Data items in the AUDIT_CONFORM category describe the
dictionary versions against which the data names appearing in
the current data block are conformant.
Example 1 - any file conforming to the current CIF core dictionary.
<mmcif_sas:audit_conformCategory>
<mmcif_sas:audit_conform dict_name="mmcif_sas.dic" dict_version="1.2.3">
<mmcif_sas:dict_location>http://mmcif.wwpdb.org/dictionaries/ascii/mmcif_sas_v123.dic</mmcif_sas:dict_location>
</mmcif_sas:audit_conform>
</mmcif_sas:audit_conformCategory>
A file name or uniform resource locator (URL) for the
dictionary to which the current data block conforms.
The string identifying the highest-level dictionary defining
data names used in this file.
The version number of the dictionary to which the current
data block conforms.
Data items in the ENTITY category record details (such as
chemical composition, name and source) about the molecular
entities that are present in the crystallographic structure.
Items in the various ENTITY subcategories provide a full
chemical description of these molecular entities.
Entities are of three types: polymer, non-polymer and water.
Note that the water category includes only water; ordered
solvent such as sulfate ion or acetone would be described as
individual non-polymer entities.
The ENTITY category is specific to macromolecular CIF
applications and replaces the function of the CHEMICAL category
in the CIF core.
It is important to remember that the ENTITY data are not the
result of the crystallographic experiment; those results are
represented by the ATOM_SITE data items. ENTITY data items
describe the chemistry of the molecules under investigation
and can most usefully be thought of as the ideal groups to which
the structure is restrained or constrained during refinement.
It is also important to remember that entities do not correspond
directly to the enumeration of the contents of the asymmetric
unit. Entities are described only once, even in those structures
that contain multiple observations of an entity. The
STRUCT_ASYM data items, which reference the entity list,
describe and label the contents of the asymmetric unit.
Example 1 - based on PDB entry 5HVP and laboratory records for the
structure corresponding to PDB entry 5HVP.
<mmcif_sas:entityCategory>
<mmcif_sas:entity id="1">
<mmcif_sas:details> The enzymatically competent form of HIV
protease is a dimer. This entity
corresponds to one monomer of an active dimer.</mmcif_sas:details>
<mmcif_sas:formula_weight>10916</mmcif_sas:formula_weight>
<mmcif_sas:type>polymer</mmcif_sas:type>
</mmcif_sas:entity>
<mmcif_sas:entity id="2">
<mmcif_sas:details xsi:nil="true" />
<mmcif_sas:formula_weight>762</mmcif_sas:formula_weight>
<mmcif_sas:type>non-polymer</mmcif_sas:type>
</mmcif_sas:entity>
<mmcif_sas:entity id="3">
<mmcif_sas:details xsi:nil="true" />
<mmcif_sas:formula_weight>18</mmcif_sas:formula_weight>
<mmcif_sas:type>water</mmcif_sas:type>
</mmcif_sas:entity>
</mmcif_sas:entityCategory>
A description of special aspects of the entity.
Formula mass in daltons of the entity.
The method by which the sample for the entity was produced.
Entities isolated directly from natural sources (tissues, soil
samples etc.) are expected to have further information in the
ENTITY_SRC_NAT category. Entities isolated from genetically
manipulated sources are expected to have further information in
the ENTITY_SRC_GEN category.
Defines the type of the entity.
Polymer entities are expected to have corresponding
ENTITY_POLY and associated entries.
Non-polymer entities are expected to have corresponding
CHEM_COMP and associated entries.
Water entities are not expected to have corresponding
entries in the ENTITY category.
The value of attribute id in category entity must uniquely identify a record in the
ENTITY list.
Note that this item need not be a number; it can be any unique
identifier.
Lists the author(s) of the SAS data
Example showing SAS responsible author
<mmcif_sas:sas_authorCategory>
<mmcif_sas:sas_author id="1">
<mmcif_sas:name>Bloggs,</mmcif_sas:name>
<mmcif_sas:orcid>0000-0001-0002-0003</mmcif_sas:orcid>
<mmcif_sas:result_id>1</mmcif_sas:result_id>
</mmcif_sas:sas_author>
</mmcif_sas:sas_authorCategory>
Name of the person
Unique global ID for the author, based on the ORCID system
Result for which this author is responsible
Role that the author played in the generation of the data and writing of accompanying articles
Unique ID for the sas_author entry
Items in this category give information about the beam.
Example - Hypothetical example to illustrate the description of a
beam geometry.
<mmcif_sas:sas_beamCategory>
<mmcif_sas:sas_beam id="X_ray">
<mmcif_sas:shape>Rectangular</mmcif_sas:shape>
</mmcif_sas:sas_beam>
</mmcif_sas:sas_beamCategory>
Frequency of the choppers in Hz
The width of the collimation slits in the _x direction
The width of the collimation slits in the _y direction
the distance in millimetres from the monochromator to the specimen
The distance in millimetres from the radiation source to the monochromator.
For synchrotron radiation, the source is a bending magnet or insertion
device.
the distance in millimetres from the source to the sample
For synchrotron radiation, the source is a bending magnet or insertion
device.
The beam divergence in the _x direction
The beam divergence in the _y
City where the beamline is located
Hamburg
Country where the beamline is located
Germany
Name of the beamline
PETRA III P12
This is two times the Bragg angle (2 theta) of the monochromator.
Direction of the polarization in degrees relative to the x axis
The positive direction is counterclockwise when facing the source.
A description of the device used to polarize the beam
pulse duration for neutron time of flight measurements
The wavelength of the incident beam in Angstroms.
The halfwidth of the distribution of wavelengths present in the incident
beam
Shape of the beam profile if not rectangular, e.g., circular
Type of source
Synchrotron
Angle between the rotation axis of the velocity selector
and the primary beam direction.
Rotation speed of the velocity selector in rpm
The width of the beam at the sample in the _x direction
The width of the beam at the sample in the_y direction
The value of attribute id in category sas_beam must uniquely identify
the beam setup used to measure the scattered intensities.
Description of the buffer used in the sample
Example 1
<mmcif_sas:sas_bufferCategory>
<mmcif_sas:sas_buffer id="1">
<mmcif_sas:comment>Prepared on 03.10.14</mmcif_sas:comment>
<mmcif_sas:name>HEPES</mmcif_sas:name>
<mmcif_sas:pH>7.5</mmcif_sas:pH>
</mmcif_sas:sas_buffer>
</mmcif_sas:sas_bufferCategory>
Volume fraction of D2O in the buffer in %
Comments on the buffer
Buffer name
pH of the buffer
Buffer identifier
Gives information about the detector.
Extension for the items used in SAS.
Example - Hypothetical example to illustrate the description of a
detector.
<mmcif_sas:sas_detcCategory>
<mmcif_sas:sas_detc id="2D">
<mmcif_sas:pixsize_x>0.01</mmcif_sas:pixsize_x>
<mmcif_sas:pixsize_y>0.01</mmcif_sas:pixsize_y>
<mmcif_sas:sector_orientation>22.5</mmcif_sas:sector_orientation>
</mmcif_sas:sas_detc>
</mmcif_sas:sas_detcCategory>
The position of the beam center on the detector in
_x direction in the detector coordinate system.
The position of the beam center on the detector in
_y direction.
The axis system is given by attribute axis.id in category sas_detc.
The x coordinate in pixels of the centre of the
beamstop shadow on the detector measured using the
detector coordinates.
The y coordinate of the centre of the shadow of the beamstop on the
detector measured in the detector coordinate system
defines the maximum dimension of the beamstop shadow on the detector
in the _x direction
defines the maximum dimension of the beamstop shadow on the detector
in the _y direction
Shape of the beamstop (circular, rectangular etc)
the distance in millimetres from the sample to the detector
The number n of channels (pixels) merged together (1D-detector)
to decrease the statistical error by a factor of SQRT(n).
Name of the detector
2D Photon Counting
defines the Euler alpha angle of the normal to
the detector plane
defines the Euler beta angle of the normal to
the detector plane
defines the Euler gamma angle of the normal to
the detector plane
The number of detector pixels in the x direction.
The number of detector pixels in the y direction.
The pixel size in mm in the x direction.
The pixel size in mm in the y direction.
The angular width of the binning sector of the 2D-detector:
This is the angular coordinate of the binning sector
in a 2D-detector
It is the angle between the central line of the
sector and the x direction
The radial width of the binnng sector of the 2D-detector.
Type of the detector
MAR Image Plate
The value of attribute id in category sas_detc must uniquely identify
the detector used to measure the scattered intensities .
Description of the fitted model
Example 1
<mmcif_sas:sas_modelCategory>
<mmcif_sas:sas_model id="1">
<mmcif_sas:comment>Clustered</mmcif_sas:comment>
<mmcif_sas:fitting_id>1</mmcif_sas:fitting_id>
<mmcif_sas:radius>1.3</mmcif_sas:radius>
<mmcif_sas:software>DAMMIF</mmcif_sas:software>
<mmcif_sas:symmetry>P1</mmcif_sas:symmetry>
<mmcif_sas:type_of_model>dummy</mmcif_sas:type_of_model>
<mmcif_sas:version>6.0</mmcif_sas:version>
</mmcif_sas:sas_model>
</mmcif_sas:sas_modelCategory>
Comments on the model
Clustered
A pointer to _fitting_id of the model
1
Radius of dummy atoms in Angstroms (for ab initio models)
1.3
Software used to create the model
DAMMIF
Symmetry of the model
P1
Type of the model
dummy
Version of software used
6.0
Model identifier
1
Model fitting data
Example 1
<mmcif_sas:sas_model_fittingCategory>
<mmcif_sas:sas_model_fitting ordinal="1">
<mmcif_sas:fit>27665.9</mmcif_sas:fit>
<mmcif_sas:id>1</mmcif_sas:id>
<mmcif_sas:intensity>10188.6</mmcif_sas:intensity>
<mmcif_sas:momentum_transfer>0.0685743</mmcif_sas:momentum_transfer>
</mmcif_sas:sas_model_fitting>
<mmcif_sas:sas_model_fitting ordinal="2">
<mmcif_sas:fit>25913.1</mmcif_sas:fit>
<mmcif_sas:id>1</mmcif_sas:id>
<mmcif_sas:intensity>10275.7</mmcif_sas:intensity>
<mmcif_sas:momentum_transfer>0.0712083</mmcif_sas:momentum_transfer>
</mmcif_sas:sas_model_fitting>
<mmcif_sas:sas_model_fitting ordinal="3">
<mmcif_sas:fit>24310.</mmcif_sas:fit>
<mmcif_sas:id>1</mmcif_sas:id>
<mmcif_sas:intensity>10285.1</mmcif_sas:intensity>
<mmcif_sas:momentum_transfer>0.0738423</mmcif_sas:momentum_transfer>
</mmcif_sas:sas_model_fitting>
<mmcif_sas:sas_model_fitting ordinal="4">
<mmcif_sas:fit>22706.9</mmcif_sas:fit>
<mmcif_sas:id>1</mmcif_sas:id>
<mmcif_sas:intensity>10029.4</mmcif_sas:intensity>
<mmcif_sas:momentum_transfer>0.0764763</mmcif_sas:momentum_transfer>
</mmcif_sas:sas_model_fitting>
</mmcif_sas:sas_model_fittingCategory>
The theoretical scattering intensity
Fit identifier
1
The scattering intensity used for fitting theoretical scattering
Momentum transfer values
Fit ordinal identifier
1
Model fitting details
Example 1
<mmcif_sas:sas_model_fitting_detailsCategory>
<mmcif_sas:sas_model_fitting_details id="1">
<mmcif_sas:chi_square>1.44</mmcif_sas:chi_square>
<mmcif_sas:p-value>1.2</mmcif_sas:p-value>
<mmcif_sas:result_id>1</mmcif_sas:result_id>
<mmcif_sas:unit>nanometre</mmcif_sas:unit>
</mmcif_sas:sas_model_fitting_details>
</mmcif_sas:sas_model_fitting_detailsCategory>
Chi square value
p-value
A pointer to _result_id corresponding to the fit
Units of momentum transfer
Fit identifier
The distance distribution function P(R)
Example 1
<mmcif_sas:sas_p_of_RCategory>
<mmcif_sas:sas_p_of_R ordinal="1">
<mmcif_sas:P>0.</mmcif_sas:P>
<mmcif_sas:P_error>0.</mmcif_sas:P_error>
<mmcif_sas:R>0.</mmcif_sas:R>
<mmcif_sas:id>1</mmcif_sas:id>
</mmcif_sas:sas_p_of_R>
<mmcif_sas:sas_p_of_R ordinal="2">
<mmcif_sas:P>2.276</mmcif_sas:P>
<mmcif_sas:P_error>0.05545</mmcif_sas:P_error>
<mmcif_sas:R>0.1034</mmcif_sas:R>
<mmcif_sas:id>1</mmcif_sas:id>
</mmcif_sas:sas_p_of_R>
<mmcif_sas:sas_p_of_R ordinal="3">
<mmcif_sas:P>5.953</mmcif_sas:P>
<mmcif_sas:P_error>0.08992</mmcif_sas:P_error>
<mmcif_sas:R>0.2068</mmcif_sas:R>
<mmcif_sas:id>1</mmcif_sas:id>
</mmcif_sas:sas_p_of_R>
<mmcif_sas:sas_p_of_R ordinal="1010">
<mmcif_sas:P>2.941</mmcif_sas:P>
<mmcif_sas:P_error>0.1673</mmcif_sas:P_error>
<mmcif_sas:R>10.24</mmcif_sas:R>
<mmcif_sas:id>1</mmcif_sas:id>
</mmcif_sas:sas_p_of_R>
<mmcif_sas:sas_p_of_R ordinal="1011">
<mmcif_sas:P>0.</mmcif_sas:P>
<mmcif_sas:P_error>0.</mmcif_sas:P_error>
<mmcif_sas:R>10.34</mmcif_sas:R>
<mmcif_sas:id>1</mmcif_sas:id>
</mmcif_sas:sas_p_of_R>
</mmcif_sas:sas_p_of_RCategory>
Values of distance distribution function P(R)
Errors of P(R) values
Values of intramolecular distances R
P(R) identifier
Ordinal index for the P(R) function
Description of the distance distribution function P(R)
Example 1
<mmcif_sas:sas_p_of_R_detailsCategory>
<mmcif_sas:sas_p_of_R_details id="1">
<mmcif_sas:Rmax>10.2</mmcif_sas:Rmax>
<mmcif_sas:Rmin>0</mmcif_sas:Rmin>
<mmcif_sas:number_of_points>1096</mmcif_sas:number_of_points>
<mmcif_sas:p_of_R_point_max>1100</mmcif_sas:p_of_R_point_max>
<mmcif_sas:p_of_R_point_min>5</mmcif_sas:p_of_R_point_min>
<mmcif_sas:qmax>4.2</mmcif_sas:qmax>
<mmcif_sas:qmin>0.04</mmcif_sas:qmin>
<mmcif_sas:result_id>1</mmcif_sas:result_id>
<mmcif_sas:software_p_of_R>GNOM 4.6</mmcif_sas:software_p_of_R>
</mmcif_sas:sas_p_of_R_details>
</mmcif_sas:sas_p_of_R_detailsCategory>
Maximal value of intramolecular distances R
Minimal value of intramolecular distances R
Number of intensity points used in P(R) calculation
Number of the last point of intensity used to calculate P(R)
Number of the first point of intensity used to calculate P(R)
Maximal value of momentum transfer used for calculation of P(R)
Minimal value of momentum transfer used for calculation of P(R)
A pointer to attribute id in category sas_result
Software used for the calculation of
P(R) identifier
The extrapolated quantities backcalculated from the P(R) using inverse Fourier transformation
Example 1
P(R) identifier
Extrapolated regularized arized intensity backcalculated from P(R) using inverse Fourier transformation
Extrapolated momentum transfer values for calculation of extrapolated intensity
Ordinal index for extrapoated value list
Ordinal index for the P(R) function
Results of small-angle scattering measurement
Example 1
<mmcif_sas:sas_resultCategory>
<mmcif_sas:sas_result id="1">
<mmcif_sas:Dmax>10.3</mmcif_sas:Dmax>
<mmcif_sas:Dmax_error>0.2</mmcif_sas:Dmax_error>
<mmcif_sas:Guinier_point_max>23</mmcif_sas:Guinier_point_max>
<mmcif_sas:Guinier_point_min>5</mmcif_sas:Guinier_point_min>
<mmcif_sas:I0_from_Guinier>10128</mmcif_sas:I0_from_Guinier>
<mmcif_sas:I0_from_Guinier_error>184</mmcif_sas:I0_from_Guinier_error>
<mmcif_sas:I0_from_PR>10203</mmcif_sas:I0_from_PR>
<mmcif_sas:I0_from_PR_error>195</mmcif_sas:I0_from_PR_error>
<mmcif_sas:MW_Porod>49</mmcif_sas:MW_Porod>
<mmcif_sas:MW_Porod_error>0.3</mmcif_sas:MW_Porod_error>
<mmcif_sas:MW_standard>55</mmcif_sas:MW_standard>
<mmcif_sas:Porod_volume>82</mmcif_sas:Porod_volume>
<mmcif_sas:Porod_volume_error>7</mmcif_sas:Porod_volume_error>
<mmcif_sas:Rg_from_Guinier>3.4</mmcif_sas:Rg_from_Guinier>
<mmcif_sas:Rg_from_Guinier_error>0.2</mmcif_sas:Rg_from_Guinier_error>
<mmcif_sas:Rg_from_PR>3.5</mmcif_sas:Rg_from_PR>
<mmcif_sas:Rg_from_PR_error>0.3</mmcif_sas:Rg_from_PR_error>
<mmcif_sas:SASBDB_code>SASDA85</mmcif_sas:SASBDB_code>
<mmcif_sas:comments>No signs of aggregation</mmcif_sas:comments>
<mmcif_sas:estimated_volume>74</mmcif_sas:estimated_volume>
<mmcif_sas:estimated_volume_error>5</mmcif_sas:estimated_volume_error>
<mmcif_sas:estimated_volume_method>Ab initio model</mmcif_sas:estimated_volume_method>
<mmcif_sas:experimental_MW>55</mmcif_sas:experimental_MW>
<mmcif_sas:experimental_MW_error>0.1</mmcif_sas:experimental_MW_error>
<mmcif_sas:standard>BSA</mmcif_sas:standard>
<mmcif_sas:type_of_curve>Merged</mmcif_sas:type_of_curve>
</mmcif_sas:sas_result>
</mmcif_sas:sas_resultCategory>
Maximum dimension of the particle (in nm)
Error of Dmax
Number of the last point of the guinier region
Number of the first point of the guinier region
Forward scattering determined with Guinier approximation
Error of Guinier approximation forward scattering
Forward scattering determined from distance distribution function
Error of P(R) forward scattering
Molecular weight derived from the Porod volume (in kDa)
Error of Porod molecular weight
Molecular weight of the sample determined by comparison to the sample forward scattering with that from a standard (in kDa)
Porod volume (excluded volume of the hydrated particle) (in nm3)
Error of Porod volume
Radius of gyration determined with Guinier approximation (in nm)
Error of Guinier approximation radius of gyration
Radius of gyration determined from distance distribution function (in nm)
Error of P(R) radius of gyration
Code in the SASBDB
Comments on the results
Volume estimated from scattering curve using any other method than Porod volume calculation (in nm3)
Error of estimated volume
Method used to estimate volume
Molecular weight of the sample determined by any experimental method (in kDa)
Error of experimental molecular weight
Units for the I0 items in _sas_result
Units for the Rg and Dmax items in _sas_result
The volume items have units equal to this unit cubed
Name of the substance used as a standard
Type of the curve used in analysis
Result identifier
Gives information about the sample and how it is mounted.
The sample is assumed to consist of the specimen to be
analysed and a matrix or buffer.
Example - Hypothetical example to illustrate the description of a
Sample.
<mmcif_sas:sas_sampleCategory>
<mmcif_sas:sas_sample id="Lysozyme_sample">
<mmcif_sas:details>Chicken egg white lysozyme in solution</mmcif_sas:details>
<mmcif_sas:sample_transmission>0.6</mmcif_sas:sample_transmission>
<mmcif_sas:specimen_concentration>15</mmcif_sas:specimen_concentration>
<mmcif_sas:thickness>0.2</mmcif_sas:thickness>
</mmcif_sas:sas_sample>
</mmcif_sas:sas_sampleCategory>
A pointer to attribute id in category sas_buffer in the Buffer category
A description of the calibration used for normalization
of the scattering intensity.
Black carbon
Ionisation chamber
Water
Standard protein (BSA)
Temperature at which the sample measurement were performed (in C)
20.0
Method of concentration determination
Nanodrop
A description of the sample such as the source of the sample,
identification of standards, mixtures, etc.
The sample is assumed to consist of a specimen which is
actually analysed and a matrix or buffer.
The angle between the normal to the planar sample and
the incident beam.
Dry volume of the sample
53
A pointer to _entity_id (molecule) which the sample contains
1
Extinction coefficient of the sample
43.824
The angle between the fibre direction of the sample and
the principal detector axis. In the case of two-dimentsional
detectors this is the direction that changes most rapidly
in the detector output.
The length of the unstressed sample along the direction of stress.
Defines the sample position in the _x direction.
defines the sample position in the _y direction.
defines the sample position in the _z direction.
The date of preparation of the sample, i.e., the date when
the sample was assembled into a form suitable for measuring
small angle scatterng. The date is given in the format yyyy-mm-dd
Method of purity determination
DLS
The transmission factor Ts of the sample calculated or measured as
intensity of beam transmitted through the sample
------------------------------------------------
intensity of incident beam
The sample is assumed to consist of the specimen that is actually
analyzed and a matrix or buffer.
defines the shape of the sample. The sample is assumed to
consist of a specimen which is actually analysed and
a matrix or buffer.
fibre
disk
Unknown
Specific volume of the sample
0.724
The sample is assumed to consist of the specimen which is
actually analysed and a matrix or buffer.
This item gives the concentration of the specimen in the sample.
Temperature at which the sample was stored prior to measurement (in C)
10.0
The extension of the stressed sample, divided by the
original length (or volume).
A description of the stress applied to the sample.
uniaxial extension
uniaxial compression
fibers under dead-loading
A description of the sample holder
The thickness of the irradiated volume of the sample measured
perpendicular to the incident x-ray beam.
The value of attribute id in category sas_sample must uniquely identify
the sample whose scattered intensity was measured.
The sample is assumed to consist of a specimen
which is actually analysed and a matrix or buffer.
Lists the molecular entities present in each sample, together with properties such as deuteration
This example shows two samples with two and three entities respectively
<mmcif_sas:sas_sample_entitiesCategory>
<mmcif_sas:sas_sample_entities id="1">
<mmcif_sas:concentration>1.2</mmcif_sas:concentration>
<mmcif_sas:entity_id>BSA</mmcif_sas:entity_id>
<mmcif_sas:sample_id>1</mmcif_sas:sample_id>
</mmcif_sas:sas_sample_entities>
<mmcif_sas:sas_sample_entities id="2">
<mmcif_sas:concentration>0.7</mmcif_sas:concentration>
<mmcif_sas:entity_id>LYZ</mmcif_sas:entity_id>
<mmcif_sas:sample_id>1</mmcif_sas:sample_id>
</mmcif_sas:sas_sample_entities>
<mmcif_sas:sas_sample_entities id="3">
<mmcif_sas:concentration>3.3</mmcif_sas:concentration>
<mmcif_sas:entity_id>BSA</mmcif_sas:entity_id>
<mmcif_sas:sample_id>2</mmcif_sas:sample_id>
</mmcif_sas:sas_sample_entities>
<mmcif_sas:sas_sample_entities id="3">
<mmcif_sas:concentration xsi:nil="true" />
<mmcif_sas:entity_id>HGF</mmcif_sas:entity_id>
<mmcif_sas:sample_id>2</mmcif_sas:sample_id>
</mmcif_sas:sas_sample_entities>
<mmcif_sas:sas_sample_entities id="3">
<mmcif_sas:concentration>0.1</mmcif_sas:concentration>
<mmcif_sas:entity_id>EPO</mmcif_sas:entity_id>
<mmcif_sas:sample_id>2</mmcif_sas:sample_id>
</mmcif_sas:sas_sample_entities>
</mmcif_sas:sas_sample_entitiesCategory>
Concentration of the entity in the sample
The highest concentration in a concentration series (for a
sas_result derived from merging / extrapolating curves from
several concentrations).
If this is present then .concentration_range_min should also be
present, and .concentration should not be.
The lowest concentration in a concentration series (for a
sas_result derived from merging / extrapolating curves from
several concentrations).
If this is present then .concentration_range_max should also be
present, and .concentration should not be.
Units for attribute concentration,
in category sas_sample_entities .concentration_range_max and .concentration_range_min
When absent, assume mg/ml
Contrast of this entity in this sample
Accounting for sample deuteration and for buffer composition
3.047
Percentage of non-exchangeable 2H of the entity (molecule)
Identifies the entity
Molecular weight of the entity in kDa
Adjusted for deuteration if necessary
53.5
Identifies the sample in which the entity is present
This data item is the category key and must be unique to each scan
reported in the datablock.
Describes the properties of the different scans reported in sas_scan_intensity.
This example shows how the beam, detector and sample are specified for a each scan. In addition, the nature of the intensities measured
during the scan is shown. This example should be read in conjuntion with the example in sas_scan_intensity. No filenames are given for
the first three items as the intensities for these scans are found in the current datablock.
<mmcif_sas:sas_scanCategory>
<mmcif_sas:sas_scan id="1">
<mmcif_sas:beam_id>2007-10-12</mmcif_sas:beam_id>
<mmcif_sas:detc_id>2</mmcif_sas:detc_id>
<mmcif_sas:filename>sample</mmcif_sas:filename>
<mmcif_sas:measurement_date>sample1</mmcif_sas:measurement_date>
<mmcif_sas:sample_id>1</mmcif_sas:sample_id>
<mmcif_sas:title>1</mmcif_sas:title>
<mmcif_sas:type>1</mmcif_sas:type>
</mmcif_sas:sas_scan>
<mmcif_sas:sas_scan id="matrix">
<mmcif_sas:beam_id>1</mmcif_sas:beam_id>
<mmcif_sas:detc_id>background1</mmcif_sas:detc_id>
<mmcif_sas:filename>1</mmcif_sas:filename>
<mmcif_sas:measurement_date>3</mmcif_sas:measurement_date>
<mmcif_sas:sample_id>2007-10-10</mmcif_sas:sample_id>
<mmcif_sas:title xsi:nil="true" />
<mmcif_sas:type>2</mmcif_sas:type>
</mmcif_sas:sas_scan>
<mmcif_sas:sas_scan id="1">
<mmcif_sas:beam_id>c/detector/response.cif</mmcif_sas:beam_id>
<mmcif_sas:detc_id>5</mmcif_sas:detc_id>
<mmcif_sas:filename>2007-10-15</mmcif_sas:filename>
<mmcif_sas:measurement_date>detector</mmcif_sas:measurement_date>
<mmcif_sas:sample_id>1</mmcif_sas:sample_id>
<mmcif_sas:title xsi:nil="true" />
<mmcif_sas:type>processed1</mmcif_sas:type>
</mmcif_sas:sas_scan>
<mmcif_sas:sas_scan id="2">
<mmcif_sas:beam_id>processed</mmcif_sas:beam_id>
<mmcif_sas:detc_id>c/scan//processed.cif</mmcif_sas:detc_id>
<mmcif_sas:measurement_date>1</mmcif_sas:measurement_date>
<mmcif_sas:title>1</mmcif_sas:title>
</mmcif_sas:sas_scan>
</mmcif_sas:sas_scanCategory>
This item is a child of attribute id in category sas_beam and identifies the beam
configuration used in making the scan.
The measured intensity should be multiplied by this factor
to get normalized intensity
This item is a child of attribute id in category sas_detc and identifies the detector used
in recording the scan.
Time interval used to accumulate the counts in each of the values
included in attribute intensity in category sas_scan_intensity
Name of the file in which the scan intensity is stored on the machine
where the primary data processing is done
Units for the intensity and intensity_su_* columns
of the corresponding _sas_scan_intensity category
The date on which this scan was made. The format is yyyy-mm-dd
Units for the momentum_transfer column
of the corresponding _sas_scan_intensity category
Number of frames taken during the exposure
50
A pointer to _result_id corresponding to the intensity
1
This item is is a child of attribute id in category sas_sample and identifies the sample
used in this scan.
Title for this scan.
If the type is "processed", the intensity Ip is corrected for background,
detector response etc. as follows:
Ip = (Is - Im - Ib(Tm-Ts) )/( Id*C*ds*Ts)
where
Is = the intensity measured with the mounted specimen
Im = the intensity measured with the matrix alone
Ib = the measured background intensity
Id = the detector response
(the above four quantities are found in attribute intensity in category sas_scan_intensity depending
on the flag given in this item. See the enumeration list for this item.)
Ts = transmission coefficient of the specimen = sas_sample.specimen_transmission
Tm = transmission coefficient of the matrix = attribute matrix_transmission
in category sas_sample C = concentration of the specimen = attribute specimen_concentration
in category sas_sample ds = thickness of the sample = attribute thickness
in category sas_sample The detector response is the intensity measured by the detector from
a uniform scatterer (e.g. a Fe55 radioactive source for X-rays
or water for neutrons).
This data item is the category key and must be unique to each scan
reported in the datablock.
This category gives the measured and processed intensities
and the corresponding momentum transfers.
This example shows the intensity as a function of momentum transfer for the cases given in the sas_scan category example, showing how each of the different scans can be reported in a single file though they can also be reported in different files if so desired
<mmcif_sas:sas_scan_intensityCategory>
<mmcif_sas:sas_scan_intensity id="transfer">
<mmcif_sas:resolution_width>1</mmcif_sas:resolution_width>
</mmcif_sas:sas_scan_intensity>
</mmcif_sas:sas_scan_intensityCategory>
Number of pixels contributing to the value reported in .intensity.
Intensity measured or processed at the given momentum transfer
Standard uncertainty determined from the counting statistics of the
intensity reported in .intensity
Estimated standard uncertainty from sources other than counting
statistics. e.g. from radial average, incoherent background etc...
Momentum transfer values
4*PI*sin(theta)/lambda in A^-1
Uncertainty in the momentum transfer (e.g. case for
scanning instruments)
Maximal momentum transfer value
6.5
Minimal momentum transfer value
0.03
Width of the Gaussian resolution function defined
by Pedersen et al, (1990) J. Appl. Cryst., 23, 321
This data item is a child of attribute id in category sas_scan. It serves to relate the
current intensity measurement with the conditions given for this scan in
sas_scan.
Units of momentum transfer
nanometre
This data item is the category key and must have a unique value for each
intensity measurement.