which the
conformation segment ends.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue at which the
conformation segment ends.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue at which the
conformation segment ends.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue at which the
conformation segment ends.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue at which the
conformation segment ends.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
The value of attribute id in category struct_conf must uniquely identify a record in
the STRUCT_CONF list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the STRUCT_CONF_TYPE category record details
about the criteria used to identify backbone conformations of a
segment of polymer.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:struct_conf_typeCategory>
<mmCIF:struct_conf_type id="HELX_RH_AL_P">
<mmCIF:criteria>author judgement</mmCIF:criteria>
<mmCIF:reference xsi:nil="true" />
</mmCIF:struct_conf_type>
<mmCIF:struct_conf_type id="STRN_P">
<mmCIF:criteria>author judgement</mmCIF:criteria>
<mmCIF:reference xsi:nil="true" />
</mmCIF:struct_conf_type>
<mmCIF:struct_conf_type id="TURN_TY1_P">
<mmCIF:criteria>author judgement</mmCIF:criteria>
<mmCIF:reference xsi:nil="true" />
</mmCIF:struct_conf_type>
<mmCIF:struct_conf_type id="TURN_TY1P_P">
<mmCIF:criteria>author judgement</mmCIF:criteria>
<mmCIF:reference xsi:nil="true" />
</mmCIF:struct_conf_type>
<mmCIF:struct_conf_type id="TURN_TY2_P">
<mmCIF:criteria>author judgement</mmCIF:criteria>
<mmCIF:reference xsi:nil="true" />
</mmCIF:struct_conf_type>
<mmCIF:struct_conf_type id="TURN_TY2P_P">
<mmCIF:criteria>author judgement</mmCIF:criteria>
<mmCIF:reference xsi:nil="true" />
</mmCIF:struct_conf_type>
</mmCIF:struct_conf_typeCategory>
The criteria used to assign this conformation type.
author judgement
phi=54-74, psi=30-50
A literature reference that defines the criteria used to assign
this conformation type and subtype.
The descriptor that categorizes the type of the conformation
of the backbone of the polymer (whether protein or nucleic acid).
Explicit values for the torsion angles that define each
conformation are not given here, but it is expected that the
author would provide such information in either the
_struct_conf_type.criteria or _struct_conf_type.reference data
items, or both.
Data items in the STRUCT_CONN category record details about
the connections between portions of the structure. These can be
hydrogen bonds, salt bridges, disulfide bridges and so on.
The STRUCT_CONN_TYPE records define the criteria used to
identify these connections.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:struct_connCategory>
<mmCIF:struct_conn id="C1">
<mmCIF:conn_type_id>saltbr</mmCIF:conn_type_id>
<mmCIF:details xsi:nil="true" />
<mmCIF:ptnr1_label_asym_id>A</mmCIF:ptnr1_label_asym_id>
<mmCIF:ptnr1_label_atom_id>NZ1</mmCIF:ptnr1_label_atom_id>
<mmCIF:ptnr1_label_comp_id>ARG</mmCIF:ptnr1_label_comp_id>
<mmCIF:ptnr1_label_seq_id>87</mmCIF:ptnr1_label_seq_id>
<mmCIF:ptnr1_role>positive</mmCIF:ptnr1_role>
<mmCIF:ptnr1_symmetry>1_555</mmCIF:ptnr1_symmetry>
<mmCIF:ptnr2_label_asym_id>A</mmCIF:ptnr2_label_asym_id>
<mmCIF:ptnr2_label_atom_id>OE1</mmCIF:ptnr2_label_atom_id>
<mmCIF:ptnr2_label_comp_id>GLU</mmCIF:ptnr2_label_comp_id>
<mmCIF:ptnr2_label_seq_id>92</mmCIF:ptnr2_label_seq_id>
<mmCIF:ptnr2_role>negative</mmCIF:ptnr2_role>
<mmCIF:ptnr2_symmetry>1_555</mmCIF:ptnr2_symmetry>
</mmCIF:struct_conn>
<mmCIF:struct_conn id="C2">
<mmCIF:conn_type_id>hydrog</mmCIF:conn_type_id>
<mmCIF:details xsi:nil="true" />
<mmCIF:ptnr1_label_asym_id>B</mmCIF:ptnr1_label_asym_id>
<mmCIF:ptnr1_label_atom_id>N</mmCIF:ptnr1_label_atom_id>
<mmCIF:ptnr1_label_comp_id>ARG</mmCIF:ptnr1_label_comp_id>
<mmCIF:ptnr1_label_seq_id>287</mmCIF:ptnr1_label_seq_id>
<mmCIF:ptnr1_role>donor</mmCIF:ptnr1_role>
<mmCIF:ptnr1_symmetry>1_555</mmCIF:ptnr1_symmetry>
<mmCIF:ptnr2_label_asym_id>B</mmCIF:ptnr2_label_asym_id>
<mmCIF:ptnr2_label_atom_id>O</mmCIF:ptnr2_label_atom_id>
<mmCIF:ptnr2_label_comp_id>GLY</mmCIF:ptnr2_label_comp_id>
<mmCIF:ptnr2_label_seq_id>292</mmCIF:ptnr2_label_seq_id>
<mmCIF:ptnr2_role>acceptor</mmCIF:ptnr2_role>
<mmCIF:ptnr2_symmetry>1_555</mmCIF:ptnr2_symmetry>
</mmCIF:struct_conn>
</mmCIF:struct_connCategory>
This data item is a pointer to attribute id in category struct_conn_type in the
STRUCT_CONN_TYPE category.
A description of special aspects of the connection.
disulfide bridge C-S-S-C is highly distorted
A component of the identifier for partner 1 of the structure
connection.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for partner 1 of the structure
connection.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for partner 1 of the structure
connection.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for partner 1 of the structure
connection.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for partner 1 of the structure
connection.
This data item is a pointer to attribute id in category atom_sites_alt in the
ATOM_SITES_ALT category.
A component of the identifier for partner 1 of the structure
connection.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for partner 1 of the structure
connection.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
A component of the identifier for partner 1 of the structure
connection.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for partner 1 of the structure
connection.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
The chemical or structural role of the first partner in
the structure connection.
donor
acceptor
negative
positive
metal
metal coordination
Describes the symmetry operation that should be applied to the
atom set specified by attribute ptnr1_label* in category struct_conn to generate the
first partner in the structure connection.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
A component of the identifier for partner 2 of the structure
connection.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for partner 2 of the structure
connection.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for partner 2 of the structure
connection.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for partner 2 of the structure
connection.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for partner 2 of the structure
connection.
This data item is a pointer to attribute id in category atom_sites_alt in the
ATOM_SITES_ALT category.
A component of the identifier for partner 2 of the structure
connection.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for partner 2 of the structure
connection.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
A component of the identifier for partner 2 of the structure
connection.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for partner 2 of the structure
connection.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
The chemical or structural role of the second partner in
the structure connection.
donor
acceptor
negative
positive
metal
metal coordination
Describes the symmetry operation that should be applied to the
atom set specified by attribute ptnr2_label* in category struct_conn to generate the
second partner in the structure connection.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
The value of attribute id in category struct_conn must uniquely identify a record in
the STRUCT_CONN list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the STRUCT_CONN_TYPE category record details
about the criteria used to identify interactions between
portions of the structure.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:struct_conn_typeCategory>
<mmCIF:struct_conn_type id="saltbr">
<mmCIF:criteria>negative to positive distance > 2.5 \%A, < 3.2 \%A</mmCIF:criteria>
<mmCIF:reference xsi:nil="true" />
</mmCIF:struct_conn_type>
<mmCIF:struct_conn_type id="hydrog">
<mmCIF:criteria>NO distance > 2.5\%A, < 3.5\%A, NOC angle < 120 degrees</mmCIF:criteria>
<mmCIF:reference xsi:nil="true" />
</mmCIF:struct_conn_type>
</mmCIF:struct_conn_typeCategory>
The criteria used to define the interaction.
O to N distance > 2.5 \%A, < 3.2 \%A
authors judgement
A reference that specifies the criteria used to define the
interaction.
The chemical or structural type of the interaction.
Data items in the STRUCT_KEYWORDS category specify keywords
that describe the chemical structure in this entry.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:struct_keywordsCategory>
<mmCIF:struct_keywords entry_id="5HVP">
<mmCIF:text>enzyme-inhibitor complex</mmCIF:text>
</mmCIF:struct_keywords>
<mmCIF:struct_keywords entry_id="5HVP">
<mmCIF:text>aspartyl protease</mmCIF:text>
</mmCIF:struct_keywords>
<mmCIF:struct_keywords entry_id="5HVP">
<mmCIF:text>structure-based drug design</mmCIF:text>
</mmCIF:struct_keywords>
<mmCIF:struct_keywords entry_id="5HVP">
<mmCIF:text>static disorder</mmCIF:text>
</mmCIF:struct_keywords>
</mmCIF:struct_keywordsCategory>
Keywords describing this structure.
serine protease
inhibited complex
high-resolution refinement
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the STRUCT_MON_DETAILS category record details
about specifics of calculations summarized in data items in the
STRUCT_MON_PROT and STRUCT_MON_NUCL categories. These can
include the coefficients used in map calculations,
the radii used for including points in a calculation and so on.
This data item describes the specifics of the calculations that
generated the values given in attribute RSCC_all,
in category struct_mon_prot _struct_mon_prot.RSCC_main and _struct_mon_prot.RSCC_side. The
coefficients used to calculate the p(o) and p(c) maps should be
given as well as the criterion for the inclusion of map grid
points in the calculation.
The map p(o) was calculated with coefficients
2F(o) - F(c) and with phase alpha(c). F(o)
are the observed structure-factor amplitudes,
F(c) are the amplitudes calculated from the
current model and alpha(c) are the phases
calculated from the current model.
The map p(c) was calculated in program O using
a Gaussian distribution function around the
atoms in the current model.
Map grid points within 1.5 A of the
designated atoms were included in the
calculation.
The map p(o) was calculated with coefficients
F(o) and with phase alpha(c). F(o) are the
observed structure-factor amplitudes, and
alpha(c) are the phases calculated from the
current model.
The map p(c) was calculated with coefficients
F(c) and with phases alpha(c). F(c) and
alpha(c) are the structure-factor amplitudes
and phases, respectively, calculated from the
current model.
Map grid points within a van der Waals radius
of the designated atoms were included in the
calculation.
This data item describes the specifics of the calculations that
generated the values given in attribute RSR_all,
in category struct_mon_prot _struct_mon_prot.RSR_main and _struct_mon_prot.RSR_side. The
coefficients used to calculate the p(o) and p(c) maps should be
given as well as the criterion for the inclusion of map grid
points in the calculation.
The map p(o) was calculated with coefficients
2F(o) - F(c) and with phase alpha(c). F(o)
are the observed structure-factor amplitudes,
F(c) are the amplitudes calculated from the
current model and alpha(c) are the phases
calculated from the current model.
The map p(c) was calculated in program O using
a Gaussian distribution function around the
atoms in the current model.
Map grid points within 1.5 A of the
designated atoms were included in the
calculation.
The map p(o) was calculated with coefficients
F(o) and with phase alpha(c). F(o) are the
observed structure-factor amplitudes, and
alpha(c) are the phases calculated from the
current model.
The map p(c) was calculated with coefficients
F(c) and with phases alpha(c). F(c) and
alpha(c) are the structure-factor amplitudes
and phases, respectively, calculated from the
current model.
Map grid points within a van der Waals radius
of the designated atoms were included in the
calculation.
An ideal cis peptide bond would have an omega torsion angle of
zero. This data item gives the value in degrees by which the
observed torsion angle can differ from 0.0 and still be
considered cis.
30.0
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the STRUCT_MON_NUCL category record details about
structural properties of a nucleic acid when analyzed at the
monomer level. Analogous data items for proteins are given in
the STRUCT_MON_PROT category. For items where the value of the
property depends on the method employed to calculate it,
details of the method of calculation are given using data items
in the STRUCT_MON_DETAILS category.
Example 1 - based on NDB structure BDL028.
P is the phase angle of pseudorotation for five-membered rings.
For ribose and deoxyribose sugars in nucleic
acids
(tau4 +tau1)-(tau3+tau0)
P = ATAN (-------------------------)
2tau2 (sin 36+sin 72)
If tau2 is <0, then P=P+180 degree (Altona & Sundaralingam,
1972).
Ref: Altona, C. & Sundaralingam, M. (1972).
J. Am. Chem. Soc. 94, 8205-8212.
The real-space (linear) correlation coefficient RSCC, as
described by Jones et al. (1991), evaluated over all atoms in the
nucleic acid monomer.
sum|p~obs~ - <p~obs~>| * sum|p~calc~ - <p~calc~>|
RSCC = -------------------------------------------------
[ sum|p~obs~ - <p~obs~> |^2^
* sum|p~calc~ - <p~calc~>|^2^ ]^1/2^
p~obs~ = the density in an 'experimental' map
p~calc~ = the density in a 'calculated' map
sum is taken over the specified grid points
Details of how these maps were calculated should be given
in attribute RSCC in category struct_mon_details. < > indicates an average and the
sums are taken over all map grid points near the relevant atoms.
The radius for including grid points in the calculation should
also be given in attribute RSCC.
in category struct_mon_details
Ref: Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M.
(1991). Acta Cryst. A47, 110-119.
The real-space (linear) correlation coefficient RSCC, as
described by Jones et al. (1991), evaluated over all atoms in the
base moiety of the nucleic acid monomer.
sum|p~obs~ - <p~obs~>| * sum|p~calc~ - <p~calc~>|
RSCC = -------------------------------------------------
[ sum|p~obs~ - <p~obs~> |^2^
* sum|p~calc~ - <p~calc~>|^2^ ]^1/2^
p~obs~ = the density in an 'experimental' map
p~calc~ = the density in a 'calculated' map
sum is taken over the specified grid points
Details of how these maps were calculated should be given
in attribute RSCC in category struct_mon_details. < > indicates an average and the
sums are taken over all map grid points near the relevant atoms.
The radius for including grid points in the calculation should
also be given in attribute RSCC.
in category struct_mon_details
Ref: Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M.
(1991). Acta Cryst. A47, 110-119.
The real-space (linear) correlation coefficient RSCC, as
described by Jones et al. (1991), evaluated over all atoms in the
phosphate moiety of the nucleic acid monomer.
sum|p~obs~ - <p~obs~>| * sum|p~calc~ - <p~calc~>|
RSCC = -------------------------------------------------
[ sum|p~obs~ - <p~obs~> |^2^
* sum|p~calc~ - <p~calc~>|^2^ ]^1/2^
p~obs~ = the density in an 'experimental' map
p~calc~ = the density in a 'calculated' map
sum is taken over the specified grid points
Details of how these maps were calculated should be given
in attribute RSCC in category struct_mon_details. < > indicates an average and the
sums are taken over all map grid points near the relevant atoms.
The radius for including grid points in the calculation should
also be given in attribute RSCC.
in category struct_mon_details
Ref: Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M.
(1991). Acta Cryst. A47, 110-119.
The real-space (linear) correlation coefficient RSCC, as
described by Jones et al. (1991), evaluated over all atoms in the
sugar moiety of the nucleic acid monomer.
sum|p~obs~ - <p~obs~>| * sum|p~calc~ - <p~calc~>|
RSCC = -------------------------------------------------
[ sum|p~obs~ - <p~obs~> |^2^
* sum|p~calc~ - <p~calc~>|^2^ ]^1/2^
p~obs~ = the density in an 'experimental' map
p~calc~ = the density in a 'calculated' map
sum is taken over the specified grid points
Details of how these maps were calculated should be given
in attribute RSCC in category struct_mon_details. < > indicates an average and the
sums are taken over all map grid points near the relevant atoms.
The radius for including grid points in the calculation should
also be given in attribute RSCC.
in category struct_mon_details
Ref: Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M.
(1991). Acta Cryst. A47, 110-119.
The real-space residual RSR, as described by Branden & Jones
(1990), evaluated over all atoms in the nucleic acid monomer.
sum|p~obs~ - p~calc~|
RSR = ---------------------
sum|p~obs~ + p~calc~|
p~obs~ = the density in an 'experimental' map
p~calc~ = the density in a 'calculated' map
sum is taken over the specified grid points
Details of how these maps were calculated should be given
in attribute RSR in category struct_mon_details. The sums are taken over all map grid
points near the relevant atoms. The radius for including grid
points in the calculation should also be given in
attribute RSR.
in category struct_mon_details
Ref: Branden, C.-I. & Jones, T. A. (1990). Nature (London), 343,
687-689.
The real-space residual RSR, as described by Branden & Jones
(1990), evaluated over all atoms in the base moiety of the
nucleic acid monomer.
sum|p~obs~ - p~calc~|
RSR = ---------------------
sum|p~obs~ + p~calc~|
p~obs~ = the density in an 'experimental' map
p~calc~ = the density in a 'calculated' map
sum is taken over the specified grid points
Details of how these maps were calculated should be given
in attribute RSR in category struct_mon_details. The sums are taken over all map grid
points near the relevant atoms. The radius for including grid
points in the calculation should also be given in
attribute RSR.
in category struct_mon_details
Ref: Branden, C.-I. & Jones, T. A. (1990). Nature (London), 343,
687-689.
The real-space residual RSR, as described by Branden & Jones
(1990), evaluated over all atoms in the phosphate moiety of the
nucleic acid monomer.
sum|p~obs~ - p~calc~|
RSR = ---------------------
sum|p~obs~ + p~calc~|
p~obs~ = the density in an 'experimental' map
p~calc~ = the density in a 'calculated' map
sum is taken over the specified grid points
Details of how these maps were calculated should be given
in attribute RSR in category struct_mon_details. The sums are taken over all map grid
points near the relevant atoms. The radius for including grid
points in the calculation should also be given in
attribute RSR.
in category struct_mon_details
Ref: Branden, C.-I. & Jones, T. A. (1990). Nature (London), 343,
687-689.
The real-space residual RSR, as described by Branden & Jones
(1990), evaluated over all atoms in the sugar moiety of the
nucleic acid monomer.
sum|p~obs~ - p~calc~|
RSR = ---------------------
sum|p~obs~ + p~calc~|
p~obs~ = the density in an 'experimental' map
p~calc~ = the density in a 'calculated' map
sum is taken over the specified grid points
Details of how these maps were calculated should be given
in attribute RSR in category struct_mon_details. The sums are taken over all map grid
points near the relevant atoms. The radius for including grid
points in the calculation should also be given in
attribute RSR.
in category struct_mon_details
Ref: Branden, C.-I. & Jones, T. A. (1990). Nature (London), 343,
687-689.
The value in degrees of the backbone torsion angle alpha
(O3'-P-O5'-C5').
A component of the identifier for participants in the site.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for participants in the site.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for participants in the site.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
The value in degrees of the backbone torsion angle beta
(P-O5'-C5'-C4').
The value in degrees of the sugar-base torsion angle chi1
(O4'-C1'-N1-C2).
The value in degrees of the sugar-base torsion angle chi2
(O4'-C1'-N9-C4).
The value in degrees of the backbone torsion angle delta
(C5'-C4'-C3'-O3').
A description of special aspects of the residue, its
conformation, behaviour in refinement, or any other aspect
that requires annotation.
Part of the phosphodiester backbone not in
density.
The value in degrees of the backbone torsion angle epsilon
(C4'-C3'-O3'-P).
The value in degrees of the backbone torsion angle gamma
(O5'-C5'-C4'-C3').
The mean value of the isotropic displacement parameter
for all atoms in the monomer.
The mean value of the isotropic displacement parameter
for atoms in the base moiety of the nucleic acid monomer.
The mean value of the isotropic displacement parameter
for atoms in the phosphate moiety of the nucleic acid monomer.
The mean value of the isotropic displacement parameter
for atoms in the sugar moiety of the nucleic acid monomer.
The value in degrees of the sugar torsion angle nu0
(C4'-O4'-C1'-C2').
The value in degrees of the sugar torsion angle nu1
(O4'-C1'-C2'-C3').
The value in degrees of the sugar torsion angle nu2
(C1'-C2'-C3'-C4').
The value in degrees of the sugar torsion angle nu3
(C2'-C3'-C4'-O4').
The value in degrees of the sugar torsion angle nu4
(C3'-C4'-O4'-C1').
The value in degrees of the sugar torsion angle tau0
(C4'-O4'-C1'-C2').
The value in degrees of the sugar torsion angle tau1
(O4'-C1'-C2'-C3').
The value in degrees of the sugar torsion angle tau2
(C1'-C2'-C3'-C4').
The value in degrees of the sugar torsion angle tau3
(C2'-C3'-C4'-O4').
The value in degrees of the sugar torsion angle tau4
(C3'-C4'-O4'-C1').
The maximum amplitude of puckering. This is derived from the
pseudorotation value P and the torsion angles in the ribose
ring.
Tau2= Taum cosP
Tau3= Taum cos(P+144)
Tau4= Taum cos(P+288)
Tau0= Taum cos(P+ 72)
Tau1= Taum cos(P+216)
The value in degrees of the backbone torsion angle zeta
(C3'-O3'-P-O5').
A component of the identifier for participants in the site.
This data item is a pointer to attribute id in category atom_sites_alt in the
ATOM_SITES_ALT category.
A component of the identifier for participants in the site.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for participants in the site.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for participants in the site.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
Data items in the STRUCT_MON_PROT category record details about
structural properties of a protein when analyzed at the monomer
level. Analogous data items for nucleic acids are given in the
STRUCT_MON_NUCL category. For items where the value of the
property depends on the method employed to calculate it,
details of the method of calculation are given using data items
in the STRUCT_MON_DETAILS category.
Example 1 - based on laboratory records for protein NS1.
This example provides details for residue ARG 35.
The real-space (linear) correlation coefficient RSCC, as
described by Jones et al. (1991), evaluated over all atoms
in the monomer.
sum|p~obs~ - <p~obs~>| * sum|p~calc~ - <p~calc~>|
RSCC = -------------------------------------------------
[ sum|p~obs~ - <p~obs~> |^2^
* sum|p~calc~ - <p~calc~>|^2^ ]^1/2^
p~obs~ = the density in an 'experimental' map
p~calc~ = the density in a 'calculated' map
sum is taken over the specified grid points
Details of how these maps were calculated should be given
in attribute RSCC in category struct_mon_details. < > indicates an average and the
sums are taken over all map grid points near the relevant atoms.
The radius for including grid points in the calculation should
also be given in attribute RSCC.
in category struct_mon_details
Ref: Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M.
(1991). Acta Cryst. A47, 110-119.
The real-space (linear) correlation coefficient RSCC, as
described by Jones et al. (1991), evaluated over all atoms
in the main chain of the monomer.
sum|p~obs~ - <p~obs~>| * sum|p~calc~ - <p~calc~>|
RSCC = -------------------------------------------------
[ sum|p~obs~ - <p~obs~> |^2^
* sum|p~calc~ - <p~calc~>|^2^ ]^1/2^
p~obs~ = the density in an 'experimental' map
p~calc~ = the density in a 'calculated' map
sum is taken over the specified grid points
Details of how these maps were calculated should be given
in attribute RSCC in category struct_mon_details. < > indicates an average and the
sums are taken over all map grid points near the relevant atoms.
The radius for including grid points in the calculation should
also be given in attribute RSCC.
in category struct_mon_details
Ref: Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M.
(1991). Acta Cryst. A47, 110-119.
The real-space (linear) correlation coefficient RSCC, as
described by Jones et al. (1991), evaluated over all atoms
in the side chain of the monomer.
sum|p~obs~ - <p~obs~>| * sum|p~calc~ - <p~calc~>|
RSCC = -------------------------------------------------
[ sum|p~obs~ - <p~obs~> |^2^
* sum|p~calc~ - <p~calc~>|^2^ ]^1/2^
p~obs~ = the density in an 'experimental' map
p~calc~ = the density in a 'calculated' map
sum is taken over the specified grid points
Details of how these maps were calculated should be given
in attribute RSCC in category struct_mon_details. < > indicates an average and the
sums are taken over all map grid points near the relevant atoms.
The radius for including grid points in the calculation should
also be given in attribute RSCC.
in category struct_mon_details
Ref: Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M.
(1991). Acta Cryst. A47, 110-119.
The real-space residual RSR, as described by Branden & Jones
(1990), evaluated over all atoms in the monomer.
sum|p~obs~ - p~calc~|
RSR = ---------------------
sum|p~obs~ + p~calc~|
p~obs~ = the density in an 'experimental' map
p~calc~ = the density in a 'calculated' map
sum is taken over the specified grid points
Details of how these maps were calculated should be given
in attribute RSR in category struct_mon_details. The sums are taken over all map grid
points near the relevant atoms. The radius for including grid
points in the calculation should also be given in
attribute RSR.
in category struct_mon_details
Ref: Branden, C.-I. & Jones, T. A. (1990). Nature (London), 343,
687-689.
The real-space residual RSR, as described by Branden & Jones
(1990), evaluated over all atoms in the main chain of the
monomer.
sum|p~obs~ - p~calc~|
RSR = ---------------------
sum|p~obs~ + p~calc~|
p~obs~ = the density in an 'experimental' map
p~calc~ = the density in a 'calculated' map
sum is taken over the specified grid points
Details of how these maps were calculated should be given
in attribute RSR in category struct_mon_details. The sums are taken over all map grid
points near the relevant atoms. The radius for including grid
points in the calculation should also be given in
attribute RSR.
in category struct_mon_details
Ref: Branden, C.-I. & Jones, T. A. (1990). Nature (London), 343,
687-689.
The real-space residual RSR, as described by Branden & Jones
(1990), evaluated over all atoms in the side chain of the
monomer.
sum|p~obs~ - p~calc~|
RSR = ---------------------
sum|p~obs~ + p~calc~|
p~obs~ = the density in an 'experimental' map
p~calc~ = the density in a 'calculated' map
sum is taken over the specified grid points
Details of how these maps were calculated should be given
in attribute RSR in category struct_mon_details. The sums are taken over all map grid
points near the relevant atoms. The radius for including grid
points in the calculation should also be given in
attribute RSR.
in category struct_mon_details
Ref: Branden, C.-I. & Jones, T. A. (1990). Nature (London), 343,
687-689.
A component of the identifier for the monomer.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
The value in degrees of the side-chain torsion angle chi1, for
those residues containing such an angle.
The value in degrees of the side-chain torsion angle chi2, for
those residues containing such an angle.
The value in degrees of the side-chain torsion angle chi3, for
those residues containing such an angle.
The value in degrees of the side-chain torsion angle chi4, for
those residues containing such an angle.
The value in degrees of the side-chain torsion angle chi5, for
those residues containing such an angle.
A description of special aspects of the residue, its
conformation, behaviour in refinement, or any other aspect that
requires annotation.
very poor density
The side chain of this density may occupy
alternative conformations, but alternative
conformations were not fit in this model.
This residue has a close contact with the
bound inhibitor, which may account for
the nonstandard conformation of the side
chain.
The mean value of the isotropic displacement parameter for all
atoms in the monomer.
The mean value of the isotropic displacement parameter for atoms
in the main chain of the monomer.
The mean value of the isotropic displacement parameter for atoms
in the side chain of the monomer.
The value in degrees of the main-chain torsion angle omega.
The value in degrees of the main-chain torsion angle phi.
The value in degrees of the main-chain torsion angle psi.
A component of the identifier for the monomer.
This data item is a pointer to attribute id in category atom_sites_alt in the
ATOM_SITES_ALT category.
A component of the identifier for the monomer.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
Data items in the STRUCT_MON_PROT_CIS category identify
monomers that have been found to have the peptide bond in the cis
conformation. The criterion used to select residues to be
designated as containing cis peptide bonds is given in
attribute prot_cis in category struct_mon_details.
Example 1 - based on PDB structure 1ACY of Ghiara, Stura, Stanfield,
Profy & Wilson [Science (1994), 264, 82-85].
A component of the identifier for the monomer.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer.
This data item is a pointer to attribute id in category atom_sites_alt in the
ATOM_SITES_ALT category.
A component of the identifier for the monomer.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
Data items in the STRUCT_NCS_DOM category record information
about the domains in an ensemble of domains related by one or
more noncrystallographic symmetry operators.
A domain need not correspond to a complete polypeptide chain;
it can be composed of one or more segments in a single chain,
or by segments from more than one chain.
Example 1 - based on laboratory records for the collagen-like
peptide, HYP-.
<mmCIF:struct_ncs_domCategory>
<mmCIF:struct_ncs_dom id="d1">
<mmCIF:details>Chains A, B, and C</mmCIF:details>
</mmCIF:struct_ncs_dom>
<mmCIF:struct_ncs_dom id="d2">
<mmCIF:details>Chains D, E, and F</mmCIF:details>
</mmCIF:struct_ncs_dom>
</mmCIF:struct_ncs_domCategory>
A description of special aspects of the structural elements that
comprise a domain in an ensemble of domains related by
noncrystallographic symmetry.
The loop between residues 18 and 23 in this
domain interacts with a symmetry-related
molecule, and thus deviates significantly from
the noncrystallographic threefold.
The value of attribute id in category struct_ncs_dom must uniquely identify a
record in the STRUCT_NCS_DOM list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the STRUCT_NCS_DOM_LIM category identify the
start and end points of polypeptide chain segments
that form all or part of a domain in an ensemble of domains
related by noncrystallographic symmetry.
Example 1 - based on laboratory records for the collagen-like
peptide, HYP-.
A component of the identifier for the monomer at which this
segment of the domain begins.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer at which this
segment of the domain begins.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer at which this
segment of the domain begins.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer at which this
segment of the domain ends.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer at which this
segment of the domain ends.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer at which this
segment of the domain ends.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer at which this
segment of the domain begins.
This data item is a pointer to attribute id in category atom_sites_alt in the
ATOM_SITES_ALT category.
A component of the identifier for the monomer at which this
segment of the domain begins.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer at which this
segment of the domain begins.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer at which this
segment of the domain begins.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
This data item is a pointer to attribute id in category struct_ncs_dom in the
STRUCT_NCS_DOM category.
A component of the identifier for the monomer at which this
segment of the domain ends.
This data item is a pointer to attribute id in category atom_sites_alt in the
ATOM_SITES_ALT category.
A component of the identifier for the monomer at which this
segment of the domain ends.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer at which this
segment of the domain ends.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the monomer at which this
segment of the domain ends.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
Data items in the STRUCT_NCS_ENS category record information
about ensembles of domains related by noncrystallographic
symmetry. The point group of the ensemble when taken as a
whole may be specified, as well as any special aspects of the
ensemble that require description.
Example 1 - based on laboratory records for the collagen-like
peptide, HYP-.
<mmCIF:struct_ncs_ensCategory>
<mmCIF:struct_ncs_ens id="en1">
<mmCIF:details> The ensemble represents the pseudo-twofold symmetry
between domains d1 and d2.</mmCIF:details>
</mmCIF:struct_ncs_ens>
</mmCIF:struct_ncs_ensCategory>
A description of special aspects of the ensemble.
The ensemble has a slight translation between
domains 1 and 4, but overall it can accurately
be described as point group 222
The point group of the ensemble of structural elements related by
one or more noncrystallographic symmetry operations. The
relationships need not be precise; this data item is intended
to give a rough description of the noncrystallographic symmetry
relationships.
3
422
non-proper
The value of attribute id in category struct_ncs_ens must uniquely identify a
record in the STRUCT_NCS_ENS list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the STRUCT_NCS_ENS_GEN category list domains
related by a noncrystallographic symmetry operation and
identify the operator.
Example 1 - based on laboratory records for the collagen-like
peptide, HYP-.
<mmCIF:struct_ncs_ens_genCategory>
<mmCIF:struct_ncs_ens_gen dom_id_1="d1" dom_id_2="d2" ens_id="en1" oper_id="ncsop1"></mmCIF:struct_ncs_ens_gen>
</mmCIF:struct_ncs_ens_genCategory>
The identifier for the domain that will remain unchanged by the
transformation operator.
This data item is a pointer to attribute id in category struct_ncs_dom in the
STRUCT_NCS_DOM category.
The identifier for the domain that will be transformed by
application of the transformation operator.
This data item is a pointer to attribute id in category struct_ncs_dom in the
STRUCT_NCS_DOM category.
This data item is a pointer to attribute id in category struct_ncs_ens in the
STRUCT_NCS_ENS category.
This data item is a pointer to attribute id in category struct_ncs_oper in the
STRUCT_NCS_OPER category.
Data items in the STRUCT_NCS_OPER category describe the
noncrystallographic symmetry operations.
Each operator is specified as a matrix and a subsequent
translation vector. Operators need not represent proper
rotations.
Example 1 - based on laboratory records for the protein NS1.
<mmCIF:struct_ncs_operCategory>
<mmCIF:struct_ncs_oper id="ncsop1">
<mmCIF:code>given</mmCIF:code>
<mmCIF:details> Matrix and translation vector for pseudo-twofold operation.</mmCIF:details>
<mmCIF:matrix11>0.247</mmCIF:matrix11>
<mmCIF:matrix12>0.935</mmCIF:matrix12>
<mmCIF:matrix13>0.256</mmCIF:matrix13>
<mmCIF:matrix21>0.929</mmCIF:matrix21>
<mmCIF:matrix22>0.153</mmCIF:matrix22>
<mmCIF:matrix23>0.337</mmCIF:matrix23>
<mmCIF:matrix31>0.276</mmCIF:matrix31>
<mmCIF:matrix32>0.321</mmCIF:matrix32>
<mmCIF:matrix33>-0.906</mmCIF:matrix33>
<mmCIF:vector1>-8.253</mmCIF:vector1>
<mmCIF:vector2>-11.743</mmCIF:vector2>
<mmCIF:vector3>-1.782</mmCIF:vector3>
</mmCIF:struct_ncs_oper>
</mmCIF:struct_ncs_operCategory>
A code to indicate whether this operator describes a
relationship between coordinates all of which are given in the
data block (in which case the value of code is 'given'), or
whether the operator is used to generate new coordinates from
those that are given in the data block (in which case the value
of code is 'generate').
A description of special aspects of the noncrystallographic
symmetry operator.
The operation is given as a precise threefold
rotation, despite the fact the best rms
fit between domain 1 and domain 2 yields a
rotation of 119.7 degrees and a translation
of 0.13 angstroms.
The [1][1] element of the 3x3 matrix component of a
noncrystallographic symmetry operation.
The [1][2] element of the 3x3 matrix component of a
noncrystallographic symmetry operation.
The [1][3] element of the 3x3 matrix component of a
noncrystallographic symmetry operation.
The [2][1] element of the 3x3 matrix component of a
noncrystallographic symmetry operation.
The [2][2] element of the 3x3 matrix component of a
noncrystallographic symmetry operation.
The [2][3] element of the 3x3 matrix component of a
noncrystallographic symmetry operation.
The [3][1] element of the 3x3 matrix component of a
noncrystallographic symmetry operation.
The [3][2] element of the 3x3 matrix component of a
noncrystallographic symmetry operation.
The [3][3] element of the 3x3 matrix component of a
noncrystallographic symmetry operation.
The [1] element of the three-element vector component of a
noncrystallographic symmetry operation.
The [2] element of the three-element vector component of a
noncrystallographic symmetry operation.
The [3] element of the three-element vector component of a
noncrystallographic symmetry operation.
The value of attribute id in category struct_ncs_oper must uniquely identify a
record in the STRUCT_NCS_OPER list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the STRUCT_REF category allow the author of a
data block to relate the entities or biological units
described in the data block to information archived in external
databases.
For references to the sequence of a polymer, the value of
the data item attribute seq_align in category struct_ref is used to indicate
whether the correspondence between the sequence of the entity
or biological unit in the data block and the sequence in the
referenced database entry is 'complete' or 'partial'. If
this value is 'partial', the region (or regions) of the
alignment may be delimited using data items in the
STRUCT_REF_SEQ category.
Similarly, the value of attribute seq_dif in category struct_ref is used to indicate
whether the two sequences contain point differences. If the
value is 'yes', the differences may be identified and annotated
using data items in the STRUCT_REF_SEQ_DIF category.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:struct_refCategory>
<mmCIF:struct_ref id="1">
<mmCIF:biol_id xsi:nil="true" />
<mmCIF:db_code>12345</mmCIF:db_code>
<mmCIF:db_name>Genbank</mmCIF:db_name>
<mmCIF:details xsi:nil="true" />
<mmCIF:entity_id>1</mmCIF:entity_id>
<mmCIF:seq_align>entire</mmCIF:seq_align>
<mmCIF:seq_dif>yes</mmCIF:seq_dif>
</mmCIF:struct_ref>
<mmCIF:struct_ref id="2">
<mmCIF:biol_id>2</mmCIF:biol_id>
<mmCIF:db_code>1ABC</mmCIF:db_code>
<mmCIF:db_name>PDB</mmCIF:db_name>
<mmCIF:details> The structure of the closely related compound,
isobutyryl-pepstatin (pepstatin A) in complex with
rhizopuspepsin</mmCIF:details>
<mmCIF:entity_id xsi:nil="true" />
<mmCIF:seq_align xsi:nil="true" />
<mmCIF:seq_dif xsi:nil="true" />
</mmCIF:struct_ref>
</mmCIF:struct_refCategory>
This data item is a pointer to attribute id in category struct_biol in the
STRUCT_BIOL category.
The code for this entity or biological unit or for a closely
related entity or biological unit in the named database.
1ABC
ABCDEF
The name of the database containing reference information about
this entity or biological unit.
PDB
CSD
Genbank
A description of special aspects of the relationship between
the entity or biological unit described in the data block and
that in the referenced database entry.
This data item is a pointer to attribute id in category entity in the ENTITY category.
A flag to indicate the scope of the alignment between the
sequence of the entity or biological unit described in the data
block and that in the referenced database entry. 'entire'
indicates that alignment spans the entire length of both
sequences (although point differences may occur and can be
annotated using the data items in the STRUCT_REF_SEQ_DIF
category). 'partial' indicates a partial alignment. The region
(or regions) of the alignment may be delimited using data items
in the STRUCT_REF_SEQ category. This data item may also take
the value '.', indicating that the reference is not to a
sequence.
A flag to indicate the presence ('yes') or absence ('no') of
point differences between the sequence of the entity or
biological unit described in the data block and that in
the referenced database entry. This data item may also
take the value '.', indicating that the reference is not to a
sequence.
The value of attribute id in category struct_ref must uniquely identify a record
in the STRUCT_REF list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the STRUCT_REF_SEQ category provide a mechanism
for indicating and annotating a region (or regions) of alignment
between the sequence of an entity or biological unit described
in the data block and the sequence in the referenced database
entry.
Example 1 - based on the sequence alignment of CHER from M. xantus
(36 to 288) and CHER from S. typhimurium (18 to 276).
<mmCIF:struct_ref_seqCategory>
<mmCIF:struct_ref_seq align_id="alg1">
<mmCIF:db_align_beg>18</mmCIF:db_align_beg>
<mmCIF:db_align_end>276</mmCIF:db_align_end>
<mmCIF:details> The alignment contains 3 gaps larger than 2 residues</mmCIF:details>
<mmCIF:ref_id>seqdb1</mmCIF:ref_id>
<mmCIF:seq_align_beg>36</mmCIF:seq_align_beg>
<mmCIF:seq_align_end>288</mmCIF:seq_align_end>
</mmCIF:struct_ref_seq>
</mmCIF:struct_ref_seqCategory>
The sequence position in the referenced database entry
at which the alignment begins.
The sequence position in the referenced database entry
at which the alignment ends.
A description of special aspects of the sequence alignment.
This data item is a pointer to attribute id in category struct_ref in the
STRUCT_REF category.
The sequence position in the entity or biological unit described
in the data block at which the alignment begins.
This data item is a pointer to attribute num in category entity_poly_seq in the
ENTITY_POLY_SEQ category.
The sequence position in the entity or biological unit described
in the data block at which the alignment ends.
This data item is a pointer to attribute num in category entity_poly_seq in the
ENTITY_POLY_SEQ category.
The value of attribute align_id in category struct_ref_seq must uniquely identify a
record in the STRUCT_REF_SEQ list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the STRUCT_REF_SEQ_DIF category provide a
mechanism for indicating and annotating point differences
between the sequence of the entity or biological unit described
in the data block and the sequence of the referenced database
entry.
Example 1 - based on laboratory records for CAP-DNA complex.
<mmCIF:struct_ref_seq_difCategory>
<mmCIF:struct_ref_seq_dif align_id="algn2" seq_num="181">
<mmCIF:db_mon_id>GLU</mmCIF:db_mon_id>
<mmCIF:details> A point mutation was introduced in the CAP at position 181
substituting PHE for GLU.</mmCIF:details>
<mmCIF:mon_id>PHE</mmCIF:mon_id>
</mmCIF:struct_ref_seq_dif>
</mmCIF:struct_ref_seq_difCategory>
The monomer type found at this position in the referenced
database entry.
This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP
category.
A description of special aspects of the point differences
between the sequence of the entity or biological unit described
in the data block and that in the referenced database entry.
The monomer type found at this position in the sequence of
the entity or biological unit described in this data block.
This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP
category.
This data item is a pointer to attribute align_id in category struct_ref_seq in
the STRUCT_REF_SEQ category.
This data item is a pointer to attribute num in category entity_poly_seq in the
ENTITY_POLY_SEQ category.
Data items in the STRUCT_SHEET category record details about
the beta-sheets.
Example 1 - simple beta-barrel.
N O N O N O N O N O N O
10--11--12--13--14--15--16--17--18--19--20 strand_a
N O N O N O N O N O
/ \ / \ / \ / \ / \
N O N O N O N O N O N O
30--31--32--33--34--35--36--37--38--39--40 strand_b
N O N O N O N O N O
/ \ / \ / \ / \ / \
N O N O N O N O N O N O
50--51--52--53--54--55--56--57--58--59--60 strand_c
N O N O N O N O N O
/ \ / \ / \ / \ / \
N O N O N O N O N O N O
70--71--72--73--74--75--76--77--78--79--80 strand_d
N O N O N O N O N O
/ \ / \ / \ / \ / \
N O N O N O N O N O N O
90--91--92--93--94--95--96--97--98--99-100 strand_e
N O N O N O N O N O
/ \ / \ / \ / \ / \
N O N O N O N O N O N O
110-111-112-113-114-115-116-117-118-119-120 strand_f
N O N O N O N O N O
/ \ / \ / \ / \ / \
N O N O N O N O N O N O
130-131-132-133-134-135-136-137-138-139-140 strand_g
N O N O N O N O N O
/ \ / \ / \ / \ / \
N O N O N O N O N O N O
150-151-152-153-154-155-156-157-158-159-160 strand_h
N O N O N O N O N O
/ \ / \ / \ / \ / \
<mmCIF:struct_sheetCategory>
<mmCIF:struct_sheet id="sheet_1">
<mmCIF:details xsi:nil="true" />
<mmCIF:number_strands>8</mmCIF:number_strands>
<mmCIF:type>beta-barrel</mmCIF:type>
</mmCIF:struct_sheet>
</mmCIF:struct_sheetCategory>
Example 2 - five stranded mixed-sense sheet with one two-piece strand.
N O N O N O N O
-10--11--12--13--14--15--16--17--18-> strand_a
N O N O N O N O N O
| | | | | | | | | |
O N O N O N O N O N
<-119-118-117-116-115-114-113-112-111-110- strand_b
O N O N O N O N O N
\ / \ / \ / \ / \
O N O N O N O N O N O N
<-41--40--39--38--37--36--35--34--33--32--31--30- strand_c
O N O N O N O N O N O N
| | | | | | | | | | | |
N O N O N O N O N O N O
strand_d1 -50--51--52-> -90--91--92--93--95--95--96--97-> strand_d2
N O N O N O N O N O
| | | | | | | | | | | |
O N O N O N O N O N O N
<-80--79--78--77--76--75--74--73--72--71--70- strand_e
O N O N O N O N O N
<mmCIF:struct_sheetCategory>
<mmCIF:struct_sheet id="sheet_2">
<mmCIF:details>strand_d is in two pieces</mmCIF:details>
<mmCIF:number_strands>5</mmCIF:number_strands>
<mmCIF:type>five stranded, mixed-sense</mmCIF:type>
</mmCIF:struct_sheet>
</mmCIF:struct_sheetCategory>
A description of special aspects of the beta-sheet.
The number of strands in the sheet. If a given range of residues
bulges out from the strands, it is still counted as one strand.
If a strand is composed of two different regions of polypeptide,
it is still counted as one strand, as long as the proper hydrogen-
bonding connections are made to adjacent strands.
A simple descriptor for the type of the sheet.
jelly-roll
Rossmann fold
beta barrel
The value of attribute id in category struct_sheet must uniquely identify a record in
the STRUCT_SHEET list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the STRUCT_SHEET_HBOND category record details
about the hydrogen bonding between residue ranges in a beta-
sheet. It is necessary to treat hydrogen bonding independently
of the designation of ranges, because the hydrogen bonding may
begin in different places for the interactions of a given strand
with the one preceding it and the one following it in the sheet.
Example 1 - simple beta-barrel.
<mmCIF:struct_sheet_hbondCategory>
<mmCIF:struct_sheet_hbond range_id_1="strand_a" range_id_2="strand_b" sheet_id="sheet_1">
<mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id>
<mmCIF:range_1_beg_label_seq_id>11</mmCIF:range_1_beg_label_seq_id>
<mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id>
<mmCIF:range_1_end_label_seq_id>19</mmCIF:range_1_end_label_seq_id>
<mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id>
<mmCIF:range_2_beg_label_seq_id>30</mmCIF:range_2_beg_label_seq_id>
<mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id>
<mmCIF:range_2_end_label_seq_id>40</mmCIF:range_2_end_label_seq_id>
</mmCIF:struct_sheet_hbond>
<mmCIF:struct_sheet_hbond range_id_1="strand_b" range_id_2="strand_c" sheet_id="sheet_1">
<mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id>
<mmCIF:range_1_beg_label_seq_id>31</mmCIF:range_1_beg_label_seq_id>
<mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id>
<mmCIF:range_1_end_label_seq_id>39</mmCIF:range_1_end_label_seq_id>
<mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id>
<mmCIF:range_2_beg_label_seq_id>50</mmCIF:range_2_beg_label_seq_id>
<mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id>
<mmCIF:range_2_end_label_seq_id>60</mmCIF:range_2_end_label_seq_id>
</mmCIF:struct_sheet_hbond>
<mmCIF:struct_sheet_hbond range_id_1="strand_c" range_id_2="strand_d" sheet_id="sheet_1">
<mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id>
<mmCIF:range_1_beg_label_seq_id>51</mmCIF:range_1_beg_label_seq_id>
<mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id>
<mmCIF:range_1_end_label_seq_id>59</mmCIF:range_1_end_label_seq_id>
<mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id>
<mmCIF:range_2_beg_label_seq_id>70</mmCIF:range_2_beg_label_seq_id>
<mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id>
<mmCIF:range_2_end_label_seq_id>80</mmCIF:range_2_end_label_seq_id>
</mmCIF:struct_sheet_hbond>
<mmCIF:struct_sheet_hbond range_id_1="strand_d" range_id_2="strand_e" sheet_id="sheet_1">
<mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id>
<mmCIF:range_1_beg_label_seq_id>71</mmCIF:range_1_beg_label_seq_id>
<mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id>
<mmCIF:range_1_end_label_seq_id>89</mmCIF:range_1_end_label_seq_id>
<mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id>
<mmCIF:range_2_beg_label_seq_id>90</mmCIF:range_2_beg_label_seq_id>
<mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id>
<mmCIF:range_2_end_label_seq_id>100</mmCIF:range_2_end_label_seq_id>
</mmCIF:struct_sheet_hbond>
<mmCIF:struct_sheet_hbond range_id_1="strand_e" range_id_2="strand_f" sheet_id="sheet_1">
<mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id>
<mmCIF:range_1_beg_label_seq_id>91</mmCIF:range_1_beg_label_seq_id>
<mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id>
<mmCIF:range_1_end_label_seq_id>99</mmCIF:range_1_end_label_seq_id>
<mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id>
<mmCIF:range_2_beg_label_seq_id>110</mmCIF:range_2_beg_label_seq_id>
<mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id>
<mmCIF:range_2_end_label_seq_id>120</mmCIF:range_2_end_label_seq_id>
</mmCIF:struct_sheet_hbond>
<mmCIF:struct_sheet_hbond range_id_1="strand_f" range_id_2="strand_g" sheet_id="sheet_1">
<mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id>
<mmCIF:range_1_beg_label_seq_id>111</mmCIF:range_1_beg_label_seq_id>
<mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id>
<mmCIF:range_1_end_label_seq_id>119</mmCIF:range_1_end_label_seq_id>
<mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id>
<mmCIF:range_2_beg_label_seq_id>130</mmCIF:range_2_beg_label_seq_id>
<mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id>
<mmCIF:range_2_end_label_seq_id>140</mmCIF:range_2_end_label_seq_id>
</mmCIF:struct_sheet_hbond>
<mmCIF:struct_sheet_hbond range_id_1="strand_g" range_id_2="strand_h" sheet_id="sheet_1">
<mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id>
<mmCIF:range_1_beg_label_seq_id>131</mmCIF:range_1_beg_label_seq_id>
<mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id>
<mmCIF:range_1_end_label_seq_id>139</mmCIF:range_1_end_label_seq_id>
<mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id>
<mmCIF:range_2_beg_label_seq_id>150</mmCIF:range_2_beg_label_seq_id>
<mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id>
<mmCIF:range_2_end_label_seq_id>160</mmCIF:range_2_end_label_seq_id>
</mmCIF:struct_sheet_hbond>
<mmCIF:struct_sheet_hbond range_id_1="strand_h" range_id_2="strand_a" sheet_id="sheet_1">
<mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id>
<mmCIF:range_1_beg_label_seq_id>151</mmCIF:range_1_beg_label_seq_id>
<mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id>
<mmCIF:range_1_end_label_seq_id>159</mmCIF:range_1_end_label_seq_id>
<mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id>
<mmCIF:range_2_beg_label_seq_id>10</mmCIF:range_2_beg_label_seq_id>
<mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id>
<mmCIF:range_2_end_label_seq_id>180</mmCIF:range_2_end_label_seq_id>
</mmCIF:struct_sheet_hbond>
</mmCIF:struct_sheet_hbondCategory>
Example 2 - five stranded mixed-sense sheet with one two-piece strand.
<mmCIF:struct_sheet_hbondCategory>
<mmCIF:struct_sheet_hbond range_id_1="strand_a" range_id_2="strand_b" sheet_id="sheet_2">
<mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id>
<mmCIF:range_1_beg_label_seq_id>20</mmCIF:range_1_beg_label_seq_id>
<mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id>
<mmCIF:range_1_end_label_seq_id>18</mmCIF:range_1_end_label_seq_id>
<mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id>
<mmCIF:range_2_beg_label_seq_id>119</mmCIF:range_2_beg_label_seq_id>
<mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id>
<mmCIF:range_2_end_label_seq_id>111</mmCIF:range_2_end_label_seq_id>
</mmCIF:struct_sheet_hbond>
<mmCIF:struct_sheet_hbond range_id_1="strand_b" range_id_2="strand_c" sheet_id="sheet_2">
<mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id>
<mmCIF:range_1_beg_label_seq_id>110</mmCIF:range_1_beg_label_seq_id>
<mmCIF:range_1_end_label_atom_id>N</mmCIF:range_1_end_label_atom_id>
<mmCIF:range_1_end_label_seq_id>118</mmCIF:range_1_end_label_seq_id>
<mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id>
<mmCIF:range_2_beg_label_seq_id>33</mmCIF:range_2_beg_label_seq_id>
<mmCIF:range_2_end_label_atom_id>O</mmCIF:range_2_end_label_atom_id>
<mmCIF:range_2_end_label_seq_id>41</mmCIF:range_2_end_label_seq_id>
</mmCIF:struct_sheet_hbond>
<mmCIF:struct_sheet_hbond range_id_1="strand_c" range_id_2="strand_d1" sheet_id="sheet_2">
<mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id>
<mmCIF:range_1_beg_label_seq_id>38</mmCIF:range_1_beg_label_seq_id>
<mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id>
<mmCIF:range_1_end_label_seq_id>40</mmCIF:range_1_end_label_seq_id>
<mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id>
<mmCIF:range_2_beg_label_seq_id>52</mmCIF:range_2_beg_label_seq_id>
<mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id>
<mmCIF:range_2_end_label_seq_id>50</mmCIF:range_2_end_label_seq_id>
</mmCIF:struct_sheet_hbond>
<mmCIF:struct_sheet_hbond range_id_1="strand_c" range_id_2="strand_d2" sheet_id="sheet_2">
<mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id>
<mmCIF:range_1_beg_label_seq_id>30</mmCIF:range_1_beg_label_seq_id>
<mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id>
<mmCIF:range_1_end_label_seq_id>36</mmCIF:range_1_end_label_seq_id>
<mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id>
<mmCIF:range_2_beg_label_seq_id>96</mmCIF:range_2_beg_label_seq_id>
<mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id>
<mmCIF:range_2_end_label_seq_id>90</mmCIF:range_2_end_label_seq_id>
</mmCIF:struct_sheet_hbond>
<mmCIF:struct_sheet_hbond range_id_1="strand_d1" range_id_2="strand_e" sheet_id="sheet_2">
<mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id>
<mmCIF:range_1_beg_label_seq_id>51</mmCIF:range_1_beg_label_seq_id>
<mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id>
<mmCIF:range_1_end_label_seq_id>51</mmCIF:range_1_end_label_seq_id>
<mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id>
<mmCIF:range_2_beg_label_seq_id>80</mmCIF:range_2_beg_label_seq_id>
<mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id>
<mmCIF:range_2_end_label_seq_id>80</mmCIF:range_2_end_label_seq_id>
</mmCIF:struct_sheet_hbond>
<mmCIF:struct_sheet_hbond range_id_1="strand_d2" range_id_2="strand_e" sheet_id="sheet_2">
<mmCIF:range_1_beg_label_atom_id>N</mmCIF:range_1_beg_label_atom_id>
<mmCIF:range_1_beg_label_seq_id>91</mmCIF:range_1_beg_label_seq_id>
<mmCIF:range_1_end_label_atom_id>O</mmCIF:range_1_end_label_atom_id>
<mmCIF:range_1_end_label_seq_id>97</mmCIF:range_1_end_label_seq_id>
<mmCIF:range_2_beg_label_atom_id>O</mmCIF:range_2_beg_label_atom_id>
<mmCIF:range_2_beg_label_seq_id>76</mmCIF:range_2_beg_label_seq_id>
<mmCIF:range_2_end_label_atom_id>N</mmCIF:range_2_end_label_atom_id>
<mmCIF:range_2_end_label_seq_id>70</mmCIF:range_2_end_label_seq_id>
</mmCIF:struct_sheet_hbond>
</mmCIF:struct_sheet_hbondCategory>
A component of the identifier for the residue for the first
partner of the first hydrogen bond between two residue ranges
in a sheet.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the first
partner of the first hydrogen bond between two residue ranges
in a sheet.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the first
partner of the first hydrogen bond between two residue ranges
in a sheet.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the first
partner of the first hydrogen bond between two residue ranges
in a sheet.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the first
partner of the last hydrogen bond between two residue ranges in
a sheet.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the first
partner of the last hydrogen bond between two residue ranges in
a sheet.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the first
partner of the last hydrogen bond between two residue ranges in
a sheet.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the first
partner of the last hydrogen bond between two residue ranges in
a sheet.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the second
partner of the first hydrogen bond between two residue ranges
in a sheet.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the second
partner of the first hydrogen bond between two residue ranges
in a sheet.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the second
partner of the first hydrogen bond between two residue ranges
in a sheet.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the second
partner of the first hydrogen bond between two residue ranges
in a sheet.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the second
partner of the last hydrogen bond between two residue ranges in
a sheet.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the second
partner of the last hydrogen bond between two residue ranges in
a sheet.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the second
partner of the last hydrogen bond between two residue ranges in
a sheet.
This data item is a pointer to attribute label_atom_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue for the second
partner of the last hydrogen bond between two residue ranges in
a sheet.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
This data item is a pointer to attribute id in category struct_sheet_range in
the STRUCT_SHEET_RANGE category.
This data item is a pointer to attribute id in category struct_sheet_range in
the STRUCT_SHEET_RANGE category.
This data item is a pointer to attribute id in category struct_sheet in the
STRUCT_SHEET category.
Data items in the STRUCT_SHEET_ORDER category record details
about the order of the residue ranges that form a beta-sheet.
All order links are pairwise and the specified pairs are
assumed to be adjacent to one another in the sheet. These data
items are an alternative to the STRUCT_SHEET_TOPOLOGY data
items and they allow all manner of sheets to be described.
Example 1 - simple beta-barrel.
<mmCIF:struct_sheet_orderCategory>
<mmCIF:struct_sheet_order range_id_1="strand_a" range_id_2="strand_b" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_order>
<mmCIF:struct_sheet_order range_id_1="strand_b" range_id_2="strand_c" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_order>
<mmCIF:struct_sheet_order range_id_1="strand_c" range_id_2="strand_d" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_order>
<mmCIF:struct_sheet_order range_id_1="strand_d" range_id_2="strand_e" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_order>
<mmCIF:struct_sheet_order range_id_1="strand_e" range_id_2="strand_f" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_order>
<mmCIF:struct_sheet_order range_id_1="strand_f" range_id_2="strand_g" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_order>
<mmCIF:struct_sheet_order range_id_1="strand_g" range_id_2="strand_h" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_order>
<mmCIF:struct_sheet_order range_id_1="strand_h" range_id_2="strand_a" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_order>
</mmCIF:struct_sheet_orderCategory>
Example 2 - five stranded mixed-sense sheet with one two-piece strand.
<mmCIF:struct_sheet_orderCategory>
<mmCIF:struct_sheet_order range_id_1="strand_a" range_id_2="strand_b" sheet_id="sheet_2">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>anti-parallel</mmCIF:sense>
</mmCIF:struct_sheet_order>
<mmCIF:struct_sheet_order range_id_1="strand_b" range_id_2="strand_c" sheet_id="sheet_2">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_order>
<mmCIF:struct_sheet_order range_id_1="strand_c" range_id_2="strand_d1" sheet_id="sheet_2">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>anti-parallel</mmCIF:sense>
</mmCIF:struct_sheet_order>
<mmCIF:struct_sheet_order range_id_1="strand_c" range_id_2="strand_d2" sheet_id="sheet_2">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>anti-parallel</mmCIF:sense>
</mmCIF:struct_sheet_order>
<mmCIF:struct_sheet_order range_id_1="strand_d1" range_id_2="strand_e" sheet_id="sheet_2">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>anti-parallel</mmCIF:sense>
</mmCIF:struct_sheet_order>
<mmCIF:struct_sheet_order range_id_1="strand_d2" range_id_2="strand_e" sheet_id="sheet_2">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>anti-parallel</mmCIF:sense>
</mmCIF:struct_sheet_order>
</mmCIF:struct_sheet_orderCategory>
Designates the relative position in the sheet, plus or minus, of
the second residue range to the first.
A flag to indicate whether the two designated residue ranges are
parallel or antiparallel to one another.
This data item is a pointer to attribute id in category struct_sheet_range in
the STRUCT_SHEET_RANGE category.
This data item is a pointer to attribute id in category struct_sheet_range in
the STRUCT_SHEET_RANGE category.
This data item is a pointer to attribute id in category struct_sheet in the
STRUCT_SHEET category.
Data items in the STRUCT_SHEET_RANGE category record details
about the residue ranges that form a beta-sheet. Residues are
included in a range if they made beta-sheet-type hydrogen-bonding
interactions with at least one adjacent strand and if there are
at least two residues in the range.
Example 1 - simple beta-barrel.
<mmCIF:struct_sheet_rangeCategory>
<mmCIF:struct_sheet_range id="strand_a" sheet_id="sheet_1">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>20</mmCIF:beg_label_seq_id>
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>30</mmCIF:end_label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_sheet_range>
<mmCIF:struct_sheet_range id="strand_b" sheet_id="sheet_1">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>40</mmCIF:beg_label_seq_id>
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>50</mmCIF:end_label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_sheet_range>
<mmCIF:struct_sheet_range id="strand_c" sheet_id="sheet_1">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>60</mmCIF:beg_label_seq_id>
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>70</mmCIF:end_label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_sheet_range>
<mmCIF:struct_sheet_range id="strand_d" sheet_id="sheet_1">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>80</mmCIF:beg_label_seq_id>
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>90</mmCIF:end_label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_sheet_range>
<mmCIF:struct_sheet_range id="strand_e" sheet_id="sheet_1">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>100</mmCIF:beg_label_seq_id>
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>110</mmCIF:end_label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_sheet_range>
<mmCIF:struct_sheet_range id="strand_f" sheet_id="sheet_1">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>120</mmCIF:beg_label_seq_id>
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>130</mmCIF:end_label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_sheet_range>
<mmCIF:struct_sheet_range id="strand_g" sheet_id="sheet_1">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>140</mmCIF:beg_label_seq_id>
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>150</mmCIF:end_label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_sheet_range>
<mmCIF:struct_sheet_range id="strand_h" sheet_id="sheet_1">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>160</mmCIF:beg_label_seq_id>
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>170</mmCIF:end_label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_sheet_range>
</mmCIF:struct_sheet_rangeCategory>
Example 2 - five stranded mixed-sense sheet with one two-piece strand.
<mmCIF:struct_sheet_rangeCategory>
<mmCIF:struct_sheet_range id="strand_a" sheet_id="sheet_2">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>10</mmCIF:beg_label_seq_id>
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>18</mmCIF:end_label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_sheet_range>
<mmCIF:struct_sheet_range id="strand_b" sheet_id="sheet_2">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>110</mmCIF:beg_label_seq_id>
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>119</mmCIF:end_label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_sheet_range>
<mmCIF:struct_sheet_range id="strand_c" sheet_id="sheet_2">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>30</mmCIF:beg_label_seq_id>
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>41</mmCIF:end_label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_sheet_range>
<mmCIF:struct_sheet_range id="strand_d1" sheet_id="sheet_2">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>50</mmCIF:beg_label_seq_id>
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>52</mmCIF:end_label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_sheet_range>
<mmCIF:struct_sheet_range id="strand_d2" sheet_id="sheet_2">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>90</mmCIF:beg_label_seq_id>
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>97</mmCIF:end_label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_sheet_range>
<mmCIF:struct_sheet_range id="strand_e" sheet_id="sheet_2">
<mmCIF:beg_label_asym_id>A</mmCIF:beg_label_asym_id>
<mmCIF:beg_label_comp_id>ala</mmCIF:beg_label_comp_id>
<mmCIF:beg_label_seq_id>70</mmCIF:beg_label_seq_id>
<mmCIF:end_label_asym_id>A</mmCIF:end_label_asym_id>
<mmCIF:end_label_comp_id>ala</mmCIF:end_label_comp_id>
<mmCIF:end_label_seq_id>80</mmCIF:end_label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_sheet_range>
</mmCIF:struct_sheet_rangeCategory>
A component of the identifier for the residue at which the
beta-sheet range begins.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue at which the
beta-sheet range begins.
This data item is a pointer to attribute auth_comp_id in category atom_site in
the ATOM_SITE category.
A component of the identifier for the residue at which the
beta-sheet range begins.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue at which the
beta-sheet range begins.
This data item is a pointer to attribute id in category struct_asym in the
STRUCT_ASYM category.
A component of the identifier for the residue at which the
beta-sheet range begins.
This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP
category.
A component of the identifier for the residue at which the
beta-sheet range begins.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue at which the
beta-sheet range ends.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue at which the
beta-sheet range ends.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue at which the
beta-sheet range ends.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for the residue at which the
beta-sheet range ends.
This data item is a pointer to attribute id in category struct_asym in the
STRUCT_ASYM category.
A component of the identifier for the residue at which the
beta-sheet range ends.
This data item is a pointer to attribute id in category chem_comp in the CHEM_COMP
category.
A component of the identifier for the residue at which the
beta-sheet range ends.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
Describes the symmetry operation that should be applied to the
residues delimited by the start and end designators in
order to generate the appropriate strand in this sheet.
The value of attribute id in category struct_sheet_range must uniquely identify a
range in a given sheet in the STRUCT_SHEET_RANGE list.
Note that this item need not be a number; it can be any unique
identifier.
This data item is a pointer to attribute id in category struct_sheet in the
STRUCT_SHEET category.
Data items in the STRUCT_SHEET_TOPOLOGY category record details
about the topology of the residue ranges that form a beta-sheet.
All topology links are pairwise and the specified pairs are
assumed to be successive in the amino-acid sequence. These
data items are useful in describing various simple and complex
folds, but they become inadequate when the strands in the sheet
come from more than one chain. The
STRUCT_SHEET_ORDER data items can be used to describe
single- and multiple-chain-containing sheets.
Example 1 - simple beta-barrel.
<mmCIF:struct_sheet_topologyCategory>
<mmCIF:struct_sheet_topology range_id_1="strand_a" range_id_2="strand_b" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_topology>
<mmCIF:struct_sheet_topology range_id_1="strand_b" range_id_2="strand_c" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_topology>
<mmCIF:struct_sheet_topology range_id_1="strand_c" range_id_2="strand_d" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_topology>
<mmCIF:struct_sheet_topology range_id_1="strand_d" range_id_2="strand_e" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_topology>
<mmCIF:struct_sheet_topology range_id_1="strand_e" range_id_2="strand_f" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_topology>
<mmCIF:struct_sheet_topology range_id_1="strand_f" range_id_2="strand_g" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_topology>
<mmCIF:struct_sheet_topology range_id_1="strand_g" range_id_2="strand_h" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_topology>
<mmCIF:struct_sheet_topology range_id_1="strand_h" range_id_2="strand_a" sheet_id="sheet_1">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>parallel</mmCIF:sense>
</mmCIF:struct_sheet_topology>
</mmCIF:struct_sheet_topologyCategory>
Example 2 - five stranded mixed-sense sheet with one two-piece strand.
<mmCIF:struct_sheet_topologyCategory>
<mmCIF:struct_sheet_topology range_id_1="strand_a" range_id_2="strand_c" sheet_id="sheet_2">
<mmCIF:offset>+2</mmCIF:offset>
<mmCIF:sense>anti-parallel</mmCIF:sense>
</mmCIF:struct_sheet_topology>
<mmCIF:struct_sheet_topology range_id_1="strand_c" range_id_2="strand_d1" sheet_id="sheet_2">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>anti-parallel</mmCIF:sense>
</mmCIF:struct_sheet_topology>
<mmCIF:struct_sheet_topology range_id_1="strand_d1" range_id_2="strand_e" sheet_id="sheet_2">
<mmCIF:offset>+1</mmCIF:offset>
<mmCIF:sense>anti-parallel</mmCIF:sense>
</mmCIF:struct_sheet_topology>
<mmCIF:struct_sheet_topology range_id_1="strand_e" range_id_2="strand_d2" sheet_id="sheet_2">
<mmCIF:offset>-1</mmCIF:offset>
<mmCIF:sense>anti-parallel</mmCIF:sense>
</mmCIF:struct_sheet_topology>
<mmCIF:struct_sheet_topology range_id_1="strand_d2" range_id_2="strand_b" sheet_id="sheet_2">
<mmCIF:offset>-2</mmCIF:offset>
<mmCIF:sense>anti-parallel</mmCIF:sense>
</mmCIF:struct_sheet_topology>
</mmCIF:struct_sheet_topologyCategory>
Designates the relative position in the sheet, plus or minus, of
the second residue range to the first.
A flag to indicate whether the two designated residue ranges are
parallel or antiparallel to one another.
This data item is a pointer to attribute id in category struct_sheet_range in
the STRUCT_SHEET_RANGE category.
This data item is a pointer to attribute id in category struct_sheet_range in
the STRUCT_SHEET_RANGE category.
This data item is a pointer to attribute id in category struct_sheet in the
STRUCT_SHEET category.
Data items in the STRUCT_SITE category record details about
portions of the structure that contribute to structurally
relevant sites (e.g. active sites, substrate-binding subsites,
metal-coordination sites).
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:struct_siteCategory>
<mmCIF:struct_site id="P2 site C">
<mmCIF:details> residues with a contact < 3.7 \%A to an atom in the P2
moiety of the inhibitor in the conformation with
_struct_asym.id = C</mmCIF:details>
</mmCIF:struct_site>
<mmCIF:struct_site id="P2 site D">
<mmCIF:details> residues with a contact < 3.7 \%A to an atom in the P1
moiety of the inhibitor in the conformation with
_struct_asym.id = D)</mmCIF:details>
</mmCIF:struct_site>
</mmCIF:struct_siteCategory>
A description of special aspects of the site.
The value of attribute id in category struct_site must uniquely identify a record in
the STRUCT_SITE list.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the STRUCT_SITE_GEN category record details about
the generation of portions of the structure that contribute to
structurally relevant sites.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:struct_site_genCategory>
<mmCIF:struct_site_gen id="1" site_id="1">
<mmCIF:details xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_comp_id>VAL</mmCIF:label_comp_id>
<mmCIF:label_seq_id>32</mmCIF:label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_site_gen>
<mmCIF:struct_site_gen id="2" site_id="1">
<mmCIF:details xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_comp_id>ILE</mmCIF:label_comp_id>
<mmCIF:label_seq_id>47</mmCIF:label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_site_gen>
<mmCIF:struct_site_gen id="3" site_id="1">
<mmCIF:details xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_comp_id>VAL</mmCIF:label_comp_id>
<mmCIF:label_seq_id>82</mmCIF:label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_site_gen>
<mmCIF:struct_site_gen id="4" site_id="1">
<mmCIF:details xsi:nil="true" />
<mmCIF:label_asym_id>A</mmCIF:label_asym_id>
<mmCIF:label_comp_id>ILE</mmCIF:label_comp_id>
<mmCIF:label_seq_id>84</mmCIF:label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_site_gen>
<mmCIF:struct_site_gen id="5" site_id="2">
<mmCIF:details xsi:nil="true" />
<mmCIF:label_asym_id>B</mmCIF:label_asym_id>
<mmCIF:label_comp_id>VAL</mmCIF:label_comp_id>
<mmCIF:label_seq_id>232</mmCIF:label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_site_gen>
<mmCIF:struct_site_gen id="6" site_id="2">
<mmCIF:details xsi:nil="true" />
<mmCIF:label_asym_id>B</mmCIF:label_asym_id>
<mmCIF:label_comp_id>ILE</mmCIF:label_comp_id>
<mmCIF:label_seq_id>247</mmCIF:label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_site_gen>
<mmCIF:struct_site_gen id="7" site_id="2">
<mmCIF:details xsi:nil="true" />
<mmCIF:label_asym_id>B</mmCIF:label_asym_id>
<mmCIF:label_comp_id>VAL</mmCIF:label_comp_id>
<mmCIF:label_seq_id>282</mmCIF:label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_site_gen>
<mmCIF:struct_site_gen id="8" site_id="2">
<mmCIF:details xsi:nil="true" />
<mmCIF:label_asym_id>B</mmCIF:label_asym_id>
<mmCIF:label_comp_id>ILE</mmCIF:label_comp_id>
<mmCIF:label_seq_id>284</mmCIF:label_seq_id>
<mmCIF:symmetry>1_555</mmCIF:symmetry>
</mmCIF:struct_site_gen>
</mmCIF:struct_site_genCategory>
A component of the identifier for participants in the site.
This data item is a pointer to attribute auth_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for participants in the site.
This data item is a pointer to attribute auth_atom_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for participants in the site.
This data item is a pointer to attribute auth_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for participants in the site.
This data item is a pointer to attribute auth_seq_id in category atom_site in the
ATOM_SITE category.
A description of special aspects of the symmetry generation of
this portion of the structural site.
The zinc atom lies on a special position;
application of symmetry elements to generate
the insulin hexamer will generate excess zinc
atoms, which must be removed by hand.
A component of the identifier for participants in the site.
This data item is a pointer to attribute id in category atom_sites_alt in the
ATOM_SITES_ALT category.
A component of the identifier for participants in the site.
This data item is a pointer to attribute label_asym_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for participants in the site.
This data item is a pointer to attribute atom_id in category chem_comp_atom in the
CHEM_COMP_ATOM category.
A component of the identifier for participants in the site.
This data item is a pointer to attribute label_comp_id in category atom_site in the
ATOM_SITE category.
A component of the identifier for participants in the site.
This data item is a pointer to attribute label_seq_id in category atom_site in the
ATOM_SITE category.
Describes the symmetry operation that should be applied to the
atom set specified by attribute label* in category struct_site_gen to generate a
portion of the site.
4th symmetry operation applied
4
7th symm. posn.; +a on x; -b on y
7_645
The value of attribute id in category struct_site_gen must uniquely identify a record
in the STRUCT_SITE_GEN list.
Note that this item need not be a number; it can be any unique
identifier.
This data item is a pointer to attribute id in category struct_site in the STRUCT_SITE
category.
Data items in the STRUCT_SITE_KEYWORDS category record
keywords describing the site.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:struct_site_keywordsCategory>
<mmCIF:struct_site_keywords site_id="P2 site C" text="binding site"></mmCIF:struct_site_keywords>
<mmCIF:struct_site_keywords site_id="P2 site C" text="binding pocket"></mmCIF:struct_site_keywords>
<mmCIF:struct_site_keywords site_id="P2 site C" text="P2 site"></mmCIF:struct_site_keywords>
<mmCIF:struct_site_keywords site_id="P2 site C" text="P2 pocket"></mmCIF:struct_site_keywords>
<mmCIF:struct_site_keywords site_id="P2 site D" text="binding site"></mmCIF:struct_site_keywords>
<mmCIF:struct_site_keywords site_id="P2 site D" text="binding pocket"></mmCIF:struct_site_keywords>
<mmCIF:struct_site_keywords site_id="P2 site D" text="P2 site"></mmCIF:struct_site_keywords>
<mmCIF:struct_site_keywords site_id="P2 site D" text="P2 pocket"></mmCIF:struct_site_keywords>
</mmCIF:struct_site_keywordsCategory>
This data item is a pointer to attribute id in category struct_site in the STRUCT_SITE
category.
Keywords describing this site.
active site
binding pocket
Ca coordination
Data items in the STRUCT_SITE_VIEW category record details
about how to draw and annotate an informative view of the
site.
Example 1 - based on NDB structure GDL001 by Coll, Aymami,
Van Der Marel, Van Boom, Rich & Wang
[Biochemistry (1989), 28, 310-320].
<mmCIF:struct_site_viewCategory>
<mmCIF:struct_site_view id="1">
<mmCIF:details> This view highlights the site of ATAT-Netropsin
interaction.</mmCIF:details>
<mmCIF:rot_matrix11>0.132</mmCIF:rot_matrix11>
<mmCIF:rot_matrix12>0.922</mmCIF:rot_matrix12>
<mmCIF:rot_matrix13>-0.363</mmCIF:rot_matrix13>
<mmCIF:rot_matrix21>0.131</mmCIF:rot_matrix21>
<mmCIF:rot_matrix22>-0.380</mmCIF:rot_matrix22>
<mmCIF:rot_matrix23>-0.916</mmCIF:rot_matrix23>
<mmCIF:rot_matrix31>-0.982</mmCIF:rot_matrix31>
<mmCIF:rot_matrix32>0.073</mmCIF:rot_matrix32>
<mmCIF:rot_matrix33>-0.172</mmCIF:rot_matrix33>
</mmCIF:struct_site_view>
</mmCIF:struct_site_viewCategory>
A description of special aspects of this view of the
site. This data item can be used as a figure legend.
The active site has been oriented with the
specificity pocket on the right and the active
site machinery on the left.
The [1][1] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_SITE_GEN category to an orientation useful for
visualizing the site. The conventions used in the rotation are
described in attribute details.
in category struct_site_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [1][2] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_SITE_GEN category to an orientation useful for
visualizing the site. The conventions used in the rotation are
described in attribute details.
in category struct_site_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [1][3] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_SITE_GEN category to an orientation useful for
visualizing the site. The conventions used in the rotation are
described in attribute details.
in category struct_site_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [2][1] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_SITE_GEN category to an orientation useful for
visualizing the site. The conventions used in the rotation are
described in attribute details.
in category struct_site_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [2][2] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_SITE_GEN category to an orientation useful for
visualizing the site. The conventions used in the rotation are
described in attribute details.
in category struct_site_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [2][3] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_SITE_GEN category to an orientation useful for
visualizing the site. The conventions used in the rotation are
described in attribute details.
in category struct_site_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [3][1] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_SITE_GEN category to an orientation useful for
visualizing the site. The conventions used in the rotation are
described in attribute details.
in category struct_site_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [3][2] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_SITE_GEN category to an orientation useful for
visualizing the site. The conventions used in the rotation are
described in attribute details.
in category struct_site_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
The [3][3] element of the matrix used to rotate the subset of the
Cartesian coordinates in the ATOM_SITE category identified in the
STRUCT_SITE_GEN category an orientation useful for visualizing
the site. The conventions used in the rotation are
described in attribute details.
in category struct_site_view
|x'| |11 12 13| |x|
|y'|~reoriented Cartesian~ = |21 22 23| |y|~Cartesian~
|z'| |31 32 33| |z|
This data item is a pointer to attribute id in category struct_site in the STRUCT_SITE
category.
The value of attribute id in category struct_site_view must uniquely identify a
record in the STRUCT_SITE_VIEW list.
Note that this item need not be a number; it can be any unique
identifier.
Figure 1
unliganded enzyme
view down enzyme active site
Data items in the SYMMETRY category record details about the
space-group symmetry.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:symmetryCategory>
<mmCIF:symmetry entry_id="5HVP">
<mmCIF:Int_Tables_number>18</mmCIF:Int_Tables_number>
<mmCIF:cell_setting>orthorhombic</mmCIF:cell_setting>
<mmCIF:space_group_name_H-M>P 21 21 2</mmCIF:space_group_name_H-M>
</mmCIF:symmetry>
</mmCIF:symmetryCategory>
Space-group number from International Tables for Crystallography
Vol. A (2002).
The cell settings for this space-group symmetry.
Hermann-Mauguin space-group symbol. Note that the
Hermann-Mauguin symbol does not necessarily contain complete
information about the symmetry and the space-group origin. If
used, always supply the FULL symbol from International Tables
for Crystallography Vol. A (2002) and indicate the origin and
the setting if it is not implicit. If there is any doubt that
the equivalent positions can be uniquely deduced from this
symbol, specify the attribute pos_as_xyz in category symmetry_equiv or
attribute space_group_name_Hall in category symmetry data items as well. Leave
spaces between symbols referring to
different axes.
P 1 21/m 1
P 2/n 2/n 2/n (origin at -1)
R -3 2/m
Space-group symbol as described by Hall (1981). This symbol
gives the space-group setting explicitly. Leave spaces between
the separate components of the symbol.
Ref: Hall, S. R. (1981). Acta Cryst. A37, 517-525; erratum
(1981) A37, 921.
-P 2ac 2n
-R 3 2"
P 61 2 2 (0 0 -1)
This data item is a pointer to attribute id in category entry in the ENTRY category.
Data items in the SYMMETRY_EQUIV category list the
symmetry-equivalent positions for the space group.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmCIF:symmetry_equivCategory>
<mmCIF:symmetry_equiv id="1">
<mmCIF:pos_as_xyz>+x,+y,+z</mmCIF:pos_as_xyz>
</mmCIF:symmetry_equiv>
<mmCIF:symmetry_equiv id="2">
<mmCIF:pos_as_xyz>-x,-y,z</mmCIF:pos_as_xyz>
</mmCIF:symmetry_equiv>
<mmCIF:symmetry_equiv id="3">
<mmCIF:pos_as_xyz>1/2+x,1/2-y,-z</mmCIF:pos_as_xyz>
</mmCIF:symmetry_equiv>
<mmCIF:symmetry_equiv id="4">
<mmCIF:pos_as_xyz>1/2-x,1/2+y,-z</mmCIF:pos_as_xyz>
</mmCIF:symmetry_equiv>
</mmCIF:symmetry_equivCategory>
Symmetry-equivalent position in the 'xyz' representation. Except
for the space group P1, these data will be repeated in a loop.
The format of the data item is as per International Tables for
Crystallography Vol. A (2002). All equivalent positions should
be entered, including those for lattice centring and a centre of
symmetry, if present.
-y+x,-y,1/3+z
The value of attribute id in category symmetry_equiv must uniquely identify
a record in the SYMMETRY_EQUIV category.
Note that this item need not be a number; it can be any unique
identifier.
Data items in the VALENCE_PARAM category define the
parameters used for calculating bond valences from bond
lengths. In addition to the parameters, a pointer
is given to the reference (in VALENCE_REF) from which
the bond-valence parameters were taken.
Example 1 - a bond-valence parameter list with accompanying references.
<mmCIF:valence_paramCategory>
<mmCIF:valence_param atom_1="Cu" atom_1_valence="2" atom_2="O" atom_2_valence="-2">
<mmCIF:B>0.37</mmCIF:B>
<mmCIF:Ro>1.679</mmCIF:Ro>
<mmCIF:details xsi:nil="true" />
<mmCIF:ref_id>a</mmCIF:ref_id>
</mmCIF:valence_param>
<mmCIF:valence_param atom_1="Cu" atom_1_valence="2" atom_2="O" atom_2_valence="-2">
<mmCIF:B>0.37</mmCIF:B>
<mmCIF:Ro>1.649</mmCIF:Ro>
<mmCIF:details xsi:nil="true" />
<mmCIF:ref_id>j</mmCIF:ref_id>
</mmCIF:valence_param>
<mmCIF:valence_param atom_1="Cu" atom_1_valence="2" atom_2="N" atom_2_valence="-3">
<mmCIF:B>0.37</mmCIF:B>
<mmCIF:Ro>1.64</mmCIF:Ro>
<mmCIF:details>2-coordinate N</mmCIF:details>
<mmCIF:ref_id>m</mmCIF:ref_id>
</mmCIF:valence_param>
<mmCIF:valence_param atom_1="Cu" atom_1_valence="2" atom_2="N" atom_2_valence="-3">
<mmCIF:B>0.37</mmCIF:B>
<mmCIF:Ro>1.76</mmCIF:Ro>
<mmCIF:details>3-coordinate N</mmCIF:details>
<mmCIF:ref_id>m</mmCIF:ref_id>
</mmCIF:valence_param>
</mmCIF:valence_paramCategory>
<mmCIF:valence_refCategory>
<mmCIF:valence_ref id="a">
<mmCIF:reference>Brown & Altermatt (1985), Acta Cryst. B41, 244-247</mmCIF:reference>
</mmCIF:valence_ref>
<mmCIF:valence_ref id="j">
<mmCIF:reference>Liu & Thorp (1993), Inorg. Chem. 32, 4102-4205</mmCIF:reference>
</mmCIF:valence_ref>
<mmCIF:valence_ref id="m">
<mmCIF:reference>See, Krause & Strub (1998), Inorg. Chem. 37, 5369-5375</mmCIF:reference>
</mmCIF:valence_ref>
</mmCIF:valence_refCategory>
The bond-valence parameter B used in the expression
s = exp[(Ro - R)/B]
where s is the valence of a bond of length R.
The bond-valence parameter Ro used in the expression
s = exp[(Ro - R)/B]
where s is the valence of a bond of length R.
Details of or comments on the bond-valence parameters.
An identifier for the valence parameters of a bond between
the given atoms.
An identifier which links to the reference to the source
from which the bond-valence parameters are taken. A child
of attribute id in category valence_ref which it must match.
The element symbol of the first atom forming the bond whose
bond-valence parameters are given in this category.
The valence (formal charge) of the first atom whose
bond-valence parameters are given in this category.
The element symbol of the second atom forming the bond whose
bond-valence parameters are given in this category.
The valence (formal charge) of the second atom whose
bond-valence parameters are given in this category.
Data items in the VALENCE_REF category list the references
from which the bond-valence parameters have been taken.
Literature reference from which the valence parameters
identified by attribute id in category valence_param were taken.
An identifier for items in this category. Parent of
attribute ref_id in category valence_param, which must have the same value.